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The use of synthetic data is gaining an increasingly prominent role in data and machine learning workflows to
build better models and conduct analyses with greater statistical inference. In the domains of healthcare and
biomedical research, synthetic data may be seen in structured and unstructured formats. Concomitant with the
adoption of synthetic data, a sub-discipline of machine learning known as deep learning has taken the world by
storm. At a larger scale, deep learning methods tend to outperform traditional methods in regression and
classification tasks. These techniques are also used in generative modeling and are thus prime candidates for
generating synthetic data in both structured and unstructured formats. Here, we emphasize the generation of
synthetic data in healthcare and biomedical research using deep learning methods for unstructured data formats
such as text and images. Deep learning methods leverage the neural network algorithm, and in the context of
generative modeling, several neural network architectures can create new synthetic data for a problem at hand
including, but not limited to, recurrent neural networks (RNNs), variational autoencoders (VAEs), and gen-
erative adversarial networks (GANs). To better understand these methods, we will look at specific case studies
such as generating realistic clinical notes of a patient, the generation of synthetic DNA sequences, as well as to
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enrich experimental data collected during the study of heterotypic cultures of cancer cells.
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1. Introduction

Imagine a situation in which sufficient and more per-
tinent data can be made available no matter what sci-
entific hypothesis needs to be tested or theory needs to
be validated. Is this even feasible, and if so, would the
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data created to meet these lofty goals be acceptable to
the scientific community? As strange as all this seems,
recent developments in a class of algorithms within the
field of artificial intelligence (Yu et al. 2018), known as
deep learning algorithms (Esteva et al. 2019), are
making the above seemingly impossible scenario pos-
sible in cases where there is some real data readily
available. By real data what is meant is that data that
have been collected from existing entities (such as
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patients in the case of clinical sciences) or those that are
generated experimentally in the life sciences or physi-
cal sciences to test a specific hypothesis (or set of
hypotheses) or check the validity of a proposed theory.

Within basic sciences, different types of biological
networks play vital roles in cancer progression, cancer
resistance, neuronal rhythms, cardiac rhythms, etc.
(Barabasi and Oltvai 2004; Koutrouli et al. 2020;
Muzio et al. 2021). Experimentally generated data are
never sufficient to study the complexities generated by
these biological networks at various temporal and
spatial scales. In such cases, an answer to data paucity
could lie in the ability to generate synthetic data
(Dahmen and Cook 2019; Lindner et al. 2019; Gon-
calves et al. 2020; Walonoski et al. 2020) that are
statistically similar to real data. Statistical similarity
implies that the probability distribution of the newly
synthetically generated data is similar to that of the
original data. Further, the use of synthetic data can lead
to the development of scientific solutions that rely on
data augmentation, which in this context implies
enriching real data with synthetic data. Data augmen-
tation of experimental systems (Hoffmann et al. 2019)
transforms, in some situations, a data-scarce system
into a data-rich system, making them candidates for the
application of powerful data analysis techniques like
machine learning (Koivu et al. 2020; Suh ef al. 2020;
Chen et al. 2021) to derive additional insights. Data
generated synthetically augments real data points based
on their joint probability distribution during the model
training process. The way this is achieved is based on
the introduction of noise (such as GANs and VAEs,
which are discussed below), which in turn leads to a
degree of variation that ultimately results in distinct
synthetic data points. The inclusion of these unique
data points enriches the training set, which in turn leads
an algorithm to learn new patterns not originally
discovered.

