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Modelling in ecology and evolution, especially in India, is often done by researchers trained in physics or
engineering without much experience of studying living systems. This is partly driven by a fallacious con-
viction that modelling is largely about mathematical skills and that, consequently, modellers can equally
effectively apply their skills to problems in fields as diverse as physics/engineering and ecology/evolution. I
discuss why this fallacy arises, and the many ways in which modelling in ecology or evolution is actually a
very different endeavour from that in much of physics, even though the form of the equations deployed across
disciplines is typically quite similar. Since modelling is not primarily about the mathematics but about the
system being studied, I believe that a reasonable degree of comfort with models and modelling is important for
those researchers in ecology and evolution who primarily undertake empirical studies, whether in the labo-
ratory or the field. Equally, I suggest that researchers doing modelling in ecology and evolution, who were
trained in the mathematical or physical sciences, need to understand the systems they attempt to model and also
appreciate how modelling ecological and evolutionary processes differs from much of the modelling done in
classical physics and allied fields. I also discuss what models are, whether modelling is subjective or objective,
and what modelling entails if it is to meaningfully add to scientific understanding. This article is aimed
primarily at young researchers interested in ecological and evolutionary questions, whether coming from a
background in the biological or physical/mathematical sciences.
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1. Introduction

Modelling is too important to be left to the
theoreticians

– adapted from Georges Clemenceau

‘‘War’’, as Georges Clemenceau, French prime minister
during the later part of World War I, famously observed,
‘‘is too important to be left to the generals.’’ As an
ecologist and evolutionary biologist, I have often simi-
larly felt that modelling is too important to be left to the

theoreticians. Much of the modelling in ecology and
evolution, especially in India, is often done by people
with training in mathematics, physics, or engineering,
and not too much understanding or appreciation of the
subtle complexities of systems of interacting organisms,
or, indeed, of the fact that modelling in ecology and
evolution is, in some ways, actually quite different from
modelling in physics. I should hasten to add that there
are many exceptions: many Indian physicists who model
ecological and evolutionary systems have actually taken
the effort to come to grips with the biology of those
systems but they are still a minority.
The attitude of many of our Indian ecologists and

evolutionary biologists is also a bit strange in that theyThis article is part of the Topical Collection: Emergent
dynamics of biological networks.
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often exhibit a tendency to avoid, if not actually abhor,
any serious engagement with theory in their fields. For
example, it has been argued that biologists should be
agnostic with regard to theoretical controversies
(Gadagkar 2015). Yet, it is often the case that long-
standing theoretical controversies resist resolution
precisely because the problem is not in the mathemat-
ical analysis of the models but in the mapping from the
biology to the mathematics. In such cases, the resolu-
tion typically comes about by a novel deployment of
aspects of our empirical understanding of the system,
rather than by mathematical refinements not rooted in
such an empirical understanding. Such critical insights
leading to a resolution are, therefore, far more likely to
come from biologists bringing their empirical experi-
ence to bear on the theory, rather than from theoreti-
cians operating largely in the mathematical and not the
empirical realm. A good example of this can be seen in
the resolution, in the 1990s (Joshi and Moody
1995, 1998), of a then almost twenty-five-year-old
debate, involving leading theoretical evolutionary
biologists of that time, about whether the so-called two-
fold cost of sex is due to the cost of male function (e.g.,
Maynard Smith 1968) or of genome dilution (e.g.,
Williams 1975). While both J Maynard Smith and GC
Williams were biologists, in this case they were relying
on simplistic models and ignoring some relevant bio-
logical details. Eventually, the issue got resolved by
noting that both classes of models were treating male
gamete production by individuals reproducing asexu-
ally in their female capacity as being fixed either at
zero, or at par with the male gamete production of
sexually reproducing individuals, even though most
undergraduate botany courses indicate that male
gamete production and fertility of such individuals
varies widely between these two extremes. Incorpo-
rating these two traits as parameters in a slightly more
realistic model, rather than fixing their value at 0 or 1,
revealed inter alia that both investing in male function
and genome dilution contribute to the cost of sex,
except at the two extremes, where one or the other
becomes the sole component (Joshi and Moody
1995, 1998). The point I wish to stress here is that
debates about theory in ecology and evolution that
hinge upon purely mathematical considerations usually
get resolved fairly quickly by theoreticians themselves.
The long-standing debates about theory resist resolu-
tion by theoreticians not bringing all relevant empirical
knowledge to bear precisely because their resolution
lies outside the domain of the theoretical, residing in
the details of how biological reality has been mapped
onto the mathematics in the modelling process. Such

problems with the mapping are more likely to be
picked up by researchers applying their understanding
of the system being modelled, who also have some
familiarity with the process of modelling. It is in this
context that I feel that it is our job as biologists to
understand, engage with, and contribute to modelling
in our fields.
Another point worth making is that many research-

ers, both in physics and biology, seem to think that
mathematical modelling is essentially similar across
these widely different scientific disciplines. Certainly,
mathematical modelling of the kind developed in
physics has also been used in many areas of biology,
especially ecology and evolution, for over a century
(Otto and Day 2007). Yet, while it is true that the
structure of the functions or equations used in mathe-
matized models and, consequently, their analysis, is
often very similar across biology and physics, the
manner in which the models are deployed and tested,
and what our expectations from the models are, actu-
ally differs quite substantially across these disciplines.
My focus here is on modelling in biology, but the
general point, that good and effective modelling
requires a thorough empirical understanding of how the
system being modelled actually behaves in different
contexts, is likely to be true for a physical, biological,
or any other kind of system. I should make it clear at
this point that when I refer to ‘modelling in biology’, I
mean ‘modelling in ecology and evolution’. Not being
very familiar with modelling in sub-organismal biol-
ogy, I am not certain of the degree to which my
arguments will be applicable to that domain. For a
perceptive, albeit slightly dated, review of modelling in
sub-organismal biology, the reader is referred to
Gunawardena (2014).
I should also make my background, biases, and

