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Fascinating patterns are displayed in nature due to the collective coherent motion of many living organisms.
The origin of collective behaviours is diverse as the group members benefit in various ways: large resources of
food, mating choices, nesting, and protection from predators, to name a few. It is still not well understood how
complex behaviours emerge from a collective group that are otherwise not displayed at the level of solitary
individuals. In recent years, along with field studies, numerous theoretical approaches have been developed to
obtain insights into the mechanisms of aggregations and the collective decision-making processes. This brief
review focuses on the self-propelled particle models, which have played a significant role in deciphering the
underlying dynamics of collective motion in various organisms. Here, we discuss how local behavioural
interactions and coordinations among the individual members give rise to complex collective behaviours. We
consider the examples of collective motion in the schooling of fishes, flocking of birds, and swarming of prey,
and address the emergence of a variety of patterns, a transition from disorder to ordered motion, and survival
chances of prey group when under predator attacks.
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1. Introduction

Collective motion has been observed in diverse living
organisms, such as flocking of birds (Heppner 1990;
Ballerini et al. 2008; Cavagna et al. 2018), swarming
of insects (Buhl et al. 2006), schooling of fishes (Par-
rish and Edelstein-Keshet 1999; Parrish et al. 2002;
Hemelrijk and Kunz 2005), organized lane formation
by ants (Couzin and Franks 2003), and in human
crowds (Moussaı̈d et al. 2011). In all these examples,
the interactions among the individual members in the
group help them stay close to each other and move
together in a coherent manner. Such instances of
cohesive motion have also been found on a micro-
scopic length scale, such as the aggregation of cells

during tissue development (Mukhopadhyay and De
2019, 2022), collective cell migration (Friedl and Gil-
mour 2009; Arboleda-Estudillo et al. 2010; De and De
2019, 2022), and bacterial colony formation (Czirók
et al. 1996; Sokolov et al. 2007; Zhang et al. 2010), to
name a few. Apart from living systems, non-living
systems such as artificial microswimmers (Elgeti et al.
2015), multi-agent robots (Vásárhelyi et al. 2018),
vibrated disks (Deseigne et al. 2010), and stick-slip
systems (Ananthakrishna and De 2006) also demon-
strate collective behaviours. In many of the cases, this
collective ordered motion emerges through a phase
transition from a disordered motion. In nature, collec-
tive movements happen for various reasons, such as
searching for food, finding a nest, or relocating to a
new place. Another important reason for cohesive
group formation is to avoid and survive predator
attacks. In a large prey group, it becomes more difficult
for the predator to focus on an individual prey. On the
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other hand, staying within a group could also become
unfavourable as the predator can easily track and attack
a group. Therefore, the prey group often tries to find an
efficient way to escape a predator attack and optimize
its chances of survival. Generally, in a large group,
each individual or agent interacts with its neighbours
through some local rules. These behavioural interac-
tions often help the system to move in a coordinated
way. The interactions could be of the attractive–repul-
sive type or alignment of velocities in response to the
neighbours, in order to maintain collective motion.
Moreover, the nature of local interactions may vary
from species to species depending on their sensory
capabilities such as visual sensing, athleticism, age,
physical structures, etc. Due to these limitations,
instead of interacting with all members, individuals
may interact with a few surrounding neighbours in the
group. Moreover, how individuals make their neigh-
bour choices may also widely vary. A review of the
existing literature shows that neighbouring interactions
can be dependent on metric distances between the
neighbours, or they can be topological interactions
within a number of close neighbours (Ballerini et al.
2008; Camperi et al. 2012; Kumar and De 2021).
The general mechanisms of these interactions could

be independent of the detailed nature of the specific
organisms. For example, bird flocks or fish schools
have many common behavioural interactions such as
parallel alignment following the heading direction of
the neighbours, collision avoidance, or attractive
responses. Therefore, studying such universal beha-
viours of the many interacting units, their characteristic
statistical features, and the phase transition from dis-
ordered to ordered states provides deeper understand-
ings of large-scale collective motion. In this respect,
theoretical investigations could bring many insights
into the complex dynamics of large moving groups.
Hence, along with experiments, several theoretical
studies have been carried out to understand the
underlying principle of local interactions in large
moving groups.
In this brief review, we discuss some theoretical

