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Gallbladder cancer (GBC) is one of the most fatal malignancies of the biliary tract system and is ranked sixth
among the neoplasms of the gastrointestinal tract. Gallstone disease (GSD) is considered the major risk factor for
GBC. However, the underlying molecular mechanism of GBC pathogenesis from different stages of GSD is not
yet clearly understood. We analyzed transcriptomic datasets of GBC with reference to GSD of three different
follow-up periods, i.e., GBC vs. GSD3 (1–3 years), GBC vs. GSD5 (5–10 years), andGBC vs. GSD10 (more than
10 years). We identified overlapping and specific molecular signatures in GBC compared with GSD at three
different follow-up periods. Using integrative network biology approaches, such as protein–protein interaction
network analysis, transcriptional regulatory network analysis, andmiRNA–target gene network analysis, we have
identified a few hub genes. The hub genes identified from GBC vs. GSD3, GBC vs. GSD5, and GBC vs. GSD10
were directly or indirectly associated with cancer progression and initiation from GSD. Functional enrichment
analysis indicated significant correlation between GSD and GBC pathogenesis. The identified hub genes can be
used for future targeted validation to develop potential diagnostic, prognostic, or therapeutic biomarkers in GBC.

Keywords. Biomarker; differentially expressed genes; gallbladder cancer; gallstone disease; hub genes;
network biology; transcriptomics

1. Introduction

Gallbladder cancer (GBC) is one of the most fatal
malignancies of biliary tract cancers, where malignant
cells form in the tissues of the gallbladder (Hundal and
Shaffer 2014; Muhammad et al. 2018). Globally it
accounts for around 80–90% of all the biliary tract
cancers, and ranks sixth among gastrointestinal cancers
(Hundal and Shaffer 2014; Song et al. 2020). As
reported by the 2018 GLOBOCAN data, GBC
accounts for around 1.7% of cancer-related deaths
globally (Rawla et al. 2019). The incidence rate of

GBC shows very high geographical, racial, and
socioeconomic variations, suggesting the potential role
of different environmental as well as genetic factors
associated with the development and progression of
this cancer (Hundal and Shaffer 2014; Sharma et al.
2017; Muhammad et al. 2018).
GBC does not exhibit any specific clinical symp-

toms. This causes difficulty in diagnosing the disease at
an early stage. It is often diagnosed at an advanced
stage (Letelier et al. 2012; Hundal and Shaffer 2014).
Most of the time, GBC is incidentally diagnosed in
patients undergoing cholecystectomy for the treatment
of cholecystitis or cholelithiasis (Muhammad et al.
2018). According to different epidemiological and
pathological investigations, patients with gallstones
have a higher risk of GBC than healthy individuals.
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Gallstone disease (GSD) is considered as the major risk
factor of GBC, affecting *20% of the adult population
worldwide and also present in more than 85% of GBC
patients (Letelier et al. 2012; Hundal and Shaffer 2014;
Jinghan Wang et al. 2020). Gallstones cause local
mucosal irritation and chronic inflammation. This
process has been speculated to activate intracellular
enzymes involved in promoter methylation of some
potential genes, and also produces some inflammatory
mediators in the tissue microenvironment. Such events
may result in alteration of the transcriptomic and
genomic landscape, contributing to early-stage car-
cinogenesis in GBC (Letelier et al. 2012; Hundal and
Shaffer 2014; Muhammad et al. 2018; Jinghan Wang
et al. 2020). However, the detailed molecular mecha-
nism associated with the transition of GSD to GBC is
not yet understood. The available tumor markers for
diagnosis of GBC do not have high specificity, and
therefore cannot be detected until the advanced stages
of the disease (Sharma et al. 2017). Understanding of
the molecular mechanism behind the transition of GSD
to GBC will help in the identification of crucial
molecular markers for its early detection and treatment.
The complex interactions of molecular and envi-

ronmental factors may initiate GBC pathogenesis in a
progressive manner, which could lead to the dysregu-
lation of multiple processes such as cell cycle,
DNA repair, apoptosis, as well as immune responses
(Knox 2010). Integrative analysis of multi-dimensional
data using systems biology-based approaches will
provide the basis for understanding the complex
molecular mechanisms responsible for carcinogenesis
of the gallbladder. Network biology is an integrative
systems biology approach that can help us understand
the complex molecular mechanisms responsible for
GBC pathogenesis (Furlong 2013), and for the devel-
opment of personalized treatment protocols (Chand and
Alam 2012; Masoudi-Nejad and Wang 2015). Different
types of networks such as protein–protein interaction
(PPI) networks, gene regulatory networks, metabolic
pathways, and various signaling pathways interact in a
conjugated manner to define the fate of cellular
behavior (Barabási and Oltvai 2004). The results gen-
erated from such integrative analysis of complex bio-
logical networks help to determine the specific roles of
differentially regulated molecules, pathways, or pro-
cesses in different cellular conditions especially in a
multifactorial disease such as cancer (Barabási and
Oltvai 2004). Here, we analyzed a transcriptomic
dataset of 10 gallbladder cancer samples with respect to
their adjacent 10 normal tissue samples, and 30 gall-
stone disease tissue samples in three different follow-

up periods. An integrative network-based analysis was
carried out on the differentially expressed genes
(DEGs) obtained to identify the overlapping and
unique molecular signatures. We performed differential
gene expression analysis, functional enrichment anal-
ysis, PPI network analysis, module analysis, and reg-
ulatory network analysis of the specific DEGs
identified from GBC vs. gallstone disease with three
different follow-up periods to identify significant hub
genes and hub transcription factors (TFs). Moreover,
we also carried out miRNA–hub genes network anal-
ysis, hub gene signaling network analysis, and evalu-
ation of genomic alteration of the hub genes.