expectations explicit: I was trained as a geneticist, but
for the last thirty-four years I have been working on
questions in population ecology and evolutionary
biology, especially small-population and metapopula-
tion dynamics, the evolution of population dynamic
behaviours, life-history evolution, and the evolution of
adaptations to crowding. I do mostly multi-generation
experiments with fruit-fly populations in the laboratory,
but also do theoretical research, both analytical and
simulation-based. I was not formally trained in theo-
retical research, but enjoyed studying the theoretical
analyses of ecological and evolutionary dynamics as a
student. When I was a graduate student working on the
coevolution of competing Drosophila species, I began
to do some theoretical work on my own, on the side,
and found it greatly satisfying. I have continued to also
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do theoretical work ever since, though I am primarily
an experimental evolutionary biologist. Moreover, the
experience of teaching essentially theoretical courses in
hypothesis testing, population genetics, and population
dynamics to students from a biology background for
twenty-six years has also led me to many insights that
have been helpful in getting students to appreciate what
modelling is and is not. This piece is aimed primarily at
young researchers, with a background either in
physics/mathematics/engineering or biology, who are
interested in theory in ecology and evolution and wish
to contribute meaningfully to it. If it perhaps also
encourages some young experimental ecologists and
evolutionists to step up and ‘own’ the theory in the
field, I will be more than recompensed. Secondarily, I
hope the piece might also be of some interest to
physicists and other non-biologists who undertake the
modelling of problems in ecology and evolution.

2. Modelling is subjective

[Is it your form, or a reflection of me?

Tell me, what is the essential nature of this picture

Nabraas Akbarabadi]

A question that implicitly or explicitly underlies many
discussions on the philosophy of modelling is whether
a model is a human construct, reflecting our thinking,
or is a reasonably accurate reflection of reality. In this
section, I will argue that modelling is essentially a
subjective activity, even though the analysis of the
behaviour of a model under differing conditions can be
fairly objective. Unfortunately, many of us have a
tendency to conflate the modelling with the analysis
and, consequently, labour under the misapprehension
that modelling is a very objective endeavour.
Modelling has been described by many people in

varied ways. Essentially, modelling, in its broadest
sense, is an integral part of both mundane decision-
making in our daily life and of constructing knowledge
in the domain of science. One of the best delineations
of what modelling is, and its role in how we construct
scientific understanding, was provided by Rosen
(1991), and I am largely reiterating his take on the
issue. A model, in this view, is essentially a mapping
we create between a subset of what we observe in the
real world and its representation in our minds. In

particular, we attempt to mirror, in patterns of entail-
ment among the entities that make up our model, what
we believe to be the cause–effect relationships among
the relevant constituents of interest that are involved in
the phenomenon under observation. If we conceive of
the creation of scientific understanding about some
phenomenon as a process in which we go back and
forth between a reality space and a concept space, we
can appreciate the role of modelling in the scientific
process (figure 1). For example, in the reality space on
the left side of figure 1, we observe the entities a, b, c,
d, e, f, g, h, and i, at least some of which seem to be
related to one another by cause–effect relationships. Of
these nine entities, following Pablo Picasso’s dictum
‘‘Art is the elimination of the unnecessary’’, we choose
to ignore b, e, and h, based on our question of interest

Figure 1. A schematic depiction of the process by which
scientific understanding is created. On the left of the figure,
enclosed in the dark red oval, is a subset of some
phenomenon in the real world (reality space) that we wish
to understand. Understanding, in this context, typically
means attaining the ability to make reasonably reliable
predictions about the phenomenon. In this phenomenon,
entities a, b, c, d, e, f, g, h, and i, which seem to be related to
at least some of one another by cause–effect relationships,
appear to play a role. Of these nine entities, we choose to
ignore b, e, and h in our modelling, and map, by induction,
the remaining cause–effect relationships onto a pattern of
entailment among entities a, v, d, u, c, and i in concept
space (on the right of the figure). This is the act of modelling
(sensu Rosen 1991). From the model, which may be
mathematized, we deductively derive predictions that then
become hypotheses to be subjected to empirical testing. If
our predictions are reasonably close to observations, prefer-
ably repeatedly and under various conditions, we conclude
that the model is useful.
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and our understanding of what may or may not be
relevant to it. Consequently, we focus on the remaining
six entities and the cause–effect relationships we can
discern among them (represented by arrows in the
reality space). We note that the choice of question and
the elimination of what is thought unnecessary are both
subjective actions. Another researcher, trying to
understand the same phenomenon, may eliminate a
slightly different subset of entities from consideration,
leading to a subjectively different model of what is
essentially the same phenomenon.
The next step is the modelling per se, which, in the

case of mechanistic models (e.g. many population
genetics models), involves the creation, in our minds,
or concept space, of a set of entities (a, v, d, u, c, and i
on the right side of figure 1) with some relationships of
entailment among them, which we hope accurately
embody the critical features of the cause-and-effect
relationships among the entities of our interest in the
reality space. In the case of phenomenological models
(e.g. many simple models of population growth), we
often set up higher-order entities (e.g. per capita pop-
ulation growth rates, carrying capacities) in the concept
space that do not necessarily correspond to directly
measurable entities in the reality space. In such cases,
we try to find patterns of entailment relationships
among these higher-order entities that yield outcomes
that are concordant with those we observe in the real
system. For more on mechanistic versus phenomeno-
logical models, see section 5.
This step of modelling is essentially an exercise in

inductive reasoning, and is also fairly subjective in that
different researchers may opt for different mappings
from the reality space to the concept space as repre-
sentations of the same phenomenon. Sometimes, dif-
ferent mappings can be more or less useful, depending
on the context. This hopeful mapping is the model and,
in its essence, is always verbal. In many cases, we can
choose to formally and explicitly depict the nature of
the entailment relationships by mathematical state-
ments. Consequently, the same model can have alter-
nate mathematizations, and just like the models
themselves, alternate mathematizations of a model can
be relatively more or less useful in differing contexts. I
return to this issue in more detail in section 3.
The next step is to deduce, using the model/math-

ematization, the consequences of altering some aspect
of the phenomenon or its context. This is the activity of
developing predictions from the model, and these
predictions take the form of ‘if X, then Y’ statements,
where both X and Y can be anything from point values
to qualitatively described states. The predictions, in