A synthetic data revolution is in progress due to its
popularity and prevalence in multiple industries such as
self-driving cars, fraud detection, medical imaging as
well as healthcare, in general. To accelerate research in
the clinical sciences and thereby advance treatment
options, it is imperative to overcome the limited access
to existing patient data, as well as the difficulties in
integrating data from multiple sources within a provi-
der and across providers. To overcome these chal-
lenges, virtual cohorts comprising synthetic patients
that mirror deeply phenotyped patients are being gen-
erated to advance research in diseases such as dementia
(Muniz-Terrera et al. 2021). Concerns over maintaining
patient privacy even with the application of patient de-
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identification methodologies like safe-harbor and
expert determination (https.//www.hhs.gov/sites/default
/files/ocr/privacy/hipaa/understanding/coveredentities/
De-identification/hhs _deid guidance.pdf) along with
added regulations such as GDPR (https://www.gartner.
com/en/newsroom/press-releases/202(0) are other com-
pelling reasons to move towards the use of synthetic
data for secondary research, data commercialization
partnerships, educating medical professionals, or soft-
ware testing purposes. Synthetic datasets have also
been found to be useful for validating algorithms cre-
ated to infer the structure of gene regulatory networks
based on expression data (Van den Bulcke et al. 2006).
Van den Bulcke et al. (2006) developed a network
generator to create synthetic transcriptional regulatory
networks, which in turn was used to simulate gene
expression data that approximated experimental data.
Other situations where synthetic data can assist with in
healthcare include precision medicine studies, model-
ing simulations, machine learning tasks that involve
class imbalance to increase the count of minority
samples, as well as rare diseases (https.//www.
researchsquare.com/article/rs-116297/v2). ~ Synthetic
data can be created based on real unstructured data
such as images, text, audio, or video as well as real
structured data as in the case of tabular data (https.//
www.statice.ai/post/types-synthetic-data-examples-real
-life-examples). One of the approaches is through
generative models (Hazra and Byun 2020; Lan et al
2020), which is a class of deep learning algorithms that
can learn from the underlying patterns of real data
including statistical properties like probabilistic distri-
butions. Here, we wish to elaborate synthetic data
generation methodologies in the context of biomedical
case studies including the pursuit to comprehend
complex biological networks underpinning cancer
resistance. Specifically, we elucidate the use of syn-
thetic data derived from deep learning algorithms to
facilitate the formation of a synthetic data layer in a
futuristic computational platform designed to study
biological networks.

2. Deep learning architectures
2.1 A primer on RNNs and LSTM networks

Recurrent neural networks (RNNs) are a specific
architecture of neural networks (Pandit and Garg 2021)
designed to model any data that are sequential in nat-
ure, for example, DNA, audio, financial transactions,
etc. They were first introduced by David Rumelhart
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(Williams et al. 1986). To perform predictive modeling
on sequential data, RNNs need the ability to ‘remem-
ber’ past information. The method adopted by this
architecture to retain memory is by utilizing its units
that resemble the events in sequence. These units are
known as RNN unrolled units, and each unit has an
input corresponding to the data at a specific time step
(e.g., the first unit will have the data input that comes
first in the sequence, and the fourth unit will have the
data input that comes fourth in the sequence). The
parameters of an RNN include the batch size of the
input data, the size of the output node, the number of
time steps to include in the sequence, and the number
of features to include in one time step. This means that
the RNN’s final output would be three-dimensional
(batch size, number of time steps, and output node size)
(https://towardsdatascience.com/all-you-need-to-know-
about-rnns-e5 14f0b00c7c). Mathematically, memory in
an RNN is modeled in the sequential nature of a hidden
state vector. Throughout the network, the hidden state
also has weights and biases just like the attributed
values in an artificial neural network (ANN). Before
going through any RNN units, both values are initial-
ized at 0. As the RNN propagates from the input data
layer to the hidden layers and then to the output layer
and back-propagated, the hidden state at each specific
time step is calculated by multiplying the input with its
respective weights to which its input bias is added. This
calculation then becomes the input to an activation
function, typically a hyperbolic tangent. This function
is then added to another term which comprises the
hidden layer’s weight multiplied by the hidden state
vector at the previous time step (0 if time step is the
first time step) and is then added to the hidden layer’s
bias. To get the output at a time step, the hidden state
vector at the current time step is multiplied by the
weight obtained from the output at that time step and
added to the output layer’s bias obtained at that time
step (https://builtin.com/data-science/recurrent-neural-
networks-and-Istm). When the next hidden state cal-
culation occurs for the following time step, the previ-
ous time step’s hidden state vector is factored into the
computation, allowing the RNN to effectively retain
information learned from the network at the previous
time step while being able to optimize weights for input
at the current time step. This process repeats sequen-
tially until all time steps have a respective output at
their corresponding point in time via the sequence.
Every time the RNN moves from one unit in time to the
next unit of time, we say the network has ‘unrolled’.
Once the entire network has gone through an entire
batch of data, the process will repeat until all batches of
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data have been trained on the network (figure 1)
(https://towardsdatascience.com/all-you-need-to-know-
about-rnns-e514f0b00c7c). Two problems arise with
traditional RNNs when the gradient descent algorithm
assigns extremely high values to weights (exploding
gradient) or extremely low values to weights (vanish-
ing gradient) to the point where the RNN is no longer
able to learn and experiences a tremendous slowdown
in its process. To resolve these issues, a new architec-
ture was introduced known as Long Short-Term
Memory (LSTM) networks (Hochreiter and Schmid-
huber 1997). LSTM networks have a particular cell in
the network known as a gated cell. Gated cells deter-
mine whether information learned at a particular time
step is relevant for the RNN in future time steps by
deciding to store or delete information based on the
importance of weights at that given time step. The
gated cell has three types of gates: input, forget, and
output. The information passing through the gated cell
goes through a sigmoid function. Since sigmoid func-
tions output a value between 0 and 1, a value of 0
indicates that no information should be sent to the
output for the next time step to learn and a value of 1
indicates that all the information at that point in time
should be factored into the computation for the next
time step’s state (https://medium.com/@humble bee/
run-recurrent-neural-networks-Istm-842ba7205bbf).
Values between 0 and 1 indicate that some information
should be let through for the next time step to
encompass in its hidden state computation and the
remainder of information should go through the ‘forget
gate’ to be deleted from the learned memory.