2. Methodology

2.1 Retrieval of transcriptomic data

The RNA-seq dataset of GBC and GSD samples were
obtained from the European Nucleotide Archive (ENA)
database in Sequence Read Archive (SRA) format with
the accession number SRP226150. The dataset con-
tained a total of 50 samples obtained through surgical
resection. The data comprised 10 GBC tissues, 10
adjacent normal tissue samples, and 30 GSD tissue
samples from three different follow-up periods of 1–3
years (GSD3), 5–10 years (GSD5) and more than 10
years (GSD10). The Illumina HiSeq 2500 platform was
used to generate the paired end reads of these 50
samples (Jinghan Wang et al. 2020). Using this pub-
lished dataset, we carried out a detailed integrative
analysis with various benchmarked network-based
approaches to identify systems-level molecular signa-
tures in GBC and the three different follow-up periods
of GSD.

2.2 Transcriptomic data analysis
and identification of differential overlapping
and specific molecular signatures

The retrieved RNA-seq datasets in SRA format were
converted into FastQ reads. The FastQ reads were pre-
processed using an in-house RNA seq data analysis
pipeline. Pre-processing is an important step to either
remove or trim the adapter, poly N, as well as the low-
quality reads. FastQC and fastp tools were used for the
quality check (QC) of the reads and adapter trimming,
respectively (Chen et al. 2018; de Sena Brandine and
Smith 2019). The pre-processed high-quality reads
after quality control were mapped against the reference
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human genome Homo sapiens (GRCh38) using
HISAT2 (version 2.2.1)(Kim et al. 2019). The aligned
or mapped reads were then quantified using the Fea-
tureCounts tool to obtain the gene expression profile of
each sample as a single-count matrix file (Liao et al.
2014). The counts matrix file obtained from RNA-seq
analysis was used to identify the differentially expres-
sed genes (DEGs) using DESeq2 package in R (Love
et al. 2014). The DESeq2 tool gives the log2 fold
changes and absolute gene expression levels relative to
each sample by calculating the ratio of each read count
to the logarithmic mean value of all the read counts for
each gene across all the samples. The lists of significant
DEGs were generated separately for GBC vs. adjacent
normal (DEG list 1), and GBC vs. GSD with three
different follow-up periods. We have considered a
P-adjusted value B0.05 and |Log2 fold change| C1 for
identifying DEGs. The overlapping and specific DEGs
between GBC vs. GSD3, GBC vs. GSD5, and GBC vs.
GSD10 were identified using Venny tool 2.1.0 (Oliv-
eros 2007). The unique DEGs identified for GSD3
(DEG list 2), GSD5 (DEG list 3), and GSD10 (DEG
list 4) were further used for downstream integrative
analysis. The overall methodology has been described
in figure 1.

2.3 Functional annotation and pathway analysis

We carried out functional annotation and pathway
enrichment analysis using the unique DEG lists (DEG
lists 2, 3, and 4) identified from three follow-up peri-
ods. Functional annotations provided an overview of
associations of the DEGs with biological processes,
pathways, and disease phenotypes. We used two
independent tools, i.e., DAVID tool (v6.8) (Dennis
et al. 2003) and BINGO (a Cytoscape plugin), to
determine the enriched biological processes associated
with the unique DEGs. The enriched pathways asso-
ciated with unique DEGs were identified from the
KEGG database. The threshold of p-value\0.05 and
gene counts [5 were considered for selecting the
enriched biological processes and KEGG pathways.

2.4 PPI-based network analysis and screening
of hub genes

The STRING database, version 11.5 (http://www.
stringdb.org/), was used to construct the PPI network
with unique DEGs identified from the DEG lists 2, 3,
and 4 (Suratanee and Plaimas 2018). In the PPI

network topology, the nodes represented the seed pro-
teins (seed DEGs) and the edges represented the
interactions between the DEGs. The PPI networks were
analyzed using Cytoscape version 3.8 (Shannon et al.
2003). The plugin CytoHubba in cytoscape was used
for topological analysis of the PPI networks and sub-
sequent identification of hub genes (Chin et al. 2014).
The hub genes for each disease group were identified
through an ensemble approach by taking the consensus
of five topological parameters, viz., maximum clique
centrality (MCC), maximum neighborhood component
(MNC), degree, edge percolated component (EPC),
and betweeness centrality (Chin et al. 2014). The five
top-ranked genes were considered to be the potential
candidate genes for each of the conditions. Further-
more, highly connected gene modules from the PPI
networks were detected using the Molecular Complex
Detection (MCODE) algorithm (Pruitt et al. 2001).
MCODE scores C4 and the number of nodes[4 were
set as cutoff criteria with the default parameters (degree
cutoff C2, node score cutoff C2, K-core C2, and max
depth =100) (Roy et al. 2021).