turn, must then be tested against observations or
experiments. The empirical testing of predictions from
a model requires engaging with the central question of
statistical hypothesis testing: how close is close
enough? Depending on the nature of the prediction, and
of its testing, this often becomes an issue of assessing
how well the model fits the observed data. In experi-
ments in many areas of physics, it is not uncommon to
get extremely good fits (R2[0.9), whereas in ecology
and evolution even an R2 value of 0.6–0.7 is considered
a pretty decent fit. Indeed, in most ecological systems,
not just the magnitude of the errors but also the nature
of the error distribution is quite different from that in
physical systems. The error distribution can also
interact in seemingly counter-intuitive ways with data
transformations and back-transformations. For exam-
ple, mathematically, if y is an exponential function of x,
then taking a log-transform of y renders it linear in
x. One can then use linear regression to fit the data,
estimate the intercept and slope, and then back-trans-
form to get the parameters of the original exponential
function. Prior to the advent of high-powered com-
puters and algorithms for nonlinear curve fitting, this
was the standard method for estimating the parameters
of exponential models. However, as shown by Mueller
et al. (1995), in the context of comparing patterns of
ageing across populations using the Gompertz (1825)
equation, log-transformation can sometimes yield
extremely biased results. The Gompertz equation,
l(t) = Aeat, links age-specific mortality rate (l(t)) to
age-independent mortality (A) and a rate of ageing (a).
When parameters of this equation are estimated by
linear regression, following log-transformation, the
results can be very biased, because the error distribu-
tions can differ substantially across populations. For
example, if populations with different evolutionary
histories vary in a, the constant rate of change of
transformed y, assumed in linear fitting, can vary
greatly within and among populations. Similarly, for
populations with varying a, the relative magnitude of
errors at different ages will be very different, and these
will get differentially compressed during transforma-
tion of y values. These problems introduce significant
bias in the parameters estimated by log-transformation
followed by linear fitting, consequently rendering the
linear-fitting approach useless for among-population
comparisons (Mueller et al. 1995).
Model fitting is also beset by the complications that

(i) the best fitting model need not necessarily be the
‘true’ model, and (ii) often models that are clearly
‘wrong’, in that their assumptions go against what we
know of nature, can nevertheless fit data pretty well. A
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good example of the latter is Ptolemaic astronomy,
which despite assuming circular planetary orbits
around the earth, nevertheless managed to successfully
predict celestial phenomena by the creative addition of
epicycles. This problem of ‘over-parameterization’ is
discussed in more detail in section 4.
Overall, then, we can see that the model is basically a

mapping from a reality space to a concept space, and it
is tested by deducing predictions from it and comparing
them to observations. If the predictions match obser-
vations reasonably well, and what is reasonable can be
very different between ecology/evolutionary biology
and physics, the model is deemed to work well. Sub-
jectivity enters into models at many stages of the pro-
cess of model making and testing. The choice of
phenomenon to study, how to model it, which math-
ematization of the model to use, which predictions to
test, and how to test them, are all decisions with large
subjective components. It is important, therefore, to
bear in mind that the knowledge gained from a mod-
elling enterprise is not strictly objective in any mean-
ingful way.

3. A model and its mathematization are different

[Each instant, my artful Beloved appears in varied idol
forms; steals my heart, and departs

Every moment, the Beloved appears before me in
a different garb; young one time, another old

Maulana Jalaluddin Rumi]

I mentioned in the previous section that it is important
to differentiate between a model and its various
mathematizations. For example, standard textbooks
(e.g. Hartl and Clark 1989) present simple one-locus
population genetics models with allele or genotype
frequencies at that locus as the state variables, and
mathematically deduce their change over generations,
under the effect of factors like mutation, migration,
inheritance or selection, through the notion of a gamete
pool from which pairs of gametes are picked at random
to form zygotes. This is, of course, not what actually
happens during reproduction in most species of animals
and plants. One can, however, also mathematize this
phenomenon in terms of a mating table, explicitly
tracking each kind of mating, its frequency, and the
offspring distribution resulting from it. It can then be
seen that the assumption of random mating is formally

equivalent to the assumption of random union of
gametes in the gamete pool (Hartl and Clark 1989).
Change in the composition of a population can also be
mathematized in terms of phenotypic frequencies, with
their change being modelled in terms of the transmis-
sion fidelity of each phenotype under a given mating
system (Vidya et al. 2022). Which mathematization is
most useful varies according to context. Under random-
mating contexts, the gamete pool mathematization
works well and gives fairly accurate predictions of how
the genetic composition of the population at that locus
changes over a few generations, with the added benefit
of permitting the use of one or a few allele frequencies,
rather than a larger number of genotypic frequencies, as
state variables. If mating is non-random, the mating
table mathematization can accommodate the more
complex scenario and allow prediction of genotypic
frequencies in the next-generation zygotes. If there is a
non-genic inheritance mechanism at play, then a more
general phenotype-based mathematization invoking
transmission fidelities can be used to predict the phe-
notypic frequencies in the next generation, provided we
have knowledge of the transmission fidelities obtaining
under the given inheritance system.
An example of different mathematizations yielding

very different kinds of insights can be seen when
comparing population genetic models of selection to
the Price (1970) equation (Joshi 2020), or even com-
paring alternate mathematizations of the Price equation
to one another (Rice 2004). The process of selection
acting on a set of genotypes at a locus can be mathe-
matized via examining allele frequency changes over
time, as in basic population genetics models (e.g. Hartl
and Clark 1989), or via the covariance approach pio-
neered by Price (1970). The two kinds of mathemati-
zation have different purposes and strengths. The allele
frequency mathematization of selection takes the well-
established classical physics approach of trying to
derive equations of state variable (allele frequency)
change over time, under some simplifying assump-
tions. The key here is to relate recursively, under the
simplifying assumptions of an ideal large population,
the allele frequency in one generation to what it was in
the previous one. The Price equation, on the other
hand, takes the very different approach of asking what
mathematical structure arises from a consideration of
the process of selection qua selection, without any
simplifying assumptions (Rice 2004). The allele fre-
quency mathematization is useful for short-term pre-
dictions of the change in the genetic composition of a
population at one or a few loci, in well-controlled
systems. The Price equation, in contrast, offers an
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insight into the fundamental attributes and conse-
quences of the selective process, independent of the
system of inheritance or the trait that is the focus of
investigation (Rice 2004; Joshi 2020).

4. Models are couplets, not photographs

[One who can measure the distance between self and
non-self with a couplet

Is there any such accomplished poet in this soirée
of life?