studies, including our works that have been developed
using the self-propelled particle models to understand
the collective behaviours of fish schools, bird flocks,
and prey swarms under predator attack. In these simple
particle-based model frameworks, each individual or
agent has been considered an active interacting particle
to study collective motion. It is worth noting that par-
ticle-based models remain one of the significant theo-
retical frameworks to study collective dynamics since
these models not only provide many insights but also

the model predictions could easily be tested against
observations in field studies. In this review, we mainly
focus on the influence of the local behavioural inter-
actions among individuals in a group that help to
achieve large-scale collective cohesive motion. First,
we briefly discuss some theoretical models involving
various local interactions that lead to collective coher-
ent motion in the schooling of fishes and flocking of
birds. Next, we address the influence of interaction
range among the individuals in a group and the emer-
gence of ordered motion in flocks, and various escape
patterns and survival of prey swarms.

2. Local interactions in the schooling of fishes

The schooling of fishes is one of the spectacular dis-
plays of social interactions observed in the animal
kingdom. Fish schools are formed for various reasons,
such as efficient foraging, space management, repro-
duction, and avoiding predator attacks. Many studies
show that different patterns arise due to species varia-
tion or schooling behaviours (Breder 1959; Shaw 1970;
Nursall 1973; Pitcher and Wyche 1983). For example,
in a feeding school or resting school, the direction of
movements of the fishes are somewhat random. How-
ever, fishes become highly polarized while on the
move. Velocity alignment, or parallel orientation,
changes upon predator attack, and the group forms
many exciting patterns such as the formation of a ring
around the predator, the fountain effect, where the
fishes split into two groups in front of the chasing
predator and rejoin behind its tail, or the splitting up
into subgroups, etc.
Many theoretical studies have been carried out to

understand the coordinated group formations in fish
schools. One of the first theoretical models was pro-
posed by Aoki (1982) to investigate the origin of
schooling mechanisms. In this work, mutual attraction
among the organisms and parallel orientation have
been included as significant factors of schooling
behaviour, as shown by Shaw (1970) in earlier beha-
vioural studies. A numerical stochastic simulation was
performed considering three behavioural interactions
between the individuals: collision avoidance interac-
tions, approach motion towards neighbour, and parallel
orientation movements. Initially, each individual was
positioned randomly in a square box, and their direc-
tion of orientation was chosen from a uniform distri-
bution from 0 to 2p. Speeds and directions of each
member were assumed to be stochastic variables
characterized by probability distributions. Velocities
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were taken from a gamma distribution, and a normal
distribution was chosen to determine the direction of
movement of each member: PiðhÞ, the probability
density for the direction of movement of the ith indi-
vidual, is

PiðhÞ ¼
X

j

Wj
1ffiffiffiffiffiffi
2p

p
Sj
exp�ðh�MjÞ2=2S2j ð1Þ

The mean, Mj, and variance, Sj, of the direction of
heading are dependent on the positions and directions
of neighbours in the sector area as illustrated in
figure 1a. Wj is the weight factor that scales the influ-
ence of the neighbour j (� 4). Wj is taken as inversely
proportional to the angle between the heading of the ith
individual and the location of its jth neighbours. The
neighbours at the front are given preference if the
number of neighbours is higher than 4. If the distance
between the ith particle and its jth neighbour (DSj) is
less than the avoidance distance D1, then Mj deviates
90� from the direction of the jth neighbour to avoid a
collision. On the other hand, parallel orientation is
implemented when DSj lies between D1 and D2 (sha-
ded region shown in figure 1a), i.e., Mj is chosen as the

same direction of heading as the jth neighbour. This
model was simulated in standard parameter space, and
it successfully generated the schooling patterns. Fur-
ther, the motion was also studied without considering
the parallel orientation and approach interaction,
respectively. It has been found that without parallel
orientation, particles only aggregate. However, if the
approach movement is omitted, then the individuals
disperse with parallel orientation. Thus, it shows that
both mutual attraction and parallel orientation are
necessary to exhibit schooling behaviours.
Based on this model, Huth and Wissel (1992) pro-