Ultimately, LSTM networks solve the vanishing
gradient problem and significantly speed up the learn-
ing process of the RNN by still allowing the network to
not only learn from the previous time step, but also
gain useful information from former time steps as
directed by the weights learned and outputs obtained in
the gated cells.

But how do we use an LSTM network for generating
text? Words are essentially sequences made up of char-
acters. Keeping this idea in mind, the problem can be
framed for the LSTM network to predict the next letter in
aword. A vocabulary can be generated by creating a list
of all unique characters in a document and then each
character can be mapped to a unique integer (https.//
machinelearningmastery.com/text-generation-Istm-
recurrent-neural-networks-python-keras/). Using an
arbitrary sequence length (n), the document’s text can be
transformed into subsequences fixed to set up the output
as being the last character following n—1 characters in a
sequence. The LSTM network’s goal would then be to
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Figure 1. Schematic of a RNN architecture with 5 time steps. Adapted from https://towardsdatascience.com/all-you-need-

to-know-about-rnns-e514f0b00c7c.

predict the probability of the next character being one of
the unique characters in the vocabulary. The character
with the highest probability is chosen as the next char-
acter to be added in the sequence. To generate text from
the trained LSTM network, a reverse mapping from
integers back to the original characters is required. The
generation essentially predicts the next character, so one
can simply provide a starting sequence and then the
LSTM network can predict the next character in the
sequence and iteratively continue this process indefi-
nitely to generate new text. LSTM layers in a RNN can
also be stacked at the same time step (https://
machinelearningmastery.com/stacked-long-short-term-
memory-networks/). This allows for a deeper represen-
tation of memory for the sequence and can be useful for
predictions in long and complex sequences.

2.2 A primer on GANs and VAEs

Although LSTM networks and RNNs are powerful
models for predicting information in a sequence, they
are not necessary for data that do not follow a
sequence. One deep learning algorithm that can
generate data that is not necessarily in a sequence is
known as a generative adversarial network
(GAN). GANs are a major advancement in deep