Nabraas Akbarabadi]

In a Monty Python sketch (https://www.youtube.com/
watch?v=l9Aj7W3g1qo), the Pope, who has commis-
sioned a painting of the Last Supper from Michelan-
gelo, keeps insisting that he wants a faithful depiction
of the gathering, much to the chagrin of the painter,
who expects and argues for artistic license. Finally, a
frustrated Michelangelo exclaims, in a strangely befit-
ting Australian accent, ‘‘You want a bloody photogra-
pher, that’s what you want!’’ There is often a tendency
to conflate models in biology with photographs, espe-
cially in the case of relatively mechanistic models.
What I am terming photographs and models are
sometimes contrasted as analogical versus conceptual
models, respectively (Mazarati 2007). The famous
paper of Levins (1966) on the strategy of modelling in
population biology, which first articulated in detail the
notion that it is impossible to combine realism, gen-
erality and precision in a model of an ecological pro-
cess (see also section 5), arose in part as a reaction to
the elaborately detailed, photograph-like models being
promoted by systems ecologists (discussed in detail by
Odenbaugh 2006).
Apart from the problem that a very detailed and

realistic model typically sacrifices generality, there is
also a deeper philosophical issue here: the difference
between description and explanation. If one seeks a
description, detailed realism is, no doubt, desirable.
However, an explanation implies that a large subset of
the observed aspects of a natural phenomenon is being
shown to be predictable from our knowledge of a small
set of effectors. In statistical terms, explanation requires
that a substantial fraction of variation in the dependent
variable(s) be accounted for by variation in one or a

few independent variables, with a small number of
parameters. If we include a sufficiently large number of
parameters in our model, we can explain ever-in-
creasing proportions of the variation in the dependent
variable but with severely diminishing returns in terms
of our understanding of the phenomenon. This is the
spirit in which John von Neumann was quoted by
Enrico Fermi as saying, ‘‘With four parameters I can fit
an elephant, and with five I can make him wiggle his
trunk.’’ Eventually, in the limit that the number of
parameters equals the number of data points, we can
explain the entire variation in the system under study
with our model, thereby explaining everything and,
therefore, paradoxically, nothing. Model fitting, thus,
requires a judicious balance between the opposing
requirements of goodness of fit and a reasonably small
number of parameters.
It is also in this context that I believe models are more

like couplets in Urdu or Persian poetry, or Japanese
haiku, than photographs. Models do not, and indeed
should not, aim to describe. They are succinct
metaphorical representations of some aspect of reality,
with the metaphors typically being mathematical and
distilled from our experience, i.e., from our intuition
about the system being modelled. Except for the bit
about the metaphors being mathematical, that is also a
fairly accurate description of a couplet or a haiku.
Moreover, good models – like couplets – are usually
beautiful and evocative, delineating fruitful avenues of
thought rather than providing definitive answers. As
Bertrand Russell said,‘‘A good notation has a subtlety
and suggestiveness which at times make it almost seem
like a live teacher’’; the same is true for models, more
generally.
Just as couplets convey fundamental ideas clothed in

metaphors – think of the burning candle and the tiny
moth in the Persian-Urdu poetic tradition – models,
too, sing to us (in mathematical lyrics) of some insight
into the natural world. The Breeders’ equation
(R=h2S) in quantitative genetics, for example, does not
just embody a relationship between selection response,
heritability and the selection differential in the context
of plant or animal breeding. It also conveys to us a
fundamental insight that evolutionary change in the
mean trait value (R) arises from an interaction between
the ecology of the system (encapsulated by S) on the
one hand, and the mechanism of inheritance of the trait
and the mating system (both distilled into h2) on the
other. The underlying message of this little equation is,
thus, that evolutionary change is generated by the
interaction of ecology with heredity.
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5. Realism, generality and precision

[Nobody ever gets a perfect world

Either the earth or the sky is missing

Nida Fazli]

In a very influential paper on strategies of modelling in
population biology, Levins (1966) posited the existence
of trade-offs among the model attributes of generality,
realism and precision, writing, ‘‘It is of course desirable
to work with manageable models which maximize
generality, realism, and precision toward the overlap-
ping but not identical goals of understanding, predict-
ing, and modifying nature. But this cannot be done.’’
He then went on to classify modelling approaches in
ecology and evolution into three types, each sacrificing
one of generality, realism and precision for the sake of
the other two (Levins 1966). He also introduced a
somewhat idiosyncratic notion of a ‘robust’ theorem
(with some similarity to the notion of structural sta-
bility of a model), a similar result obtained from a
cluster of different models of the same problem, shar-
ing a major biological assumption but differing in other
simplifying assumptions made, an approach he sum-
med up eloquently, but somewhat vaguely, with the
assertion, ‘‘Hence our truth is the intersection of inde-
pendent lies’’ (Levins 1966). The contrast was with a
‘fragile’ or ‘non-robust’ theorem, wherein the result
from a model depends crucially on the specific sim-
plifying assumptions made and, therefore, lacks
generality.
In Levins’ (1966) three-way classification of mod-

elling strategies, models sacrificing generality for
realism and precision are akin to the ‘photographs’
discussed in section 4, whereas those sacrificing real-
ism for generality and precision are characteristic of the
physicists’ approach, incorporating many simplifying
assumptions and leading to insights about how differ-
ent factors interact to affect outcomes of ecological
processes. Against these two kinds of model, Levins
(1966) juxtaposed the third approach, favoured by him
and some others (e.g. MacArthur 1962; MacArthur and
Wilson 1967). In this approach, precision is sacrificed
for generality and realism, with the models often not
specifying precise mathematical functional forms for
the relationships among component entities, thereby
yielding ‘rules of thumb’ that Levins (1966) termed
‘qualitative predictions’, as opposed to the quantitative

predictions arising from models following the previous
two strategies. Incidentally, a very nuanced perspective
on the relative merits of quantitative versus qualitative
predictions from ecological models permeates GF
Gause’s (1934) insightful but now, unfortunately, rarely
read book. I discuss one practical advantage of this
aspect of modelling in ecology in section 7.
While both major claims made by Levins (1966) –