2.5 Transcription regulatory-based network
analysis and screening of hub transcription factors

Transcription factors (TFs) are the key regulators in the
transcription process which influence overall gene
expression by binding to the start site of the promoter
region. For the construction of transcriptional regula-
tory networks, 1KB upstream FASTA sequence of the
specific DEGs identified from GBC compared with
GSD with different follow-up periods (GBC vs. GSD3,
GBC vs. GSD5, and GBC vs. GSD10) were extracted
using Regulatory Sequence Analysis Tools (RSAT)
(Thomas-Chollier et al. 2008). Experimentally deter-
mined benchmarked position weight matrices (PWMs)
for all the TFs were obtained from the CIS-BP database
(Weirauch et al. 2014). PWM is a mathematical model
describing the binding specificity of a TF. PWMs were
used to scan cis-regulatory sequences of a gene for
determining the enrichment of the defined patterns
which were significantly more similar to the PWM than
to the background models (Stormo 2000). A widely
used benchmark matrix scan tool in MEME suite
(v3.4.0) was used for PWM scanning by considering
p-value cutoff of 10-4 (Bailey et al. 2009). Finally, the
transcriptional regulatory networks (TRNs) with pre-
diction scores were visualized in the form of interactive
networks.
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2.6 Prediction of hub genes–microRNA network
analysis

MicroRNAs (miRNAs) belong to class of small non-
coding RNAs that play a crucial role in cancer devel-
opment by acting either as oncogenes and/or tumor
suppressor genes. We performed hub gene–miRNA
network analysis to identify potential hub gene–
miRNA interactions. To identify hub gene–miRNA
interactions, we used the miRTar database that stores
experimentally validated miRNA–gene interaction
data. Signaling network analysis of hub genes was
performed using SIGNOR 2.0 database (http://signor.
uniroma2.it/) to identify key signaling pathways. The
cBioPortal database (https://www.cbioportal.org/) was
used to identify genetic alterations associated with the
identified hub genes.

3. Results

3.1 Identification of differentially expressed genes
in GBC and GSDs

Differential gene expression analysis using DESeq2
identified four significant lists of DEGs for GBC vs.
adjacent normal (DEG list 1), GBC vs. GSD3 (DEG list
2), GBC vs. GSD5 (DEG list 3), and GBC vs. GSD10
(DEG list 4) conditions. DEG list 1 contained 985 genes,
of which 248 were upregulated, and 737 were down-
regulated. The total number of upregulated and down-
regulated DEGs (DEG lists 1, 2, 3, and 4) has been
summarized in table 1. The complete lists ofDEGs for all
the comparisons along with the log2 fold change values
and the corresponding adjusted p-values have been
presented in the supplementary dataset. The results from

Figure 1. A schematic representation of the overall methodology used in this study.
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DEG list 1 show that the significant DEGs identified in
GBC were mostly downregulated (figure 2A). The
downregulatedDEGsweremainly enriched in important
cell signaling pathways such as cAMP signaling, AMPK
signaling pathway, PPAR signaling, and adipocytokine
signaling pathways (figure 2B).

3.2 Overlapping and unique DEGs in GBC
compared to GSD with different follow-up periods

The objective of our work was to identify common and
overlapping molecular signatures between GBC and
GSD for understanding the possible mechanisms
through which GSD progress to GBC. There were
3102 overlapping genes identified among the DEG lists
2, 3, and 4. GSD3 had 824, GSD5 had 499, and
GSD10 had 446 unique DEGs (figure 3A). The heat-
map visualization of the significant unique DEGs
reflected variation in the expression pattern of DEGs
identified in each GSD follow-up period as compared
with the DEGs from GBC (figure 3B). This suggested
that the differential expression pattern of these genes in
GSD might manifest into a wide pathological spectrum,
and thereby could contribute to GBC pathogenesis.

3.3 Functional enrichment and pathways analysis
of specific DEGs identified in GSD3, GSD5,
and GSD10 follow-up periods

Functional enrichment and pathway enrichment anal-
ysis were performed for the identification of significant
biological processes (table 2) and pathways (table 3) in
the identified unique lists of DEGs. The enrichment
analysis from both DAVID and BINGO showed that
the DEGs in GSD3 and GSD10 were largely associated
with immune response regulation and cell adhesion

processes such as collagen organization. However, the
unique DEGs in GSD5 were associated with distinct
biological processes such as ion-transport channel-re-
lated processes. This suggested that among the GSD
cases with different follow-up periods, there were
potential molecular signatures which might contribute
to GBC progression from GSD. The pathways associ-
ated with GSD3 were also enriched in cell adhesion
pathways such as extracellular matrix organization,
whereas the GSD5 DEGs were mainly linked with
endocannabinoid signaling, leukocyte transendothelial
migration, and neuroactive ligand-receptor interaction.