learning (Goodfellow et al. 2014). The premise
behind GANs is to generate complex random vari-
ables that follow a specific probability distribu-
tion. GANs have shown to perform well when
generating images that are unique but resemble
realistic properties of a sample of images used during
training. However, GANs can be applied to any data
that can form a probability distribution. GANs can
also be applied to generating realistic data inputs in
the form of tabular data (e.g., TabularGAN; Xu and
Veeramachaneni 2018), making it a prime candidate
for generating synthetic rows in an electronic health
record (EHR). Essentially, the architecture com-
prises two neural networks known as the generator
and discriminator. The discriminator network tries to
find the boundary that separates real and generated
data, while the generator network aims to generate
synthetic data that resemble the distribution of the
real data (figure 2) (https://towardsdatascience.com/
understanding-generative-adversarial-networks-gans-
cd6e4651a29). In other words, the generator and
discriminator participate in a minimax two-person
game (Goodfellow et al. 2014). GANs are very
fragile architectures which often give rise to diffi-
culties in training them. Due to these challenges, it is
quite common that a Nash equilibrium is not
attained, and thus more mathematical techniques are
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Figure 2. Roles of generative network and discriminative network. Adapted from https.://towardsdatascience.com/
understanding-generative-adversarial-networks-gans-cd6e4651a29.

required to stabilize the training process and con-
verge approximately. One of these methods is known
as proximal training (Farnia and Ozdaglar 2020).

Mathematically, the generator network is optimized
to produce data samples in future iterations by mini-
mizing the distance between the real and synthetic data
distributions such that the discriminator network faces
challenges in discriminating synthetic data from real
data. Essentially the generator network starts off by
generating inputs in a uniform, random distribution and
compares its values with a probability distribution of
interest (e.g., a high-resolution image of a melanoma
tumor cell, or patient profiles in an electronic medical
record). The comparison is done through the calcula-
tion of a distance known as maximum mean discrep-
ancy (MMD), which estimates the distance between
two probability distributions from provided sam-
ples. Within a GAN, back-propagation minimizes the
MMD through the perspective of the generator net-
work by updating the weights to increase the discrim-
inator’s classification error while the discriminator
network’s weights are updated to minimize classifica-
tion error. This optimization design results in an enri-
ched dataset which also draws from modeling the noise
around the distribution that the real data follows.

The ideal scenario in this approach is that the training
stops when the discriminator network predicts a prob-
ability of 0.5 for either the true or synthetic data dis-
tributions as that would imply that the data generated
by the generator network resembles the real data dis-
tribution perfectly. There are also additions to GANs
that allow them to be used for generating data in the
form of sequences. GANs also suffer from various
limitations including overfitting, mode collapse, and
vanishing gradient. To address these concemns, tech-
niques to improve GANSs are under development.

2.3 Overfitting

The GAN generates synthetic data based on the prob-
ability distribution of the original data during training
but fails to generalize during testing when new data
represent a significantly different probability distribu-
tion. Solutions to prevent overfitting while training a
GAN have been presented such as momentum, drop-
out, and regularization (Arjovsky and Bottou 2017;
Roth et al. 2017; Lee and Seok 2020).

2.4 Mode collapse and vanishing gradient

Generator collapses cause a limited variety of newly
generated synthetic samples that are distinct from one
another after the GAN has been trained. Adding dis-
tinct real data samples is how we can resolve this issue.
Since the collapse causes a vanishing gradient, we can
tune the learning rate of the training design to avoid the
Cold Start Problem (https://towardsdatascience.com/
the-cold-start-problem-with-artificial-intelligence-4993
8ed3f612).

As seen above, GANs are very flexible architectures
for generating synthetic data no matter how complex
the input data is. Although GANs generate high-qual-
ity data, they do take a long time to train. Another
technique for generating synthetic data is known as a
variational autoencoder (VAE). VAEs are commonly
used for creating higher-quality images out of low-
quality ones (image denoising) or generating images
that are like those used for training. Essentially, a
VAE can learn the underlying probability distribution
of the data it is trained on. New data can then be
sampled from the learned distribution. The mechanism
of learning the probability distribution of the data
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during training is known as latent variable representa-
tion (Doersch 2016).