the generality–realism–precision trade-offs, and robust
theorems – have been severely critiqued from a phi-
losophy of science perspective (Orzack and Sober
1993; Orzack 2012), they do continue to have con-
siderable resonance among ecologists. In particular, I
believe that the alternative strategies of sacrificing
precision versus realism (in the sense of Levins 1966)
reflect an important difference between classical
physicists and ecologists/evolutionary biologists with
regard to the perspectives and priorities of modelling.
In my opinion, this difference, which permeates their
characteristic disciplinary mindsets, is rooted in the far
greater inherent complexity, variability and environ-
mental sensitivity of living systems as compared to
physical ones, as discussed in section 6.
Another pertinent issue that Levins (1966) discussed

is that of ‘sufficient parameters’, which is especially
relevant in the context of mechanistic versus phe-
nomenological models, both of which are widely used
in classical physics and statistical physics, respectively.
In ecology and evolution, however, with the limited
exception of population genetics, mechanistic models
are rare. Mechanistic models, though also abstract
simplifications, attempt to map causal relationships
among natural entities involved in the phenomenon of
interest onto patterns of entailment among component
entities of the model in the manner depicted in figure 1.
Parameters in such models are often attributes or
properties of system components that can be measured.
This approach can also be termed as ‘modelling by
cause’. In phenomenological models, which use a
black-box type of approach, the mapping produced in
concept space only attempts to mimic outcomes of
inputs, and not the causal relationships among the
natural entities involved in mediating between inputs
and outputs. Consequently, one can term this approach
as ‘modelling by consequence’. In these kinds of
models, parameters are often complex emergent prop-
erties at a relatively high hierarchical level, with little
one-to-one correspondence to directly measurable
attributes of the components of the system at lower
levels of the structural hierarchy. These sorts of
parameters are what Levins (1966) referred to as ‘suf-
ficient parameters’, with some widely used examples in
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ecology and evolution being heritability, fitness, per
capita population growth rate, and per capita rate of
immigration/emigration. Of course, purely mechanistic
or phenomenological models correspond to two ends of
a spectrum, rather than embodying a strict dichotomy.
An important attribute of such ‘sufficient parameters’

emphasized by Levins (1966) is that they contribute to
imprecision in the models in which they appear, as a
direct consequence of their being the result of a many-
to-one mapping from simpler parameters at lower
levels of the structural hierarchy. In this many-to-one
mapping, information is lost. Therefore, such models
may need to be supplemented by slightly more mech-
anistic models at lower hierarchical levels. As Levins
(1966) put it, ‘‘Thus a satisfactory theory is usually a
cluster of models. These models are related to each
other in several ways: as coordinate alternative models
for the same set of phenomena, they jointly produce
robust theorems; as complementary models they can
cope with different aspects of the same problem and
give complementary as well as overlapping results; as
hierarchically arranged ‘nested’ models, each provides
an interpretation of the sufficient parameters of the next
higher level where they are taken as given.’’ Another
reason for which phenomenological models contribute
to overall imprecision in the modelling process is that
their ‘sufficient parameters’ often do not correspond to
well-defined and directly measurable biological traits
and, consequently, can only be estimated by model
fitting, a process that has its own attendant uncertain-
ties. This inherent limitation when dealing with ‘com-
plex phenotypes’ permeates most modelling in the
broad areas of population and community ecology, and
evolutionary biology.

6. Context-specificity of model performance

[Rush like a torrent through the mountains and the
deserts

Should you encounter a garden, become a softly
singing stream

Allama Iqbal]

At one level, given that models are basically tools for
trying to address questions about natural phenomena, it
is a trivial truism that model performance will be con-
text-dependent. However, there is a large difference in

the way this context-specificity of model performance
plays out in models of physical versus ecological/evo-
lutionary systems. The inherently greater complexity,
variability, and environmental sensitivity of living sys-
tems, as compared to most physical ones, ensures that
the mapping between reality and concept space in
practically all ecological or evolutionary models (except
population genetics) is much fuzzier, and far more of a
simplifying abstraction, than it is in many physical
models. One practical implication of this difference
between models in ecology/evolution and physics is that
models in ecology often have very changed behaviour,
or altered ability to explain observed data, under slightly
altered environmental conditions. This particular com-
plication is, to my knowledge, relatively rare in models
of physical systems.
A very good example of this kind of context-speci-

ficity of model behaviour in ecology was explored in a
paper published in this very journal by Somdatta Sinha
and one of her colleagues (Sinha and Parthasarathy
1994), and subsequently explained further by Ruxton
(1995). Sinha and Parthasarathy (1994) showed that
two commonly used simple discrete-time models of
ecological population growth – the Ricker and the
logistic – that show very similar dynamic behaviour,
and a similar period-doubling route leading to chaos,
nevertheless behave in extremely different ways if one
incorporates a constant number of immigrants or emi-
grants per generation. Ruxton (1995), in an extension
to their work, traced this difference in response to
migration to the different shapes of the return maps of
the two models at high population size, using an iso-
cline analysis. On the more practical side, it has also
been shown that, despite the close similarity in their
dynamic behaviour in the absence of immigration or
emigration, the logistic model performs quite poorly
compared to the Ricker model when fitted to popula-
tion size data from closed single-vial fruit-fly popula-
tions (Sheeba and Joshi 1998).
The Ricker (1954)model (Nt?1 =Nt exp(r (1-Nt/K)),

though developed in a fisheries context, has been shown
to be a good descriptor of insect population dynamics,
especially in species with predominantly scramble
competition (Brännström and Sumpter 2005). The
model assumes that realised per capita population
growth rate falls off exponentially with increasing pop-
ulation size, and condenses all biological details into two
parameters, r and K, where er is the maximal per capita
growth rate and K is the equilibrium population size. It
has also been shown to capture at least the gross features
of the dynamics of many single-species fruit-fly cultures
fairlywell (Sheeba and Joshi 1998;Dey 2007, 2012;Dey
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and Joshi 2018). Yet, once examined in detail, the situ-
ation is found to be quite nuanced, and the performance
of the Ricker model exhibits considerable context-
specificity, even though its performance when fitted to
fruit-fly population size data is robust to sex-ratio vari-
ation (Mueller and Joshi 2000). In studies wherein fruit-
fly populations were maintained on different nutritional
regimes factorially combining low and high food levels
for larvae and adults, respectively, the Ricker model
provided good fits to data only from populations main-
tained on an LH food regime (low food for larvae, high
food for adults), whereas it did not fit data from LL, HL
or HH food regimes that well (Sheeba and Joshi 1998;
Dey 2007). The cause of this discrepancy appears to be
the fact that the realized per capita growth rate as a
function of population size varies in shape across the
food regimes, with the LH food regime providing the
closest approximation to an exponentially declining
function as assumed by the Ricker model (Dey 2007). In
fact, even in the LH food regime, the data suggest a
steeper decline than exponential in the realized per capita
growth rate as a function of population size. This kind of
environmentally induced variation in the functional form
of the model exemplifies the limitations of modelling
ecological/evolutionary processeswith simplemodels in
which many traits with potentially differing environ-
mental sensitivities are collapsed into a small number of
parameters that can, consequently, only be estimated by
model fitting but not directly measured (for a general
discussion of this issue, see Onstad 1988). It was only
with the development of substantially more detailed
agent-based simulations, incorporating the major den-
sity-dependent feedbacks on life-history traits in fruit-fly
cultures (Tung et al. 2019), that good fits were obtained
to multiple data sets from fruit-fly populations with
varying selection histories and different nutritional
regimes.

