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We considered the dynamics of two coupled three-species population patches by incorporating the Allee effect
and focused on the onset of extreme events in the coupled system. First, we showed that the interplay between
coupling and the Allee effect may change the nature of the dynamics, with regular periodic dynamics becoming
chaotic in a range of Allee parameters and coupling strengths. Further, the growth in the vegetation population
displays an explosive blow-up beyond a critical value of the coupling strength and Allee parameter. Most
interestingly, we observed that beyond a threshold of the Allee parameter and coupling strength, the population
densities of all three species exhibit a non-zero probability of yielding extreme events. The emergence of
extreme events in the predator populations in the patches is the most prevalent, and the probability of obtaining
large deviations in the predator populations is not affected significantly by either the coupling strength or the
Allee effect. In the absence of the Allee effect, the prey population in the coupled system exhibits no extreme
events for low coupling strengths, but yields a sharp increase in extreme events after a critical value of the
coupling strength. The vegetation population in the patches displays a small finite probability of extreme events
for strong enough coupling, only in the presence of the Allee effect. Last, we considered the influence of
additive noise on the continued prevalence of extreme events. Very significantly, we found that noise sup-
presses the unbounded vegetation growth that was induced by a combination of the Allee effect and coupling.
Further, we demonstrated that noise mitigates extreme events in all three populations, and beyond a noise level,
we do not observe any extreme events in the system. This finding has important bearings on the potential
observability of extreme events in natural and laboratory systems.
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1. Introduction

Investigating the advent of extreme events which signal
behaviour beyond normal variability in the dynamics of
complex systems has enormous relevance from the
viewpoint of basic understanding of complex systems,
as well as implications for risk assessments from
catastrophic surges (Strogatz 2003; Kinney et al. 2005;
Solli et al. 2007; Lubchenco and Karl 2012). So,
exploring the emergence of such events in models and

real-world systems, as well as the search for mecha-
nisms and processes that may underlie extreme events,
has witnessed much research interest in recent years
(Albeverio et al. 2006). An extreme event can be
labelled as one where a state variable displays very
large, relatively rare fluctuations from the average
value. That is, in the course of its evolution, the system
exhibits occasional uncorrelated excursions that are
significantly different from the mean. So, the most
commonly employed signature of extreme events in
phenomena ranging from oceanography (Dysthe et al.
2008) to financial markets (Lillo and Mantegna 2003)
is uncorrelated recurrent deviations larger than aThis article is part of the Topical Collection: Emergent

dynamics of biological networks.
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prescribed threshold of typically 3–8 standard devia-
tions away from the average value.
A very important direction in the study of extreme

events is to unearth generic mechanisms that can give
rise to such large deviations in the dynamics. While
extreme events in stochastic models have been exten-
sively studied over decades (Majumdar and Ziff 2008;
Kishore et al. 2011), the advent of extreme events in
deterministic dynamical systems, without intrinsic or
extrinsic stochasticity, has garnered focus only in
recent times (Balakrishnan et al. 1995; Ansmann et al.
2013; Karnatak et al. 2014; Kingston et al. 2017;
Moitra and Sinha 2019; Chaurasia et al. 2020).
Focussing on this, we considered the emergent extreme
phenomena in patches of vegetation–prey–predator
systems coupled through the Lotka–Volterra interac-
tions, incorporating the biologically important Allee
effect. In population dynamics, the Allee effect reflects
the advantageous influence of conspecific interactions
on population growth (Dennis 1989; Courchamp et al.
2008; Sen et al. 2021) and captures the impact of small
population size on the long-term persistence of a
population. Further, we considered the role of noise on
the propensity of extreme events in this coupled three-
species system. Beyond modelling population dynam-
ics in ecosystems, these results have broad bearings on
the mechanisms that can enhance extreme events in
deterministic dynamical systems, and the effect of
stochasticity on their prevalence.
Our article is organized as follows: At the outset, in

section 2 we introduce the model of three interacting
species, incorporating the Allee effect, and recall some
significant results in this system. In section 3 we go on
to explore the dynamics of coupled patches of such
three-species systems to establish the generality and
broad scope of our findings. Lastly, in section 4, we
summarize our results and discuss their potential
implications.