3.4 Construction of PPI networks and screening
of significant hub genes/proteins associated
with GBC progression

The specific DEGs identified from GBC compared with
that of GSD with different follow-up periods (GSD3,
GSD5, and GSD10) were used to construct the PPI
networks. The queried DEGs with an effective binding
score[0.4 were used to build the PPI networks. The
effective binding score represents how likely the inter-
actions between nodes are true. In PPI networks, nodes
and edges represent proteins and interactions, respec-
tively, and the nodes with high degree are considered as
hub genes/proteins. The interactive PPI networks were
analyzed and visualized using Cytoscape v3.8.2
(figure 4A). The detailed statistics of the PPI networks
analysis are given in supplementary table 1.
CytoHubba, a Cytoscape plugin, was used to identify

the hub DEGs from the PPI networks generated using
the unique DEGs identified from DEG lists 2, 3, and 4.
Five topological parameters (MCC, MNC, Degree,
EPC, and Betweenness) were considered to identify the
predicted hub DEGs. The 20 top-ranked DEGs iden-
tified from these five algorithms were considered for
further evaluation (supplementary figure 1). The pre-
dicted hub DEGs from each of the topological
parameter were intersected for the identification of
consensus significant hub DEGs in the PPI networks
(table 4). The identified hub genes in the PPI networks
were mostly downregulated (supplementary table 2).
Functionally enriched significant modules in the PPI

networks were identified using the Molecular Complex
Detection (MCODE) algorithm (figure 4B). The sig-
nificant module for GSD3 was associated with cell
adhesion and collagen fibril organization, the GSD5
module was associated with ion transport and meta-
bolic pathways, and the module identified for GSD10
was linked with immune system regulation.

Table 1. Summary of the DEG lists identified from each
comparison

Conditions
Total
DEGs

Upregulated
DEGs

Downregulated
DEGs

GBC vs. adjacent
normal (DEGs
list 1)

985 248 737

GBC vs. GSD3
(DEGs list 2)

4768 2613 2155

GBC vs. GSD5
(DEGs list 3)

4413 2435 1978

GBC vs. GSD10
(DEGs list 4)

4132 2225 1907
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3.5 Analysis of TRNs and identification of
potential TFs

The TRNs were constructed through PWM scanning,
followed by identification of transcription factor bind-
ing sites (TFBS) on the target DEGs. The TFs were
considered as source nodes, and non-TF DEGs were

considered as target nodes for each condition (figure 5).
The topological analyses of the TRNs such as assor-
tativity and shortest path length were calculated using
igraph, an R package (Csardi and Nepusz 2006). The
top 10 highly connected TFs were identified based on
degree centrality (table 5). The topology of the TRN
obtained from GSD3 was the largest, with 663 nodes

Figure 2. Overview of gene expression profile and cellular pathways identified in GBC compared with adjacent normal.
(A) Volcano plot and hierarchical clustering showing the expression significant DEGs in GBC compared with that of adjacent
normal. (B) The bubble plot represents the top 10 key pathways associated with significant DEGs in GBC.
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and 4896 edges. Zinc finger Family (ZNF) proteins
were the commonly enriched regulatory hubs in all the
three GSD follow-up periods. ZNF genes act as tumor
suppressor and oncogenes. They regulate the key
pathways and processes of cancer initiation, develop-
ment, as well as progression. Some of the key path-
ways and processes are apoptosis, metastasis, and
regulation of transcription, protein degradation medi-
ated by ubiquitin–proteasome pathway, etc.

3.6 Prediction of miRNA interactions with the hub
genes

The miRTar database was used to identify the miRNA
regulators associated with the hub genes. The Network
Analyzer tool in Cytoscape was used to analyze the
miRNA regulatory network connections (figure 6A;
supplementary table 3). In GSD3, COL1A1 had the
highest number of interacting miRNAs, indicating its

Figure 3. Differential gene expression profiles of overlapping and unique signatures. (A) Venn diagram showing the
number of unique and overlapping DEGs between GBC vs. GSD3, GBC vs. GSD5, and GBC vs. GSD10. The bar plot
represents key pathways associated with overlapping DEGs. (B) Heatmap plot for significant unique DEGs identified in
between GBC vs. GSD3, GBC vs. GSD5, and GBC vs. GSD10.
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Table 2. Enriched biological processes associated with specific molecular signatures identified in GBC vs. GSD3, GBC vs.
GSD5, and GBC vs. GSD10

GO terms-DAVID P-value Gene Counts

Enriched biological processes identified from unique GSD3 DEGs
*Immune response 1.91E-20 49
*Collagen fibril organization 2.37E-04 7
*Extracellular matrix organization 0.005574 12
Cell adhesion 0.035312 18
Cellular response to TNF 0.040579 7

Enriched biological processes identified from unique GSD5 DEGs
Ion transmembrane transport 0.004082 9
Chloride transmembrane transport 0.026303 5

Enriched biological processes identified from unique GSD10 DEGs
*Immune response 0.00334 14
*T cell receptor signaling pathway 0.012571 7
*T cell co-stimulation 0.018397 5
Signal transduction 0.027049 24

GO terms- BINGO P-value Gene counts

Enriched biological processes identified from unique GSD3 DEGs
*Immune response 3.24E-07 34
Translational elongation 9.50E-07 12
*Collagen fibril organization 1.11E-06 7
*Immune system process 3.87E-06 42
Tissue development 9.15E-05 32

Enriched biological processes identified from unique GSD10 DEGs
*Immune system process 1.58E-07 33
Leukocyte activation 5.15E-05 12

The asterisk (*) symbol represents the common biological processes identified from both DAVID and BINGO.