The goal with VAEs is to find the posterior distribu-
tion p(z|x), which is the distribution of the encoded
variable given the decoded variable. The prior distri-
bution of the encoder’s probability, p(z), is assumed to
be a standard Gaussian distribution. The distribution of
the decoded variable given the encoded one is p(x|z),
which is a Gaussian distribution with a mean that rep-
resents a deterministic function of the z variable. Its
covariance matrix has a positive constant ¢ that can be
multiplied with the identity matrix I. Using Bayes’ the-
orem, it is possible to get an equation for finding p(z|x),
but there is no closed-form solution, and hence varia-
tional inference isused for approximation. In VAEs, this
approximation is done by finding a Gaussian distribu-
tion QO(z) for which its mean and covariance are defi-
ned by the functions g(x) and A(x). Finding the best
approximation for p(z|x) occurs by minimizing the
Kullback—Leibler (KL) divergence between the approxi-
mation Q(z) and p(z|x). Since the functions f, g, and &
are not known, a neural network known as the
encoder network is utilized to approximate g(x) and
h(x). Another neural network known as a decoder net-
work is used to approximate f{z). These two networks
are concatenated by the latent layer which acts as a
regularization term through the KL divergence in the
network to avoid overfitting. The loss function of the
VAE is the negative log-likelihood (Doersch 2016) with
the KL divergence as the regularizer.

2.5 Applications of deep learning architectures
to generate synthetic data in biological networks

Case study 1: Generating variable-length DNA
sequences that are likely to code for antimicrobial
peptides

Antimicrobial peptides (AMPs) play a critical role in
addressing the looming global health crisis of antibiotic
resistance exhibited by different types of pathogens.
Discovering new DNA sequences that could likely
translate to AMPs, experimentally, is both costly and
challenging for researchers to implement in a lab set-
ting. Therefore, the Feedback GAN (FBGAN) archi-
tecture (Gupta and Zou 2018) was developed by
Stanford researchers to generate gene sequences that
encode for variable-length proteins. The architecture
utilizes a common variant to the traditional GAN by
minimizing a different loss known as Wasserstein
divergence (Wu et al. 2018) instead of the MMD. It
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has been found that Wasserstein divergence helps in
making the training of a GAN more stable when
varying hyperparameter configurations. The discrimi-
nator network is a convolutional neural network
(CNN) with five residual layers that contain two 1D
convolutions. The output layer in the discriminator is a
Gumbel-Softmax layer (Jang et al. 2016) instead of a
Softmax layer. In the generator network, the argmax of
the probability distribution is taken to output a single
nucleotide at each position. The way feedback is
introduced to this GAN is through a component
known as an analyzer which is an RNN that can take
in a gene sequence and predict the probability that the
sequence will code for an AMP. If the probability of
the DNA sequence coding for an AMP is greater than
0.8, the sequence goes back to the discriminator net-
work and is classified as a real sequence. This mech-
anism allows for the generator network to generate
DNA sequences that are more likely to code for
an AMP over time, which means that the generated
DNA sequences optimize the protein function once
encoded (figure 3) (Gupta and Zou 2018).

Case study 2: Generating synthetic electronic health
records (EHR) to mimic a scalable repository of
structured and unstructured patient data

For educational purposes, it is important to generate
synthetic EHR data to train the next generation of physi-
cians based on realistic extracts of observational health-
care records of patients (https.//www.researchsquare.
com/article/rs-116297/v2). The structured data are tabu-
lar in nature which captures information as rows and
columns. Xu et al. (2019) found that traditional GANs
performed poorly, in comparison with baseline methods,
to model the probability distribution of rows in tabular
data especially regarding metrics such as likelihood fit-
ness and machine learning efficacy of the synthetically
generated data. Tabular data can be challenging to model
since they typically contains a mix of continuous and
discrete columns. Tabular GANs (TGANs; Xu and
Veeramachaneni 2018) are capable of synthesizing both
continuous and discrete columns after a pre-processing
step is applied to normalize categorical and discrete col-
umns using Gaussian Mixture Models (GMMs). However,
continuous columns may have multiple modes of non-
Gaussian values and discrete columns that may be ham-
pered by severe imbalance. To address these, Xu et al.
(2019) proposed conditional tabular GANs (CTGANS)
wherein a mode-specific normalization was introduced to
overcome the non-Gaussian and multimodal distributions
along with the Wasserstein loss for greater stability. The
mode-specific normalization converts continuous values of
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Figure 3. Schematic of the FBGAN Architecture. Adapted from Gupta and Zou (2018).