posed the ‘Decision’ model and ‘Average’ model as
shown in figure 1b. The Decision model is similar to
Akoi’s model. In the Decision model, the fish group
does not move much, and the direction of movement of
the fish group is also not the same for all individuals.
This could be called a resting school or feeding school.
In this model, individual fish turn their heading direc-
tion influenced by the nearest neighbour. This mecha-
nism confuses the fish group more as the maximum
turning takes place. However, in the Average model,
fish mix up the effects of all the neighbours and use the
arithmetic average of the heading angles. Thus, it
results in more polarized and cohesive schooling
behaviour than the Decision model, as can be seen
from figure 1b. Kunz and Hemelrijk have further
modified these models and demonstrated how body
size and form affect the formation of fish schools
(Hemelrijk and Kunz 2005). They proposed three dif-
ferent strategies: (1) active sorting, where each indi-
vidual agent actively chooses to be close to the related
agent; (2) size difference model, in which individuals
merely differ in size but behave according to usual
schooling rules; and (3) risk avoidance, where small
agents avoid the larger ones and each agent tries to stay
with the agents of familiar individuals (Hemelrijk and
Kunz 2005). In the active sorting, familiar individuals
make subgroups that can occur anywhere in the group;
however, in the size difference model, agents of dif-
ferent size group concentrically, i.e., small agents are
gathered at the centre, and the larger ones stay at the
periphery. In contrast, in the risk avoidance model,
small agents group together at the periphery, whereas
the larger ones occupy the centre of the group. A more
modified model with large schools in three dimensions
has also been depicted in another work by Hemelrijk
and Hildenbrandt (2008). There are also other theo-
retical approaches in the literature to model fish
schooling that can be found in several review articles
(Pavlov and Kasumyan 2000; Sumpter 2010; Vicsek
and Zafeiris 2012).

Figure 1. (a) The red arrow depicts one representative fish,
and the small red dots are its neighbours. The grey shaded
region shows the parallel orientation region. The region
within the distance D1 is the collision avoidance region. If a
neigbour resides outside a distance D2 but within the near-
field interaction radius RC, the fish will approach its
neighbour. AR represents the angular range of interaction
(redrawn following Aoki 1982). (b) As illustrated, in the
‘Decision’ model, at the starting time step, t ¼ 1, the two
outer fish are directed upwards, and the middle fish is
oriented downward. In the next time step, t ¼ 2, the fish in
the middle changes its direction upward since it interacts
with the outer fish. However, the outer fish turn downward
as they interact with the fish in the middle. This pattern
repeats as long as no perturbation destroys this balance. On
the contrary, in the ‘Average’ model, the fish group turns
into a polarized group as each individual tries to move in the
average direction of all the particles (redrawn following
Huth and Wissel 1992).
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3. Flocking behaviours

Birds often fly collectively with coordinated move-
ments, and this is known as flocking. Sometimes, the
group contains thousands of birds and can undertake a
long-distance flights, as do migratory birds. The
emergence of such flocking behaviours is quite com-
plex, and several studies have been carried out to
understand this kind of collective motion. One of the
earliest investigations on sandpiper flocks was by Potts
(1984), in which a frame-by-frame image analysis
showed that any individual could initiate a flock
movement which propagates through the whole flock
like a wave from the initiation point. Other experiments
have also been performed on flocks of birds to study
the effect of position on vigilance, flock size, positional
effects, and intra-specific aggression in European star-
lings, etc. (Elgar 1989; Keys and Dugatkin 1990;
Beauchamp 2003). Spatio-temporal analysis of the
famous V-shaped flock formation in wild geese was
done by Hayakawa (2010). Many theoretical models
and simulations have also been developed to under-
stand the origin of highly synchronized coherent pat-
terns in flocks. One of the early models was proposed
by Reynolds (1987), which successfully generated the
dynamics of flocking. His work is based on the three
behavioural assumptions similar to the modelling of a
school of fish, as discussed in the previous section: (1)
collision avoidance, i.e., each bird maintains a mini-
mum specific distance from the other birds in the
group, (2) velocity matching, i.e., each bird always tries
to match its velocity with those of the neighbouring
birds, and (3) attraction among the birds up to a certain
distance. Applying these basic rules to interactions
could predict natural flocking behaviours.
Another pioneering model on flocking was proposed