2. Three-species food chain model with the Allee
effect

The local and global dynamics of three-species inter-
acting models have significant impact on complex
systems research, in particular in theoretical ecology.
Here we considered a vertical food chain model
incorporating the dynamics of the snowshoe hare and
the Canadian lynx populations, based on observed data.
This model consists of vegetation (denoted by u), prey
(denoted by v) and predator (denoted by w), and also
incorporates the Allee effect into the growth of the

predator populations. The dynamics of the model can
be described by the following coupled nonlinear ordi-
nary differential equations:

_u ¼ f ðu; v;wÞ ¼ au� a1f1ðu; vÞ;
_v ¼ gðu; v;wÞ
¼ a1f1ðu; vÞ AðvÞ � bv� a2f2ðv;wÞ;

_w ¼ hðu; v;wÞ ¼ a2f2ðv;wÞ � cðw� w�Þ

ð1Þ

where a, b and c are the growth rates of vegetation,
prey and predator populations, respectively. Here the
interaction between vegetation and prey was consid-
ered to follow the Holling type II functional response
f1ðu; vÞ ¼ uv

1þku, whereas the interaction between prey

and predator was considered to follow the Lotka–Vol-
terra type interaction, described by f2ðu; vÞ ¼ uv. The
parameter k corresponds to the average time spent for
processing a food item, and is termed ‘‘handling time’’
(Metz and Diekmann 1986). Here a1 denotes the
maximum growth rate of the prey, which is the product
of the ingestion rate and a constant factor less than
unity, considering the fact that not all ingested vege-
tation population is converted into prey biomass. The
parameter a2 corresponds to a1 in the predator popu-
lation. The predator is considered to be a generalist,
accounting for the fact that it can persist at an equi-
librium w�, either in the absence of prey or when its
concentration is low. Additionally, we incorporate the
Allee effect into the prey’s growth by introducing the
following functional form:

AðvÞ ¼ v

vþ h
;

where h is the Allee parameter reflecting the critical
prey density at which the probability of successful
mating would be half. This form is characteristic of the
fact that the per-capita reproduction rate becomes
smaller at low prey density. This kind of Allee effect
appears due to lack of mating partners, low fertilization
efficiency, cooperative breeding mechanism, etc., in the
context of biology. The dynamics of this three-species
model and the consequences of the Allee effect on this
system has been very recently studied by Sen and
Sinha (2021). We recall the principal results from that
study below:

(i) The Allee effect induces an explosive increase
(which we term a ‘‘blow-up’’) of the vegetation
population, i.e. there is a critical threshold of the
Allee parameter beyond which the vegetation
population has a positive probability of
unbounded growth.
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(ii) While this three-species system is regular when
the Allee effect is absent or small, a sufficiently
large Allee effect induces chaos in the system.

(iii) The Allee effect also has an impact on the
development of extreme events in the three-
species system, with the Allee effect typically
enhancing the probability of obtaining such
events.

(iv) Lastly, additive noise in this three-species system
mitigates the blow-up of the vegetation popula-
tion, and suppresses extreme events.

3. Patches of three-species systems coupled
through cross-predation

In order to gauge the generality of the phenomena
observed in a single patch in our earlier work, we now
explore the dynamics of two coupled patches, where
each patch again has three species, namely, vegetation,
prey and predator. The populations in local patches are
connected in such a way that the predator of one patch
can attack the prey of neighbouring patches, and vice
versa. This coupling strategy, known as coupling
through cross-predation, signifies that predators are
more mobile compared to prey and can move into
another patch to capture the prey. The dynamics of the
coupled three-species system can be described by the
following set of equations:

_u1 ¼ f ðu1; v1;w1Þ;
_v1 ¼ gðu1; v1;w1Þ � C v1w2;

_w1 ¼ hðu1; v1;w1Þ þ C v2w1;

_u2 ¼ f ðu2; v2;w2Þ;
_v2 ¼ gðu2; v2;w2Þ � C v2w1;

_w2 ¼ hðu2; v2;w2Þ þ C v1w2

ð2Þ

Here the populations of vegetation, prey and predator
in the i-th patch (i ¼ 1; 2) are denoted by ui, vi and wi,
respectively, and C is a parameter reflecting the inter-
patch coupling strength. The functions fi; gi; hi ði ¼
1; 2Þ have the same form as in a single patch given
by equation 1, with parameters ai; bi; ci; a1i; a2i; hi ði
¼ 1; 2Þ. To start begin our analysis, we assumed that
a1 ¼ a2 ¼ a; b1 ¼ b2 ¼ b; c1 ¼ c2 ¼ c; a11 ¼ a12 ¼
a1; a21 ¼ a22 ¼ a2; h1 ¼ h2 ¼ h. Although considering
identical parameters is not accurate from the ecological
point of view, it provides a good test bed for investiga-
tions and serves as a useful starting point for analysing the
coupled system. In this study we considered the param-
eter values a ¼ 1, b ¼ 1, c ¼ 10, w� ¼ 0:006, a1 ¼ 0:5,