arbitrary range and distribution into a bounded vector rep-
resentation suitable for neural networks. Apart from this, a
conditional generator was designed along with training-by-
sampling to overcome the imbalanced training data issue
that is likely to arise from columns with discrete values.
There is also an unstructured component to EHRs
which are notes written by physicians for their patients.
Similar to the generation of tabular data, there is a lot of
utility in generating unstructured medical documents
such as progress notes and pathology reports for edu-
cational purposes. However, these documents are often
scarce due to regulatory issues surrounding the sharing
of these documents across stakeholders. Generating
synthetic medical documents implies that new samples
of data do not belong to a real patient and hence any
privacy concerns are non-existent. Researchers at IBM
built a 2-layer LSTM network with 650 hidden units
trained on processed data sources: MedText-2 and
MedText-103, which are cleaned from the clinical
notes in the MIMIC-III dataset (Johnson ef al. 2016).
This model was designed to predict the next word in a
sentence and thus the vocabulary consisted of unique
words instead of unique characters. The researchers
then generated new words from the trained LSTM
network to have the same word count as the original
MedText-2 and MedText-103 clinical note datasets.
Despite receiving validation from clinicians, the gen-
erated notes do not always make clinical sense for a
patient and there is also a tendency for poor grammar to
occur. Other issues included switching of the patient’s
gender and short-term text generation on diseases that

do not make sense, such as ‘hepatitis C deficiency’.
Although there are challenges to address, the synthetic
notes do also contain properties that resemble the
clinical notes in MIMIC-IIL. This has the potential to
impact medical education.

Case study 3: Leveraging deep learning algorithms to
study heterotypic cultures of cancer cells

Resistance to chemotherapy is a major impediment in
treating cancer. Resistance is generally held to pri-
marily arise through random genetic mutations and the
subsequent expansion of mutant clones via Darwinian
selection (Greaves and Maley 2012; Alvarez-Arenas
et al. 2019). Hence, the phenomenon has been approa-
ched from a fully reductionist, gene-centric perspective
(Vogelstein et al. 2013). However, it is now evident that
drug resistance need not occur through mutations acting
alone. Several non-genetic mechanisms including epi-
genetic modifications and protein interaction network
rewiring that leads to phenotypic switching can also
impact a cancer cell’s ability to develop drug resistance
(Huang and Ingber 2006-2007; Sharma et al. 2010;
Dawson and Kouzarides 2012; Kulkarni et al. 2013;
Mahmoudabadi et al. 2013; Pisco et al. 2013; Jones et al.
2016; Salgia and Kulkarni 2018; Bell and Gillan 2020).
Group behavior emerging from such non-genetic
mechanisms can sustain a heterogeneous cancer cell
population with multiple interchangeable phenotypes,
producing temporary drug tolerance and facilitating the
initiation and progression to permanent drug resistance
(Wu et al. 2014; Zhang et al. 2017; Kaznatcheev ef al.
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2019; Stankova 2019; Stankova et al. 2019; Bhat-
tacharya et al. 2021). One major reason why current
cancer therapies fail to prevent drug resistance or tumor
recurrence is the lack of in-depth understanding of how
cancer cells react to cytotoxic drugs over a prolonged
period. The cancer evolutionary landscape is highly
complex and dynamically evolving due to the cellular
heterogeneity that results from the phenotypic plasticity
of the tumor cells. Although there has been significant
advancement in the understanding of cancer evolution-
ary biology and associated theoretical methods, there has
been no systematic effort to integrate these methods into
a computational platform to explore tumor behavior.
Limited experimental data are major impediments to
innovation. However, this limitation can be overcome
to some extent by using deep learning methods such as
GANs and VAEs, which are capable of generating
synthetic heterotypic cultures extending in vitro
experimental data (Nam et al. 2021), following the
distribution of a sample taken from real experimental
data (figure 4). Potential limitations of synthetic data
may include, not accounting for outliers in the original
data, susceptibility to statistical noise as well as the
need for continuous verification of the augmented data
versus that generated experimentally. Testing aug-
mented data appropriately will be necessary. A rein-
forcement learning paradigm (Sutton and Barto 1998)
is dictated by the ability of an agent or group of agents
to find policies (rules) in complex environments to
maximize reward. The reward in the context of cancer
cell modeling is the ability to survive as captured by an
increase in the intrinsic growth rate of the community.
Agent-based (Marée et al. 2007) and evolutionary
game theory (EGT) models (Nam et al. 2020) simulate
cellular behavior based on predefined rules, whereas
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the reinforcement learning algorithms can discover
rules that lead to complex cellular interactions (Hou
et al. 2019). These methods are still being developed
and improved upon by the scientific community, and
applying them to cancer evolution will be highly
innovative and novel. We recognize that it cannot be
predicted a priori which methods will work success-
fully using the available cellular data. However, we are
confident that a computational platform will allow us to
deploy and test these methods in a rapid and systematic
way. These newly discovered algorithms can be used
within the traditional discrete or continuum models to
further explore effects arising from varying nutrients,
stress, and cellular composition. For example, the
Deep-Q-Network algorithm (Hou ef al. 2019) in com-
bination with age-based models simulated cellular
motion while incorporating 3D image data of the cel-
lular environment based on multiple rules in the con-
text of reinforcement learning.