by Vicsek et al. (1995). Vicsek’s model was developed
to study the emergence of ordered motion in self-driven
biological systems. In this model, individuals in a
group are considered self-propelled particles. Initially,
N particles are placed in a two-dimensional square box
of size L2 and their positions are updated at each time
step, Dt, following the equation

xiðt þ DtÞ ¼ xiðtÞ þ viðtÞDt ð2Þ

where xiðtÞ is the position and viðtÞ ¼ v0 cos hix̂þ
v0 sin hiŷ is the velocity of the ith particle. The
magnitude, v0, of the velocity of all particles is taken
to be constant and the direction is given by the angle
hiðtÞ. The initial velocity direction of the particles,
hiðtÞ, are chosen randomly between 0 to 2p. Then, the

angles are updated with time as
hiðt þ DtÞ ¼ \hðtÞ[ R þ Dh. Here, \hðtÞ[ R is
calculated by averaging over the velocity direction of
the neighbouring particles within a circle of radius R,
and Dh represents a random perturbation which is
chosen from a uniform distribution ð�g=2; g=2Þ.
Simulations have been carried out following the
Vicsek model using periodic boundary conditions.
Figure 2 shows different flocking patterns observed at
various noise strengths (g) and particle densities (q).
Initially, the particles move in random directions, as
shown in figure 2a. However, the particles tend to
form small clusters at smaller density and low noise
strength, as seen in figure 2b, whereas particles move
randomly with small correlation at higher density and
higher noise (figure 2c); and at large density and
small noise, all the particles propel in an ordered
fashion in a specific direction, as shown in figure 2d,
mimicking the motion of a flock of birds. Moreover, a
phase transition from disorder to order has been
observed with decreasing noise strength and increas-
ing particle density of the system (Vicsek et al. 1995).
Here, the order parameter is defined as the absolute
value of the normalized velocity averaged over all
particles. These authors have studied the detailed
nature of this phase transition and shown that the
behaviour of the order parameter is similar to the
equilibrium systems close to the critical point (details
in Vicsek et al. 1995).
Later, several mathematical models were developed

following the Vicsek model to describe different
aspects of flocking dynamics. For example, Couzin
et al. (2005) have investigated how efficient informa-
tion transfer and decision making can take place in a
collectively moving group. Synchronization of the
landing of a flock of birds has also been studied using a
self-propelled particle model by Bhattacharya and
Vicsek (2010). Cavagna et al. (2010) have experi-
mentally studied the origin of the collective response
by estimating the correlation in velocity fluctuations of
birds in a flock. The correlations decay as a scale-free
power law, signifying that each individual with an
effective perception range greater than the inter-indi-

vidual interaction range gives rise to the unifying

response of the group. Further, another recent experi-

mental study by Ballerini et al. (2008) on starling

flocks has shown that simple local rules of interaction

can give rise to collective behaviour. They have found

that each bird interacts with a fixed number of neigh-

bouring birds (on an average, six to seven) irrespective

of their metric distance, by analysing the trajectories of
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flocks of a few thousand starlings. This kind of
neighbour interaction where the metric distance
between the birds is not important has been termed
topological interaction.

4. Flocking: Metric and topological interactions

Recently our group explored the dynamics of flocking
using metric-based and topological interactions (Kumar
and De 2021), which we briefly describe here. In this
work, initially, N active particles were placed in two-
dimensional space, where ri and vi denote the position
and the velocity of the ith particle. The particles move
in an open space to mimic real-life scenarios. More-
over, the velocity of each particle is influenced by the
velocities of its neighbouring particles. The local
velocity alignment interaction is confined to an inter-
action radius, R, in the case of metric interaction, and
for topological interactions, it is limited to a fixed
number of neighbours, Nr. The equation of motion is
given as

dvi
dt

¼ a
Nin

XNin

j¼1

ðvj � viÞ � cvi þ g ð3Þ

The first term on the RHS represents the interaction due
to the velocity alignment of the ith particle with its
surrounding neighbours, a defines the strength of
interaction, c is the coefficient of viscous drag, Nin is
the number of interacting neighbours with the ith par-
ticle following the metric or the topological rule of
interactions, and g represents the noise in the envi-
ronment (Kumar and De 2021).