a2 ¼ 1, k ¼ 0:05 (Blasius et al. 1999). We explored the
dynamics of the coupled system under varying Allee
parameter h and coupling strength C, through numeri-
cal simulations using the Runge–Kutta fourth-order
algorithm. We have corroborated the stability and
convergence of our results with respect to decreasing
step size.

3.1 Temporal evolution of population densities
in coupled patches

Our first significant observation was the emergence of
‘‘blow-ups’’ in the vegetation population densities beyond
a threshold of coupling strength. This threshold decreases
with increase in the Allee parameter h, namely, the onset
of unbounded vegetation growth occurs at weaker cou-
pling strengths for a stronger Allee effect. In order to
quantify the advent of such blow-ups, we estimated the
probability of unbounded vegetation growth from many
initial states followed over an extended period of time,
ensuring that the estimated values are converged with
respect to the sample size of the initial conditions. In
figure 1 we display the results thus obtained, for varing
coupling strengths C and for values of the Allee
parameter h ¼ 0:001; 0:005 and 0:01. It is clearly
noticeable from the figure that for each value of the Allee

Figure 1. Probability of unbounded vegetation growth in
coupled patches with respect to the coupling strength C. A
blow-up is considered to have occurred when the vegetation
population in any patches exceeds 103. Three different
values of h were considered and the probability was
estimated from a sample of 500 initial states distributed
randomly in a hyper-cube (ui 2 ½0 : 4�, vi 2 ½0 : 2�,
wi 2 ½0 : 5�) over each patch.

Allee effect on coupled three-species systems Page 3 of 11    30 



parameter h, there exists a critical value C�
h of coupling

strength beyond which the vegetation has a non-zero
probability of blow-up. It is also evident that for
increasing values of h, the value of C�

h reduces. This
clearly demonstrates that the Allee effect enhances the
propensity of explosive vegetation growth, a trend that is
consistent with the results from a single patch.
Note that a natural direction of future research would

be to modify this model in order to achieve suppression
of blow-ups. Proposals for modified models could
include different approaches to ensure that the per-
capita growth rate is finite at a low population density
(Bazykin 1998). In another direction, mechanisms for

the suppression of blow-ups could stem from varying
the topology of the coupling connections (Choudhary
et al. 2014). All these ideas provide interesting open
avenues for future work.
Next, we looked into the temporal evolution of the

population densities and the emergent attractors in
phase phase of the coupled patches. To illustrate the
dynamics of the coupled system, we present two rep-
resentative time series and the corresponding phase
space attractors in figure 2, for the Allee parameter h ¼
0 and h ¼ 0:003, with coupling strength C ¼ 0:1. It is
clearly evident that the Allee effect induces chaos in the
coupled system, and we obtain chaotic attractors for

Figure 2. Time series for the vegetation, prey and predator populations in a patch, and the corresponding phase space
attractor of the system given by equations 2, for coupling strength C ¼ 0:1, and the Allee parameter h equal to 0 (a–b) and
0.003 (c–d). The red dashed line corresponds to the mean l of the time series and the black dashed line indicates the lþ 5r
threshold.
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sufficiently large h. This phenomenon is demonstrated
more rigorously through the bifurcation diagram in
figure 3, which displays the emergence of chaos after a
critical value of h. This trend is similar to that observed
in a single patch. So, the influence of the Allee effect
observed in a single patch generalizes to two coupled
patches. Further, importantly, increasing the Allee
effect parameter h increases the size of the chaotic
attractor in the coupled system. The sparse points at the
high values of u, v and w are manifested as extreme
events in the time series.
Figure 4 shows the bifurcation sequence with respect

to coupling strength C, for h ¼ 0 and h ¼ 0:003. It has
already been observed that in a single patch when the