7. The usefulness of rules of thumb and stochastic
predictions

[The quest for the whole leads me to wander, search-
ing, among the parts

But the depths of beauty/reality are fathomless,
hence I have an incurable pain

Allama Iqbal]

Living systems are characterized by almost ubiqui-
tous variations, in both attributes and environmental
sensitivity, at various hierarchical levels of struc-
tural organization. Moreover, functionality in living
systems is typically integrated across multiple levels
of the structural hierarchy. And, as if that were not
enough, variation in biological structure and func-
tion can be plastic or heritable (and not just via
genes), and has both ecological and evolutionary
causes and consequences, leading to the situation
encapsulated in the pithy adage that what is noise to
the physicist is music to the ecologist! This char-
acteristic of living systems has profound effects on
the nature of data sets in ecology and evolution and,
consequently, on how we can best test predictions
from models.
One consequence of this gloriously rampant vari-

ability in living systems is the seemingly counter-
intuitive conclusion that qualitative ‘rules of thumb’
kinds of predictions are often more useful in ecology
and evolution than more precise point predictions
(Gause 1934; Levins 1966; but see also Orzack and
Sober 1993 for a discussion of the limitations of
qualitative predictions in distinguishing between the
importance and sufficiency of selection in optimiza-
tion models in evolutionary ecology). A good account
of some practical consequences of this tension
between qualitative and quantitative predictions for
modelling in ecology is given by Wood (2001). One
important reason why rules of thumb are more easily
testable than point predictions in experimental ecol-
ogy and evolution is that we typically do not have the
ability to set up contrasting experimental treatments
on a fine enough scale, whereas we can do so on a
coarser scale. This problem is exacerbated by the
limitation of having to estimate, rather than measure,
‘sufficient parameters’, as discussed in section 5.
Therefore, if our prediction pertains to different out-
comes caused by various values of a ‘sufficient
parameter’ or, conversely, to different ‘sufficient
parameter’ values resulting from varying experimen-
tal conditions, our ability to test point predictions is
severely compromised. For example, in experimental
studies in population ecology, even with controlled
laboratory environments and well-characterized
model systems like fruit-flies, it is not reliably possi-
ble to either produce or detect a difference of mag-
nitude 0.2 in intrinsic per capita growth rate (r), even
though simple population growth models might pre-
dict very different consequences of such a difference
in r, or predict such a difference as the outcome of
varying experimental treatments. Similarly, in

Mathematical modelling in biology versus physics Page 9 of 16    19 



evolution, a point prediction of heritability is essen-
tially useless, given the large uncertainty of any
experimental estimation of heritability. Indeed, one
reason why a combination of modelling and con-
trolled multi-generation laboratory experiments led to
such an impressively detailed and nuanced under-
standing of the dynamics of spatially structured and
unstructured single species populations of fruit-flies
(reviewed in Dey and Joshi 2018) was the deployment
of rules of thumb linking nutritional regimes to gross
aspects of population dynamics (Dey 2007, 2012;
Tung et al. 2019), itself made possible as a result of
the detailed species-specific Drosophila model of
Mueller (1988).
Another seemingly counter-intuitive consequence,

at least to many students, of the complexity of eco-
logical and evolutionary systems, is the relatively
greater usefulness of stochastic rather than determin-
istic models. This is most clearly exemplified by the
situation in population genetics. Most researchers get
their first, and often only, introduction to natural
selection as a major factor driving adaptive evolution
through relatively mechanistic one- or two-locus
models of allele and genotypic frequency change
under selection. Yet, paradoxically, most evolutionary
biologists working on adaptive evolution, whether in
the laboratory or in the field, hardly ever have occa-
sion to use such population genetic models of selec-
tion in their research. The reason is that practically
most traits relevant to adaptation in metazoans are
complex phenotypes, affected by both large numbers
of loci and multiple environmental factors. In the face
of such complexity, the deterministic one- or two-
locus models simply do not apply, as their simplifying
assumptions are violated en masse. The population
genetic models that actually work reasonably well,
and are widely used in actual research in evolution,
are stochastic models of genetic change in the absence
of selection, as exemplified by the models used in
molecular phylogenetics.
In ecology, too, stochastic models are widely used

in diverse contexts like biodiversity and community
ecology (e.g. Fisher et al. 1943; Hubbell 2001), ani-
mal movement (e.g. Gupta et al. 2017), and popula-
tion ecology (e.g. Chapman 1967; Tung et al. 2019).
Stochasticity can be included into simple analytic
models as well as individual-based models, and can
be operationalized through state variables, parameters,
or both. Good general overviews of stochastic for-
mulations of ecological models and their applications
can be found in Allen (2003), and Black and McKane
(2012).