The flocking dynamics have been studied by varying
the interaction range, R, for metric ruling and the
number of interacting neighbours, Nr, in the case of
topological ruling. To characterize the ordered state of
the system, the absolute value of the average normal-

ized velocity, / ¼ 1
N j
PN

i¼1ðvi=jvijÞj, has been consid-
ered as the order parameter of the system. Figure 3a
shows that in the case of metric-based local interaction,
a certain threshold interaction radius is needed for the
group to reach an ordered state. As the flock size
increases, the threshold value of the interaction range
decreases simply because each individual would get
surrounded by more interacting neighbours. Also, the
lower speed of the flock turns out to be beneficial to
reach the order state as the individuals moving with
lower speed would spend substantial time with the
same neighbours to align their velocities. On the other
hand, in the case of topological interactions, a threshold

(a) (b) (c) (d)

Figure 2. Flocking patterns at different noise strength (g) and particle densities (q). The snapshot shows the velocities of the
particles (a) at t = 0 for L ¼ 7, g ¼ 2:0; (b) at smaller density and small noise (L ¼ 25; g ¼ 0:1), particles tend to form
smaller coherent groups; (c) at higher density and large noise (L ¼ 7; g ¼ 2:0), after a certain time, the particles move
somewhat randomly with little correlation; and (d) particles show ordered motion at higher density and small noise
(L ¼ 5; g ¼ 0:1). Keeping the number of particles at N ¼ 300, simulations have been performed following the Vicsek model
(Vicsek et al. 1995).

(a) (b)

Figure 3. The order parameter, /, has been plotted for
different flock sizes, N, in the case of (a) metric interaction
by varying the interaction radius R and (b) topological
interaction by varying the number of interacting neighbours,
Nr (keeping a lower flock speed) (as in Kumar and De 2021).
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value of the number of interacting neighbours is
required to achieve the ordered state as shown in
figure 3b. It is found that the variation in flock size
does not change the threshold number with lower flock
speed; however, a higher flock speed increases the
threshold number of interacting neighbours with
increasing flock size. Moreover, our study shows that
the topological rulings become more efficient than the
metric one in attaining the ordered state and the dif-
ference in these two ruling gets prominent as the flock
size is decreased; a detailed study can be found in the
study by Kumar and De (2021). Moreover, Camperi
et al. (2012) have shown that the condition of maximal
stability is achieved when topological neighbours are
distributed evenly around each individual. Shang and
Bouffanais (2014) have investigated the consensus
reaching process using topologically interacting self-
propelled particles. They have shown that the rate of
convergence to consensus can speed up to an optimal
level where the number of neighbours is close to ten.
Several other studies have also investigated collective
motion using metric and topological rules of local
interactions (Hemelrijk and Kunz 2005; Couzin et al.
2005; Ballerini et al. 2008; Bhattacharya and Vicsek
2010).

5. Effect of interaction range on survival of a prey
swarm

As discussed, one of the main reasons for cohesive
group formation in animals is to defend against and
survive predator attacks. However, cohesive move-
ments sometimes become disadvantageous when the
predator can easily track down the prey. For example,
marine predators can easily track and catch fish schools
(Parrish and Edelstein-Keshet 1999). Moreover, the
prey situated at the periphery of the swarm are more
vulnerable to predator attacks, so each prey competes
within the group for a safer position. So, usually, there
is a trade-off between moving in a group versus indi-
vidual needs. So, prey groups often attempt effective
strategies to survive under predator attacks (Humphries
and Driver 1970; Hayward and Kerley 2005; Caro
2005; McKenzie et al. 2012). Several escape pathways
have been observed in nature. For example, a school of
marine fish arranged themselves in a circular ring
around the predator, or they would divide into smaller
groups and scatter away from the predator, creating
visual confusion (Partridge 1982; Pitcher and Wyche
1983). Other kinds of escape trajectories include vari-
ous kinds of swarming patterns such as circling,