Table 3. Enriched pathways linked with specific molecular signatures identified in GBC vs. GSD3, GBC vs. GSD5, and
GBC vs. GSD10

Term Count P-value Genes

Enriched pathways in GSD3
Protein digestion and absorption 11 2.25E-05 COL1A1, COL3A1, COL2A1, COL1A2, COL13A1, MEP1A,

COL4A1, COL5A3, COL9A2, COL6A5, PRSS2
ECM-receptor interaction 10 1.23E-04 COL1A1, GP9, COL3A1, COL2A1, COL1A2, COL4A1, COL5A3,

CD47, COL6A5, THBS1
Ribosome 12 2.05E-04 RPS25, RPS9, RPS27, RPL21, RPL31, RPL34, RPL11, RPS3A,

RPL10A, RPL9, RPL7, RPS12
Platelet activation 8 0.025485 COL1A1, GP9, COL3A1, COL2A1, PLCB4, COL1A2, PLA2G4E,

COL5A3
PI3K-Akt signaling pathway 14 0.043026 G6PC, THBS1, FGF17, COL1A1, FGF16, COL3A1, TCL1A,

COL2A1, CDK6, COL1A2, COL4A1, COL5A3, COL6A5, PCK1
Enriched pathways in GSD5
Arrhythmogenic right
ventricular cardiomyopathy
(ARVC)

6 0.001355 GJA1, CACNA2D3, DSG2, CTNNA2, ITGB6, CACNA1F

Retrograde endocannabinoid
signaling

6 0.008017 KCNJ5, ADCY3, CACNA1F, GABRG2, GRM1, MAPK13

Leukocyte transendothelial
migration

6 0.013589 MYL7, CLDN15, ESAM, CTNNA2, CLDN16, MAPK13

Neuroactive ligand-receptor
interaction

9 0.020578 GLRA2, GLRA3, ADORA2B, GRIK4, AGTR2, GRPR, TSHB,
GABRG2, GRM1
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potential role in regulating crucial miRNAs associated
with cancer progression. In GSD5, 3 out of the 8 hub
genes were found to interact with miRNAs, viz.,
HBEGF, KIF5a, and GABRG2. In GSD10, GAPDH
was found to have the highest number of miRNA
connections, followed by CD3E and EGR2. However,
no miRNAs were found to be associated with IL17A.

3.7 Identification of key signaling complex
associated with hub genes

We identified the key signaling complex associated
with the hub genes using the SIGNOR 2.0 database
(figure 6B). The hub genes COL1A1 identified from the
GBC vs. GSD3 PPI network analysis were associated
with the ECM interaction signaling pathway through
A11/b1 and A2/b1 integrin complexes. The ECM
interaction pathway is known to be one of the hall-
marks of cancer. The significant hub genes from GBC
vs. GSD5 were associated with MAPK signaling
pathways. The hub genes identified from GBC vs.

GSD10 were largely associated with TCR signaling
and PI3K signaling pathways. These pathways have
been reported to be deregulated in many cancers
(Sanchez-Vega et al. 2018).

3.8 Mining genomic alterations of the DEGs/hub
genes from external datasets

Genomic alterations such as mutations and copy
number variations (CNVs) associated with hub genes
were evaluated from TCGA-GBC data and other
TCGA datasets of gastrointestinal cancers such as
esophageal cancer, stomach cancer, liver cancer,
colorectal cancer, and pancreatic cancer using the
cBioPortal database (figure 7). It was been observed
that hub gene amplification is prominent in other gas-
trointestinal cancers, whereas the hub genes in GBC
patients are associated with mutations. The OncoPrint
tool of cBioportal showed 36% of patients’ cases to
have genetic alterations such as amplification, deletion,
and several mutations.

Figure 4. PPI network construction from the unique DEGs. (A) PPI networks of unique DEGs identified from GBC vs.
GSD3, GBC vs. GSD5, and GBC vs. GSD10. The red triangle represents the hub genes identified based on the consensus of
five topological algorithms. (B) Significant modules extract from the PPI networks. The red triangle in the module network
represents hub genes.
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4. Discussion