3. Challenges in biomedical use of synthetic data
generated by GANs and VAEs

Enriching real biomedical datasets with synthetic data
generated by GANs and VAEs comes with a trade-off
between benefits and challenges. We have discussed the
benefits above as they pertain to generating variable-length
DNA sequences that could code for AMPs, generating
synthetic EHR records with structured and unstructured
data as well as for the study of heterotypic cultures of cancer
cells. One of the challenges that arise in the use of GANs is
the lack of variety in the synthetic data generated due to
mode collapse where the generator limits producing new
data samples. Other challenges in the use of GANs include

TGAN
Data or £
collection CTGAN 3
for all 2
ratios 8

Time

Time

Data

Figure 4. Schematic of synthetic tabular and image data generated using deep learning algorithms (TGAN/CTGAN, VAE/
GAN) based on real experimental data from various heterotypic cultures of cancer cells.
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sensitivity to neural network architectures and in the
selection of hyperparameters. For example, TGANs that
are designed to generate synthetic tabular data could suffer
from mode collapse. As an active area of research, several
GAN architectures such as CTGAN (Xu et al. 2019),
WGAN (Arjovsky et al. 2017), WGAN-GP (Gulrajani
etal. 2017), DCGAN (Radford et al. 2015), etc., have been
developed to overcome these challenges. OVAE (Vardhan
and Kok 2020), another recently proposed approach based
on VAEs, was designed to preserve the distributional
characteristics of the real data in its generated data. A novel
form of VAE, known as robust VAE (Akrami et al. 2020),
was proposed to handle tabular datasets with categorical
and continuous features that are robust to outliers in the
training data. Synthetic tabular data generated by various
types of GANs can be evaluated using visual, similarity,
statistical, and machine learning-based metrics. Recently,
OCT-GANs (Kim et al. 2021), an extension of CTGAN:S,
was proposed to process raw tabular data, in the context of
web-based research, with a mode-based normalization
technique. In the context of image data, VEEGAN (Sri-
vastava et al. 2017) was shown to resist mode collapse to a
large extent and produce realistic images. AdaGAN (Tol-
stikhin et al. 2017; Lala et al. 2018) was shown to have
superior performance while evaluating mode collapse
among selected GAN architectures. Overall, deep learning
methods such as GANs and VAEs are continuously being
improved to handle different types of data that include,
among others, tabular and image data, which are widely
used within biomedical applications. In specific contexts,
as discussed in this work, the performance of deep learning
algorithms will dictate how well the synthetic data gener-
ated by them is able to address the data paucity problem that
exists currently in analyzing biological networks.
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