spinning, chasing, etc. (Humphries and Driver 1970;
Domenici and Batty 1997; Edut and Eilam 2004; Caro
2005; Domenici et al. 2011). A clear understanding of
local interactions within the prey group leading to
different complex patterns and increasing survival
chances of prey swarm is still due because of the
challenges in field studies. In such situations, theoret-
ical studies have provided many insights to understand
the collective dynamics of prey–predator systems
(Oshanin et al. 2009; Zhdankin and Sprott 2010;
Angelani 2012; Olson et al. 2013; Chen and
Kolokolnikov 2014). For example, collective predation
and escape strategies have been studied using self-
propelled particle models to look into the predation rate
and total catch time of the group (Angelani 2012). In
another model proposed by Chen and Kolokolnikov
(2014), it has been shown that the prey swarm could
easily escape the attack of a weak predator. However,
as the strength of the predator increased, a transition
was observed from the confused state of the predator to
chasing dynamics. Besides, other theoretical models
have also investigated different interaction mechanisms
between predators and prey (Zhdankin and Sprott
2010). Recently, we also studied how the range of
cooperative interactions within the prey swarm affects
its survival under a predator attack (Chakraborty et al.
2020), which we will briefly discuss below.
We have considered a particle-based model where a

group of N prey is positioned randomly on a two-di-
mensional space in an unit square and the predator
approaches the prey swarm from a nearby place, as
illustrated in figure 4. Each prey is represented by its
position, ri~, and velocity, v~i; and they interact through
attractive and repulsive interactions with the

Figure 4. The blue dots represent prey and the big red dot
denotes the predator. Here, rint is the interaction radius
within which a prey interacts with the other neighbouring
prey. The kill radius has been shown for the predator (as in
Chakraborty et al. 2020).
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neighbouring prey in the group. The equations of
motion of prey and the predator are given as

l
dr~i
dt

¼ f~i;prey�prey þ f~i;prey�predator ð4Þ

lp
dr~p
dt

¼ f~predator�prey ð5Þ

Here, for simplicity, we consider the dynamics in the

overdamped limit and f~i;prey�prey is the prey-prey

interaction force of the ith prey,

f~i;prey�prey ¼
1

Nin

XNin

j¼1

bðrj~� ri~Þ � a
rj~� ri~

jrj~� ri~j2

 !

Each prey interacts with the neighbouring prey residing
within a certain interaction radius, rint, due to its
physical and sensory constraints. Nin is the number of
prey interacting with the ith prey situated within the
radius rint. b and a signify the strength of attractive and
repulsive interactions of the prey, respectively. Prey–
predator repulsive interaction has been modelled as

f~i;prey�predator ¼ �c
rp~ � ri~

jrp~ � ri~j2

where rp is the predator’s position and c signifies the
strength of prey–predator interaction. In the predator
equation, the predator–prey attractive force is given by
averaging over all prey as

f~predator�prey ¼
d
N

XN

i¼1

ri~� rp~

jri~� rp~j3

and d denotes the predator’s strength. Moreover, kill
radius has been introduced to mimic the natural prey
capturing process as shown in figure 4.
The coupled equations (equations 4–5) are solved

numerically for different parameter values. Simulation
results show the emergence of various escape patterns
with varying interaction range, Rint (the parameters are
presented in dimensionless units) (Chakraborty et al.
2020). At Rint ¼ 0, i.e., when there is no interaction
within the prey swarm, the predator is able to catch the
randomly moving prey over time as the prey move
away due to prey–predator repulsive force shown in
figure 5a. As we increase the interaction radius to
Rint ¼ 0:5, the prey group forms a ring around the
predator, which confuses the predator about which
direction to attack from, as seen figure 5b. Further
increase of the interaction radius to Rint ¼ 1:2 would
result in prey escaping the predator by dividing into

smaller subgroups as in figure 5c. However, at a large
interaction radius, Rint ¼ 2:0, chasing dynamics has
been observed, i.e., the predator could chase down all
the prey as shown in figure 5d; similar dynamics are
also observed when each prey interacts with all other
prey in the group. Further, the number of surviving
prey, Ns

sur, at the steady state has been calculated as a
function of interaction radius, Rint, as shown in fig-
ure 6. It can be seen that very short-range or long-range