Allee effect is absent, all population densities evolve
periodically with the system attracted to a period-4
orbit. However, interestingly, under coupling, even in
the absence of the Allee effect, we observe that the
populations in the patches evolve aperiodically when
the coupling is sufficiently strong (see figure 4, top
row). One also observes a periodic window arising near
C ¼ 0:5 in the bifurcation diagram as a result of an
interior crisis.
The bifurcation diagrams for the case of the Allee

parameter h ¼ 0:003 are displayed in figure 4 (bottom
row). The first significant observation is that chaos
arises in the presence of the Allee effect, even in
uncoupled patches. Further, we observe that increasing

Figure 3. Bifurcation diagram of vegetation, prey and predator population densities (left to right), with respect to the Allee
parameter h for the coupling strength C ¼ 0:5:

Figure 4. Bifurcation diagram of vegetation, prey and predator populations (left to right) in a patch with respect to the
coupling strength C, for h ¼ 0 (top row), and h ¼ 0:003 (bottom row).
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the coupling strength typically increases the size of the
chaotic attractor, except in a small range
C 2 ½0:32; 0:411�, where the system settles into a small
period-2 attractor as a result of an interior crisis. This
period-2 attractor once again becomes unstable as the
coupling strength increases, giving rise to the sudden
emergence of a large chaotic attractor. So, comparing
the bifurcation scenarios for the two different cases, we
can conclude that weak coupling induces chaos in the
presence of the Allee effect, while for strong coupling,
chaos arises even in the absence of the Allee effect.
Further, we explored the synchronization between

the populations of vegetation, prey and predator in the
two patches. In order to quantify the degree of syn-
chronization we calculated the average synchronization
error, defined as the mean square difference of the
corresponding population densities of the two patches,

obtained by averaging over long time and many initial
states. It is clear that there is no synchronization, even
for strong coupling. The closest synchronization (i.e.
lowest synchronization error) is achieved in the
parameter window supporting a period-2 orbit for
h ¼ 0:003, but typically the patches do not synchro-
nize irrespective of the presence or absence of the Allee
effect (figure 5).

3.2 Extreme events in the evolution of population
densities

We first probed the global maximum of vegetation
(umax), prey (vmax) and predator (wmax) populations
under increasing coupling strengths for different values
of the Allee parameter h. We estimated umax, vmax and

Figure 5. Average synchronization error of the coupled patches, with respect to the coupling strength C for the Allee
parameter (a) h ¼ 0 and (b) h ¼ 0:003:

Figure 6. Global maximum of (a) vegetation population (umax), (b) prey population (vmax) and (c) predator population
ðwmaxÞ with respect to the coupling strength C, scaled by their values obtained for C ¼ 0, for the Allee parameter h ¼ 0 (blue)
and h ¼ 0:003 (red). When the value of this scaled quantity is larger than 1, the global maximum is larger than that for the
case of uncoupled patches.
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wmax by recording the maximum of the population of
the patches from a large sample of random initial
conditions. In figure 6 we plot umax, vmax and wmax with
respect to the coupling parameter C for the Allee
parameter h ¼ 0 and h ¼ 0:003. We observe that esti-
mated values of umax, vmax and wmax typically increase
with rising coupling strength C, and this increase is
more pronounced in the presence of the Allee effect.
This shows that the Allee effect, as well as coupling
strength, enhance the global maximum of the popula-
tions of all three species. This observation is consistent
with the fact that increasing the Allee parameter and
coupling strengths typically yields an increase in the
size of the attractor in phase space, as evident from the
bifurcation diagrams.
Next, we focused on the probability of obtaining

extreme events for vegetation, prey and predator pop-
ulations in the coupled patches in order to gauge the
influence of the Allee effect and coupling strength on
the advent of large deviations. With no loss of gener-
ality we considered the threshold of an extreme event
to be 5r. In order to estimate the probability of
obtaining extreme events, denoted as Pext, we evolved
the system from a large sample of random initial con-
ditions over a prolonged time period and noted the
occurrences when a population exceeded the lþ 5r
threshold. Figure 7 displays Pext for all three popula-
tion densities with respect to the coupling strength for
different h. In general, coupling enhances the occur-
rences of large deviations. Note, however, that when
these deviations occur in periodic windows, such as

near C� 0:5 for h ¼ 0 and around C� 0:3�0:4 for
h ¼ 0:003, they are not true extreme events as they are
entirely correlated in time and recur periodically.
When the Allee effect is absent (figure 7, left panel),

the vegetation population is always confined to low
values and does not show any extreme events. The prey
population is, likewise, limited to small values for

Figure 7. Probability of obtaining extreme events in unit time in a patch (Pext) with respect to coupling strength C, where
Pext is estimated by sampling a time interval of length T ¼ 4000 and averaging 1000 random initial conditions. We present
this for two different values of the Allee parameter: (a) h ¼ 0 and (b) h ¼ 0:003. Here we considered that an extreme event
occurs when a population exceeds the threshold value of lþ 5r. The case of vegetation is shown in blue, prey in red and
predator in black.