8. Models may not just facilitate but also constrain
our thinking

[You have seen the glorious rise of the speeding cur-
rent of the ocean waves

Now, see how the turbulent wave becomes the
chain around its own feet

Allama Iqbal]

While mathematical models are undoubtedly often very
helpful in clarifying our thinking about ecological and
evolutionary phenomena (Otto and Day 2007), they can
also sometimes end up constraining our thinking because
certain biologically possible outcomes may not be
accommodated within the framework of the model. This
problem tends to be more serious in the case of phe-
nomenological rather than more mechanistic models. A
classic example is provided by the field of density-
dependent selection. After the first verbal enunciation of
the notion that chronic high versus low density would
often select for very different traits (Dobzhansky 1950),
some formalization of the theory began with the work of
MacArthur (1962), and MacArthur and Wilson (1967).
Subsequent one-locus two-allele population genetic
models of evolutionary change were all based on the
discrete-time version of the logistic model of population
growth (discussed in detail by Joshi et al. 2001). The
logistic equation, in its most popularly used form in
ecology, models population size in a generation as a
quadratic function of population size in the previous
generation, with two parameters: r (the maximal per
capita population growth rate) and K (the equilibrium
population size, also often misleadingly termed the
carrying capacity) (Joshi et al. 2001). It is also a phe-
nomenological model, in that the parameters r andK are
not measurable biological traits; they are higher level
(population) attributes that can only be estimated by
model fitting. In the logistic model, the only way of
substantially increasing realized population growth rate
(fitness) at high density, especially in the face of r–K
trade-offs, is via an evolutionary increase in K (Joshi
et al. 2001). The two major ways in which K can
increase in a population are through the evolution of
either smaller body size or a greater efficiency of food to
biomass conversion. It is easier to imagine the evolution
of greater efficiency rather than small size, because size
also trades off with fecundity, a major fitness
component.
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It is, perhaps, not surprising that from the late 1960s to
themid-1990s, the dominant view among those studying
adaptations to crowding in Drosophila was that such
adaptations would involve the evolution of greater effi-
ciency of food-to-biomass conversion. So widespread
was this view that it took the demonstration of the evo-
lution of competitive ability via increased larval feeding
rate, at the cost of efficiency, in two separate sets of
crowding-adapted populations of D. melanogaster
(Mueller 1990; Joshi andMueller 1996) for it to begin to
change. Moreover, this was despite the fact that a
detailed and mechanistic species-specific model of
Drosophila population dynamics and evolution under
crowding had already shown that a greater K, achieved
via increased efficiency, was not the only way in which
populations, wherein larvae competed for limiting food
resources, could evolve to become more competitive
(Mueller 1988). In the Drosophila model, competitive
ability could also increase through the evolution of
greater rates of food acquisition by larvae under condi-
tions of overall food limitation, without any change in
K (Mueller 1988), contrary to the limitation inherent in
the phenomenological logistic model in which increased
K was necessary for greater competitive ability.
This kind of situation, where a model (verbal or

mathematical) becomes a constraint on our thinking by
limiting us to considering what is possible in the model,
rather than in nature, is quite common in ecology and
evolution. For decades, the widespread, almost axio-
matic, acceptance of the competitive exclusion principle
meant that ecologists did not consider the possibility of
competitor coexistence seriously, as the principle
implied that competitors would either have to diverge so
as to cease being in competition, or else, onewould drive
the other extinct (reviewed by Arthur 1982). Yet, the
competitive exclusion principle arises from a limitation
of the Lotka–Volterramodel of competition, based on the
continuous time logistic equation, rather than a biologi-
cal constraint upon competing species (Joshi 2001).
Once again, it took quite some time aftermodels different
from the Lotka–Volterra formulations indicated that
reasonably long-term competitor coexistence was likely
in nature, for the notion of possible competitor coevo-
lution to become broadly accepted (Arthur 1982; Joshi
and Thompson 1995, 1996).
There are many such examples in ecology and

evolutionary biology in which wide acceptance of a
particular model ends up blinding researchers to the
possibility of alternative mechanisms, not possible
under the constraints of the dominant model, that
might be enabling organisms to adapt to certain
ecological challenges. It is in this context that

Michael Rose, a pioneer of experimental evolution
with fruit-flies, has often remarked during talks that
‘‘the moral of the story is that Drosophila do not
read papers in the Journal of Theoretical Biology!’’
Consequently, while it is important to be familiar
with the models commonly used in one’s area of
work, it is also sometimes very helpful to go back to
one’s understanding of the biology of the system and
reason things out de novo, as though the previous
models did not exist.

9. Agent-based simulations, though useful, are
not really models

[Do not presume to hold the actions of the pious as
being similar to yours

For even the lion and milk, though so different,
stay the same in writing

Maulana Jalaluddin Rumi

Note: in Persian, both lion (sher) and milk (shı̄r)
are written identically]

In recent decades, simulations of agent-based ‘models’
to investigate questions in ecology and evolution, and
also in the social sciences, have become increasingly
popular (e.g. Railsback and Grimm 2011; Salamon
2011; Wilensky and Rand 2015). In such ‘models’,
typically called individual-based models (IBM) in
ecology, large-scale computer simulations are used to
explicitly model the actions and interactions of many
lower-level constituents of a complex, hierarchical
system, in an attempt to address how emergent prop-
erties and behaviours at higher hierarchical levels arise
as a consequence of what is happening at lower levels
in the structural hierarchy. Such an approach, at least in
principle, offers the prospect of linking lower-level
mechanistic models to higher-level phenomenological
ones, thus adding detail and nuance to our insight into
emergent processes in complex systems. In my own
research area, an agent-based ‘model’ of Drosophila
population dynamics has been very successfully used
to understand how the dynamics and stability of labo-
ratory cultures of fruit-flies are shaped by complex
interactions among resource availability, demography,
and life-history traits (Tung et al. 2019). This model is
also the first one to provide very good fits to data from
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fruit-fly populations with differing evolutionary histo-
ries, as well as from those subjected to different
nutritional regimes.
Rather than discussing more examples of the use-

fulness of the agent-based approach in ecology and
evolution, I want to draw attention to the fact that these
‘models’ are fundamentally very different from the
sense in which I have been using the term here. I have
been using the term ‘model’ to refer almost exclusively
to less detailed, often equation-based, models, even if
the analysis of the behaviour of some of those models
requires computer simulations. Agent-based simula-
tions are, in many ways, closer to experiments, under
even more controlled conditions than possible in the
laboratory, rather than models, leading them to often be
referred to as ‘in silico experiments’. However, the
point I wish to stress is that, especially in the fields of
ecology and evolution, with their preponderance of
relatively phenomenological models, the agent-based
simulations approach has great potential to allow us to
link interactions between measurable phenotypes to
their reflection in the behaviours of the ‘sufficient
parameters’ in response to different conditions, thereby
shedding some light on the hitherto unseen innards of
the black boxes of our phenomenological models. Such
illuminating insight into what drives the behaviour of
‘sufficient parameters’ can, however, also be attained
by more classical modelling, as exemplified by recent
attempts to model the evolutionary process via births
and deaths rather than relying upon composite mea-
sures like fitness (Doebeli et al. 2017). Given that very
large agent-based simulations can sometimes approxi-
mate photographs rather than models, incorporating
and yielding so much fine-grained detail that it can
obscure a simpler mechanistic understanding of the
emergent properties, the best progress might be made
by a judicious mix of both relatively simple and
complex agent-based simulations, together with rela-
tively more classical modelling ‘bridges’ between
lower- and higher-level phenomena in ecological and
evolutionary systems.
In one practical respect, agent-based simulations