Gallbladder cancer is known to be the most fatal
malignancy of biliary tract cancer and it ranks sixth
among the neoplasms of the gastrointestinal tract
(Hundal and Shaffer 2014; Song et al. 2020). Among
all the different risk factors, gallstones are considered
as the major risk factor, as in most cases the cancer is
incidentally diagnosed while the patient is undergoing
treatment for gallstones or cholelithiasis (Hundal and
Shaffer 2014). Identification of molecular markers for
early diagnosis is very important to reduce the death
risk of this cancer. Hence, our objective was to identify
crucial molecular signatures that lead to the progression
of GSD to GBC.
We carried out an integrative network-based analysis

of transcriptomic datasets to compare and identify key
molecular signatures in GBC with reference to GSD of
different follow-up periods. Differential gene expres-
sion analysis and hierarchical clustering analysis
showed significant variation in gene expression pattern
among the unique DEGs identified from GSD with
three different follow-up periods with respect to the
GBC samples. The significant hub genes and TFs
identified from GBC with reference to GSD of all the
three follow-up periods were directly or indirectly

associated with a few important processes and path-
ways known to be involved in cancer development and
progression.
The hub genes identified from unique DEGs of GBC

vs. GSD3 are SERPINH1, COL1A1, TPT1, and
THBS1. The hub genes are linked with cell adhesion
and collagen fibril organization processes. Cell adhe-
sion molecules play an important role in regulating
epithelial-to-mesenchymal transition (EMT) and influ-
ence malignant transformation and metastasis (Janis-
zewska et al. 2020). The Serpin Family H Member 1
(SERPINH1) gene is aberrantly expressed in different
cancers: in gastric cancer it is involved in metastasis
and EMT via the Wnt/b-catenin signaling pathway, and
regulates the expression of the proteins of the extra-
cellular matrix (ECM) to promote breast cancer (Tian
et al. 2020). The COL1A1 gene encodes type 1 colla-
gen, which is a major structural component of the ECM
known to be involved in EMT. EMT allows epithelial
cells to adopt a more mesenchymal state to enhance
cellular migration, which thereby helps in the metas-
tasis of cancer. Upregulation of COL1A1 promotes
tumor metastasis by regulating the WNT/planar cell
polarity (PCP) signaling pathway (Zhang et al. 2018).
THBS1, or thrombospondin1, plays a key role in cel-
lular communication, both cell-to-cell and cell-to-ECM

Table 4. List of significant hub genes identified through PPI networks analysis from unique DEGs in GBC vs. GSD3, GBC
vs. GSD5, and GBC vs. GSD10

DEGs Degree Betweeness EPC MNC MCC

Hub DEGs identified from GBC vs. GSD5
THBS1 34 5383.29 42.33 14 5803
TPT1 34 5573.66 39.02 15 4.79E?08
SERPINH1 32 2591.35 41.99 11 1.20E?05
COL1A1 28 2877.11 41.35 14 1.26E?06

Hub DEGs identified from GBC vs. GSD5
GABRG2 22 2044.83 54.29 4 17
KIF5A 20 2916.83 54.35 7 17
HBEGF 10 1398.66 49.77 2 5
GJA1 10 2870.76 49.11 2 5
CX3CR1 10 1339.86 44.75 2 5
GRM1 8 873.93 51.76 2 4
GJA5 8 2180.73 48.38 2 4
HEY2 8 1620.96 48.99 2 4

Hub DEGs identified from GBC vs. GSD10
GAPDH 42 8564.12 94.395 8 56
EGR2 22 3920.83 94.352 9 22
LCK 30 2634.42 94.395 14 905
NR4A1 16 1357.98 94.352 7 15
CCR7 24 965.62 94.395 11 787
IL17A 26 916.12 94.395 11 80
CD3E 26 876.45 94.395 12 789
IKZF1 28 773.78 94.395 13 949
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interactions (Hu et al. 2021). Earlier studies reported
that THBS1 was upregulated due to aberrant DNA
methylation in various types of human cancer including
breast cancer, gastric cancer, oral cancer, etc., to pro-
mote proliferation, invasion, and migration (Zhang
2021). TPT1, or Tumor Protein Translationally-Con-
trolled 1, is an anti-apoptotic protein-coding gene
which is involved in various cellular pathways like cell
proliferation, growth, apoptosis, metabolism, and sta-
bilization of microtubules during cell division (Zhang
et al. 2021). It is also known to be involved in cancer
progression and is differentially expressed in many
types of human cancer. Studies revealed that TPT1 is

upregulated in colon cancer and prostate cancer (Hos-
seinzadeh et al. 2020). In the case of epithelial ovarian
cancer, TPT1 promotes tumor growth and metastasis
via the TPT1/PI3K/AKT signaling pathway (Wu et al.
2019).
The hub genes identified from the unique DEGs in

GBC vs. GSD5 were CX3CR1, GRM1, HBEGF,
KIF5A, HEY2, GABRG2, GJA1, and GJA5. These hub
genes are mainly involved in different types of cellular
pathways including inflammation, cell growth and
development, intracellular organelle transport, and
cellular interaction. Inflammation in GBC due to GSD
leads to the release of some carcinogenic molecules