Figure 8. Probability of obtaining extreme events in unit
time in a patch (Pext) with respect to the Allee parameter h.
Here the coupling strength was fixed at C ¼ 0:25, and Pext

was estimated by sampling a time interval of length T ¼
4000 and averaging over 1000 random initial conditions.
The case of vegetation is shown in blue, prey in red and
predator in black.
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lower coupling strengths. However, it deviates con-
siderably from its mean beyond a critical threshold of
coupling strength, resulting in extreme events. The
predator populations have the highest propensity of
extreme events, with extreme events arising even in
uncoupled patches.
In the presence of the Allee effect (figure 7, right

panel), one finds that both the predator and prey pop-
ulations display large deviations from the mean, over
the full coupling range, including the uncoupled case of
C ¼ 0. The only exception to this trend is the percep-
tible dip in extreme events around C� 0:3�0:4 for
h ¼ 0:003, corresponding to a periodic window sup-
porting a small period-2 orbit (cf. figure 4, lower
panels). The most significant result in the coupled
patches in the presence of the Allee effect is the
emergence of a small finite probability of extreme
events in the vegetation population for sufficiently
strong coupling.
These trends are further borne out by figure 8, which

displays Pext over a range of Allee parameters for a
fixed value of coupling strength. It is again apparent
that predator populations exhibit the highest propensity
for large deviations from the mean, and this is not
affected much by the magnitude of the Allee effect.
The prey population, on the other hand, shows a steady
increase in extreme events with increasing Allee
parameter. However, Pext for the prey is always lower
than that for predators. The vegetation shows no
extreme events at this value of coupling strength, even
when the Allee effect is present.
An interesting and open direction of investigation is

to explore the commonalities and differences of the
phenomena observed here by comparing them with
those arising in diffusively coupled patches. The
interplay of the strength of diffusive coupling and the
Allee effect is expected to induce new phenomena. Our
preliminary results from diffusively coupled patches
show that in the ranges of Allee parameters and cou-
pling strengths where the populations are non-extinct
and bounded, extreme events occur. However, the
quantification of the frequency of these events, and the

robustness of this observation under varying model
parameters, are still open and important problems.

3.3 Effect of noise on extreme events

Noise is prevalent in natural ecosystems as a result of
external factors such as inherent diversity, fluctuations
in migration, and environmental changes. Here we
examined how stochasticity influences the three-
species coupled system (equation 2). Specifically, we
explored the dynamics of the system under additive
random noise nðtÞ, given by the following dynamical
equations:

_u1 ¼ f ðu1; v1;w1Þ þ n1ðtÞ;
_v1 ¼ gðu1; v1;w1Þ � C v1w2 þ n2ðtÞ;
_w1 ¼ hðu1; v1;w1Þ þ C v2w1 þ n3ðtÞ;
_u2 ¼ f ðu2; v2;w2Þ þ n4ðtÞ;
_v2 ¼ gðu2; v2;w2Þ � C v2w1 þ n5ðtÞ;
_w2 ¼ hðu2; v2;w2Þ þ C v1w2 þ n6ðtÞ

ð3Þ

The functional forms f(u, v, w), g(u, v, w) and
h(u, v, w) are given as before in equation 1, and
niðtÞ; i ¼ 1; 2; � � � ; 6, represents zero mean delta-
correlated Gaussian white noises satisfying

\niðtÞ; njðt
0 Þ[ ¼ rdðt � t

0 Þdij for
i; j ¼ 1; 2; � � � ; 6, where r is the noise strength.
Note that in this work we considered all the state
variables to have similar magnitudes of noise.
Naturally different noise strengths may be relevant
for different variables, and this is an avenue open for
interesting exploration.
In our work, in order to explore the dynamics of the