(a) (b)

(c) (d)

Figure 5. Various escape patters formed by the prey swarm
with different interaction radius: (a) Rint ¼ 0:0, (b)
Rint ¼ 0:5, (c) Rint ¼ 1:2, and (d) Rint ¼ 2:0. The blue dots
represent prey and the red dot shows the predator (as in
Chakraborty et al. 2020).

Figure 6. The number of surviving prey, Ns
sur, with varying

interaction range, Rint, for different predator strengths (d0)
and initial prey group size, N ¼ 200 (Chakraborty et al.
2020).
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interactions within the prey swarm are disadvantageous
for the survival of the prey swarm. However, in the
intermediate range of interaction radius, the survival of
the prey swarm is maximum. For a small range of
interaction, the prey are not able to establish coordi-
nated motion in the group in order to escape from the
predator. On the other hand, in the case of a large
interaction radius, each prey interacts with almost all
other prey in the group. Thus, the prey group moves
together cohesively, which is why the predator can
easily track and catch the prey over time. Interestingly,
at an intermediate interaction radius, the cooperative
interaction within the prey swarm helps the prey group
to initiate a coordinated motion in order to confuse the
predator by forming a circle or splitting up into sub-
groups or by other escape routes so as to survive in the
long run. Moreover, it is observed that the optimal
range of interaction for the survival of the prey swarm
depends on the strength of the predator and also on the
prey group size. The details of this study can be found
in Chakraborty et al. (2020).

6. Conclusion

In this brief review, we have discussed self-propelled
particle-based theoretical models that could shed light on
how local interaction rules among individuals could give
rise to coherent collective motion in diverse species such
as the schooling of fishes, flocking of birds, and
swarming of prey while being chased by a predator.
Several studies have shown how the varying range of
interactions can influence the emerging patterns of var-
ious shapes, such as spinning, circling, splitting up into
smaller groups, or chasing, as observed in natural sce-
narios. Moreover, the nature of local interactions in a
group could be governed by the metric distance between
the individuals or determined by a fixed number of
surrounding neighbours, namely, topological interac-
tions, which vary from species to species. Apart from
the particle-based model, there are other theoretical
approaches; for example, continuum hydrodynamic
models have been developed to explain the dynamics of
flocking at large scales (Toner et al. 2005). There are
also lattice models which have investigated the chase
and escape strategies of prey–predator systems (Kami-
mura and Ohira 2010; Bonato 2011; Patwardhan et al.
2020). The study of prey–predator dynamics in complex
networks has also received much attention in recent
times as many real-world systems can be efficiently
modelled using complex networks (Albert et al. 1999;
Strogatz 2001; Benson et al. 2016). Theoretical studies,

along with experiments, thus enable us to understand the
complex dynamics of collective motion of diverse spe-
cies at various length and time scales.
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Czirók A, Ben-Jacob E, Cohen I and Vicsek T 1996
Formation of complex bacterial colonies via self-gener-
ated vortices. Phys. Rev. E 54 1791

De PS and De R 2019 Stick-slip dynamics of migrating cells
on viscoelastic substrates. Phys. Rev. E 100 012409

De PS and De R 2021 Does cellular adaptation to force
loading rate determine the biphasic vs monotonic
response of actin retrograde flow with substrate rigidity?
bioRxiv https://doi.org/10.1101/2021.04.23.441062

De R and De PS 2022 A brief overview on mechanosensing
and stick-slip motion at the leading edge of migrating
cells. Indian J. Phys. https://doi.org/10.1007/s12648-022-
02297-0

Deseigne J, Dauchot O and Chaté H 2010 Collective motion
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