Figure 5. Transcriptional regulatory network of the unique DEGs. The red node represents the hub genes identified based
on degree centrality, and the small yellow nodes represent target DEGs. The TF–TG interactions are identified through PWM
scanning of 1 kbp upstream sequences of significant DEGs that assign a probability score of the transcription factor binding
to the target gene.
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that ultimately result in tumor growth and develop-
ment. Hub genes identified from the unique DEGs of
GBC vs. GSD5 were associated with key cancer-re-
lated pathways such as inflammatory response, cellular
interaction, as well as cell growth and proliferation,
suggesting a higher risk of cancer progression.
CX3CR1 or C-X3-C Motif Chemokine Receptor 1 is a
transmembrane protein involved in the regulation of
immune response, cell adhesion, inflammation, etc. But
it is aberrantly expressed in many types of cancers like
gastric cancer, breast cancer, pancreatic cancer, lung
cancer, etc. (Marchesi et al. 2010; Wei et al. 2015).
CX3CR1 overexpression in gastric cancer promotes
migration, proliferation, and survival of tumors (Wei
et al. 2015). However, in the case of glioma, neurob-
lastoma, and other non-neural-origin cancers, overex-
pression of CX3CR1 helps in the trans-endothelial
migration and metastasis of cancer (Marchesi et al.
2010; Wei et al. 2015). GRM1 or Glutamate Metabo-
tropic Receptor 1, is a G-protein-coupled receptor for
glutamate that plays a crucial role in synaptic plasticity
and the development of the cerebellum. GRM1 can
hydrolyze phosphoinositide through phospholipase C
activation. Apart from various neurological disorders,
GRM1 is also known to be involved in human cancers
like breast cancer, skin cancer, etc. Overexpression of
GRM1 in melanocytes promotes tumor growth and
progression through activation of PI3K/AKT and
MAPK signaling pathways (Wangari-Talbot et al.
2012; Wen et al. 2014). However, GRM1 also involved

in other cancer-related pathways like neuro-active
ligand-binding receptor interaction, FOXO signaling
pathway, etc. The growth factor HB-EGF, or heparin-
binding epidermal growth factor-like growth factor, is
one of the ligands of the epidermal growth factor
receptor (EGFR) that mediates its function via ERBB1/
HER1 (also EGFR) and ERBB4/HER4. According to
various studies, HBEGF is highly expressed in hepa-
tocellular carcinoma, breast cancer, colon cancer,
prostate cancer, and ovarian cancer, where it can help
in the growth, proliferation, and progression of tumors
(Miyamoto et al. 2004; Miyata et al. 2012). KIF5A, or
kinesin family member 5A, is a member of the kinesin
family protein, mainly expressed in neurons. It acts as a
microtubular motor protein in axonal transport (Bren-
ner et al. 2018). It has been observed from various
studies that the kinesin proteins were aberrantly
expressed in different types of human cancers includ-
ing breast cancer, prostate cancer, lung cancer, bladder
cancer, etc. Kinesins mediate the process of tumorige-
nesis by promoting cell growth and proliferation (Rath
and Kozielski 2012; Tian et al. 2019). GJA1, or Gap
Junction Protein Alpha 1, and GJA5, or Gap Junction
Protein Alpha 5, are members of the connexin family
of proteins that are involved in cellular communication.
In gastric cancer, higher expression of GJA1 leads to
shorter overall survivability of patients (Zhao et al.
2019). HEY2, a bHLH transcription factor with YRPW
motif 2, is a transcription-factor-encoding gene of the
hairy and enhancer-of-split-related (HESR) family.

Table 5. Hub TFs identified through transcriptional regulatory networks from GBC vs. GSD3, GBC vs. GSD5, and GBC
vs. GSD10

GSD3 GSD5 GSD10

TFs Degree TFs Degree TFs Degree

POU3F2 507 ZNF492 246 EGR2 304
AR 467 ZNF454 239 ETV5 265
ZNF640 407 TBX1 231 IKZF1 258
ZNF132 391 RORC 190 NR2F6 249
ZNF350 316 ZNF93 182 MECOM 219
BHLAH15 305 TWIST1 180 CTCFL 201
INSM1 281 FOXQ1 175 NR4A2 198
CEBPB 266 LYL1 173 NR4A1 184
NEUROD2 251 ATOH1 169 ESRRG 179
BATF 244 HNF1A 167 IKZF3 146
Network topology measures
Mean: 14.76
Variance: 2215.27
Degree coefficient: 4.17
Assortativity: - 0.11
Nodes: 663
Edges: 4896

Network topology measures
Mean: 11.30
Variance: 1006.93
Degree coefficient: 2.92
Assortativity: -0.10
Nodes: 394
Edges: 2228

Network topology measures
Mean: 14.04
Variance: 1349.70
Degree coefficient: 2.93
Assortativity: -0.13
Nodes: 369
Edges: 2592
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Figure 6. Hub gene analysis. (A) Hub gene–miRNA interactive networks. The small green nodes and big red nodes are the
interacting miRNAs and hub genes, respectively. (B) Signaling network showing complex, associated proteins and signaling
pathways associated with hub genes. The green nodes represent associated proteins; light blue nodes indicate signaling
pathways; circled blue nodes represents hub genes; squared blue nodes represents signaling complex, and yellow nodes
indicate protein families.
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Expression of HEY2 is regulated by the Notch signal
transduction pathway and TGF-b signaling pathway,
which are mostly dysregulated in various human can-
cers (Liu et al. 2017). According to previous studies,
HEY2 is highly expressed in different cancers like
esophageal squamous cell carcinoma and non-small-
cell lung carcinoma, where it can promote metastasis,
cancer cell self-renewal, angiogenesis, EMT, as well as
tumor proliferation (Forghanifard et al. 2015; Liu et al.
2017; Cheng et al. 2018). In hepatocellular carcinoma,
upregulation of HEY2 plays an important role in cancer
progression through the TGF-b/Smad signaling path-
way by inhibiting TGF-b-induced growth arrest (Wang
et al. 2019). The GABRG2 gene encodes a subunit of
the gamma-aminobutyric acid type A receptor.
Although this gene is most commonly involved in the
function of the central nervous system, a recent study
has suggested it as a novel oncogene promoting tumor
invasion and metastasis (Jin et al. 2017). In thyroid
cancer, higher expression of GABRG2 promotes tumor
metastasis to lymph node (Jin et al. 2017). GABRG2 is
also found to be highly expressed in colon adenocar-
cinoma (Yan et al. 2020).
The significant hub genes identified from the specific