coupled system in the presence of additive noise, we
investigated the dynamics of the stochastic differential
system (equation 3) numerically by using the explicit
Euler–Maruyama scheme. We have also checked the
convergence and stability of the numerical solutions
with decreasing step size. In particular, we explored
whether the system becomes more irregular, or if chaos
is suppressed to noisy cycles or noisy fixed points, in
the presence of stochasticity. In figure 9 we present the
time series and phase portrait of the system (equa-
tion 3) for different noise strengths. It is observed that
when noise strength is either zero or of very low
magnitude (r ¼ 10�3), all three populations oscillate
aperiodically and the system evolves to chaotic
attractors (figure 9a–b). Also note that populations of
all species exhibit extreme events for low magnitude of
noise strength as their states occasionally cross the lþ

bFigure 9. Time series for the vegetation, prey and predator
populations (left panel) and the corresponding phase attrac-
tor of the system (right panel), for coupling strength
C ¼ 0:5, Allee parameter h ¼ 0:05 and noise strength (a–
b) r ¼ 0:001, (c–d) r ¼ 0:005 and (e–f) r ¼ 0:01. Note that
for this value of C and h, the system has unbounded
vegetation growth in the absence of noise. So, noise has
suppressed the explosive growth in the coupled system.
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5r threshold. On increasing noise strengths ðr� 5�
10�3Þ; these extreme events completely disappear from
the all populations, and the populations of all three
species settle into a noisy periodic orbit (figure 9c–d).
On further increasing the noise strength (r� 10�2), the
populations of all three species settle down to a noisy
quasi-steady state (figure 9e–f), and the system con-
tinues to exhibit no extreme deviations from the mean.
So, then, very interestingly, the extreme events in the
populations of this coupled three-species system are
suppressed under sufficiently strong noise. Therefore,
we arrived at the following significant conclusion:
additive noise not only suppresses the extreme events
in the vegetation, prey and predator populations, but it
also transforms the dynamics of the system from chaos
to a noisy quasi-steady state. Also, additive noise tames
the explosive growth in the vegetation population that
we had observed earlier.

4. Discussion

In summary, we explored the dynamics of two coupled
patches of a three-species trophic system by incorpo-
rating the Allee effect in the prey population. Our focus
was on the emergence of extreme events in the system.
In particular, we addressed the significant question of
whether or not the Allee effect and coupling suppress
or enhance extreme events. Our first key observation
was as follows: we found that the system experiences a
explosive blow-up in the vegetation population after a
critical value of coupling strength in the presence of the
Allee effect. Further, the interplay of the Allee effect
and coupling has a pronounced influence on the nature
of the dynamics. In order to explore this aspect in
detail, we looked into the bifurcation scenarios of the
system with respect to the Allee parameter h and
coupling strength C. We found that the populations of
all three species of the coupled system (equation 2)
oscillate in a regular manner and settle into a period-4
orbit when the Allee parameter h is low, whereas the
populations fluctuate aperiodically and chaotic attrac-
tors emerge in the coupled system with increase in the
Allee parameter h. In addition, the size of the attractor
gradually increases with the increasing Allee parameter
h, which is compatible with trends from a single patch.
It was also clearly evident that coupling induces
chaotic behaviour in the system. Further, interspersed
in the chaotic regimes one finds periodic windows that
arise from an interior crisis in certain ranges of cou-
pling strengths. The notable difference stemming from
the Allee effect is that there is chaos for low coupling

strengths, including the case of C ¼ 0 (i.e. the uncou-
pled case) for finite h, while weakly coupled patches
with no Allee effect exhibit regular dynamics.
Most importantly, we observed that for large enough

coupling strengths and Allee parameters, all population
densities exhibit a non-zero probability of yielding
extreme events. In general, the predators have the lar-
gest propensity for extreme events in coupled patches,
and the vegetation population densities exhibit the least
number of extreme occurrences. Further, the emergence
of extreme events in the predator population is not
affected much by either the coupling strength or the
Allee effect. For prey populations, in the absence of the
Allee effect, there are no extreme events for low cou-
pling strengths, but there is a sharp increase in extreme
events after a critical value of the coupling strength.
For the vegetation population, a small finite probability
of extreme events emerges for strong enough coupling,
only in the presence of the Allee effect.
Lastly, we considered the influence of additive noise

on extreme events. We found that noise tames the
unbounded vegetation growth induced by the coupling
and the Allee effect. More interestingly, we demon-
strated that stochasticity drastically diminishes the
probability of extreme events in all three populations in
the coupled patches. In fact, for sufficiently high noise,
we did not observe any more extreme events in the
system. This indicates that noise can mitigate extreme
events, and potentially has an important impact on the
observability of extreme events in naturally occurring
systems.
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