DEGs in GBC compared with GSD with follow-up
period of more than 10 years were LCK, CCR7, CD3E,

IKZF1, EGR2, GAPDH, and NR4A1. The majority of
the identified hub genes were associated with immune
response signaling pathways such as the T-cell receptor
(TCR) signaling pathways. Chronic inflammation
caused by gallstones is known to be the most potential
risk factor in GBC development. Therefore, it is largely
associated with immune cells and inflammatory medi-
ators such as such as cytokines, chemokines, reactive
oxygen species, prostaglandins (PGs), and growth
factors which strongly influence the genetic and epi-
genetic aberrations in oncogenes and/or tumor sup-
pressor genes (TSG) (Hussain and Harris 2007). We
identified that DEGs in GBC vs. GSD10 were associ-
ated with immune cell regulatory processes. The T-cells
are known to be the principal defensive components
against tumors and pathogens. T-cell activation func-
tions to regulate a wide array of metabolic pathways
and any aberration in the T-cell signaling pathway can
lead to oncogenesis (Franchina et al. 2018). Lympho-
cyte cell-specific protein-tyrosine kinase (LCK) is an
important gene that is expressed on T-lymphocytes and
natural killer cell, and plays a significant role in T-cell
receptor signaling, which can affect the pathogenesis or
metastasis of cancer (Kumar Singh et al. 2018; Weiße
et al. 2021). LCK phosphorylates CD79a, which
induces the distal signaling events involved in the

Figure 7. Genomic alterations associated with the hub genes in gastrointestinal cancers.
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addition of phosphate group to Syk, and thereby acti-
vates different signaling pathways such as PI3K/Akt,
NF-kB, and ERK. These signaling pathways are known
to be involved in cancer cell survival, proliferation, and
also resistance to treatment of cancer (Fresno Vara
et al. 2004; Kumar Singh et al. 2018). LCK is highly
expressed in small-cell lung cancer, non-small-cell lung
carcinoma, as well as lung cancer (Bommhardt et al.
2019). In cholangiocarcinoma, expression of LCK is
related to the recurrence of tumors (Bommhardt et al.
2019). CCR7, or C-C motif chemokine receptor 7,
encodes a G-protein-coupled receptor family protein
that plays a crucial role in adaptive immune response
through activation of B- and T-lymphocytes. CCR7
helps the tumor cell to escape immune surveillance and
helps cancerous cells to survive by the activation of the
PI3K/Akt signaling pathway (Legler et al. 2014).
IL17A, or interleukin 17A, is a member of the inter-
leukin 17 pro-inflammatory cytokine family produced
by T-helper 17 (Th17) cells. Expression of IL17A has
been found to be high in various tumor tissues, such as
hepatocellular carcinoma, gastric cancer, etc. (Wu et al.
2014). IKZF1, or IKAROS Family Zinc Finger 1, is a
zinc-finger DNA binding protein that acts as a tran-
scription factor. It is involved in various biological
processes such as immune system regulation and pro-
liferation of hematopoietic cells, and also regulates
cellular interaction via the Notch signaling pathway
(Jedi et al. 2018). Epigenetic studies revealed that in
colorectal cancer, IKZF1 was downregulated due to
hypermethylation (Pedersen et al. 2015; Jedi et al.
2018). EGR2, or early growth response 2, is a
sequence-specific DNA-binding protein which is a
member of the Kruppel-like zinc finger transcription
factor family (Bradley et al. 2008). EGR2 induced
apoptosis through phosphatase and tensin homolog
deleted on chromosome 10 or the PTEN growth sup-
pressive signaling pathway (Unoki and Nakamura
2003). However, the negative regulation of EGR2
through miR-20a (a small noncoding RNA) promotes
the growth of gastric cancer (Li et al. 2013).
From this study, we have observed that the identified

hub genes and hub TFs were associated with different
cellular processes and pathways directly or indirectly
linked with cancer progression and metastatic invasion.
The hub genes identified from each of the GSD follow-
up periods were associated with distinct processes and
signaling pathways. This suggested that GSD pro-
gresses to GBC through the dysregulation of multiple
signal transduction pathways at different stages (initi-
ation–progression–metastasis) with distinct pathologi-
cal spectra. Hence, the identified common and unique

molecular signatures between GSD and GBC reflect
possible mechanisms through which GSD progressed
to GBC. Further in-depth functional evaluation of the
hub genes and TFs will be able to establish their
association with specific stages of disease development
and progression.
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