are also very helpful for experimental ecologists and
evolutionists, such as myself, in that they permit the
screening of large numbers of experimental scenarios
of interest in a reasonably short time. Multi-
generation experiments in ecology and evolution are
extremely labour-intensive, and last for months or
years, making it very difficult to do many different
such experiments. Given the investment of time and
labour in such studies, it is very helpful to be able to
determine in advance, using agent-based simulations,

which specific investigations among a set of potential
experiments are most likely to yield useful insights,
rather than ruefully realizing, after a few years of
hard work, that not much insight was gained from the
experiment after all.

10. Modelling should not be thought of as a
domain expertise

[Your culture and progress will end up killing itself with
its own dagger

For a nest built on a shaky branch cannot persist
for a long time

Allama Iqbal]

One of the most pernicious fallacies that has gripped the
imagination ofmany in science today is thatmodelling is a
primary domain expertise. In other words, that there is a
category of accomplished people called modellers, who
are capable of competently and usefully modelling phe-
nomena ranging from physics or engineering to biology.
This notion is both incorrect and harmful, and arises from
a dangerous conflation of the distinct activities of model
formulation andmodel analysis. To put it another way, the
crux of this fallacy is that it assumes that the essence of
modelling is the analysis of the model and the consequent
deduction of predictions from it. This is both ironic and
sad, as it privileges the essentially technical over the truly
scientific. A similarly fallacious and unfortunate elevation
of an approach to analysis to the perceived status of a
domain expertise, rather than a context-specificmethod to
be applied to problems in particular domains, is presently
also taking place with regard to data science. It is likely to
lead to the same sorts of problems that we are already
experiencing as a result ofmodelling being thought of as a
domain expertise in itself.
As we saw in section 2, modelling is (a) a mapping

from reality space to concept space, and (b) subjective,
to a considerable degree. That is why experience of
empirically studying the system one is attempting to
model becomes so important: the informed intuition
about which details are important and which can be
ignored, acquired through a detailed study of a specific
system, can only be complemented, and not substi-
tuted, by a facility in manipulating and solving differ-
ential equations or other such mathematical entities.
This problem is of particular and practical significance
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in India, where ecological/evolutionary modelling,
including in epidemiology, is largely done by physi-
cists or engineers, many of whom do not have even a
passing acquaintance with the systems they model with
aplomb. When applied to problems in academic ecol-
ogy/evolution, such an approach is not harmful per se:
theoreticians can enjoy themselves exploring the
properties of mathematical objects that they think
represent ecological phenomena, a certain genre of
theory journals get papers to publish, and ecologists
and evolutionists, with a happy equanimity, just ignore
such studies. However, when this kind of modelling
approach spills over from academic ecology/evolution
to applied areas like epidemiology (e.g. Agrawal et al.
2021), it is often accompanied by a distinct possibility
of undesirable practical consequences.
Why exactly we persist with the fallacy of mod-

elling being a primary domain expertise remains a bit
of a mystery to me, although I suspect it is part of the
insidious seepage of notions from the discipline of
management to other endeavours like research,
health care, education, and journalism, leading in
each case, to very harmful effects. It is a tenet of
contemporary management thinking that specific
knowledge of, and expertise in, manufacturing a
product or providing a service is not very necessary
for running a successful business enterprise, as
compared to fancy marketing and glib sales pitches.
Incidentally, this is fallacious, even in the context of
business management, as most experienced business
persons agree. However, it is easy to imagine this
logic entering into research and resulting in the ele-
vation of modelling or data science to the level of
primary domain expertise, while downplaying the
importance of actually understanding the systems or
data sets in question.
Even a cursory look at the history of modelling in

ecology and evolution suggests very strongly that the
most useful and insightful models have come from
researchers who either had a solid grounding in biology
and acquired the necessary mathematical skills (e.g.
Sewall Wright, Motoo Kimura, and Alexander
Nicholson) or had a basic training in the mathematical
sciences and acquired the necessary biological knowl-
edge and insight (e.g. Ronald Fisher, John Maynard
Smith, and Robert May). Modelling in ecology and
evolution, carried out with a degree of detached disdain
for the messy complexities of living systems, does not
usually add much to our understanding in those fields,
though it may be pleasurable for those indulging in it,
and may even suffice to support a ‘successful’ aca-
demic career.

11. Conclusions

[It is time to sleep, the eyes are drowsy, we will con-
tinue tomorrow

The night is almost gone, and there is still many a
tale to tell

Qamar Jalalvi]

In this paper, I have discussed certain aspects of models
and the modelling process, and touched upon some of the
ways in which modelling in ecology and evolutionary
biology substantially differs from modelling in much of
physics. These differences are primarily a consequence of
the far greater complexity, variability and environmental
sensitivity of biological systems, as compared to physical
ones. My motivation for writing this piece stems from
two complementary frustrations that have grown over the
years. On the one hand, I keep encountering fellow
researchers in ecology and evolution who are a bit
overwhelmed by models in our field and tend to avoid
close encounters with them once they have passed their
required courses, or parts thereof, in ecological and evo-
lutionary theory. This saddens me for two reasons. The
first is that empirical research not substantially informed
by theory often remains descriptive and, while providing
information about some specific system, never really goes
beyond that to contribute to the growth of knowledge in
the field. The second, in some ways more important to
me, is that if ecologists and evolutionary biologists
abdicate all responsibility for modelling to those with the
requisite mathematical, but not biological, training, we
will miss out on all kinds of interesting and useful theory.
This is because the choice of questions for theoretical
investigation is often very different depending upon one’s
background and training. Many theoretical questions of
interest to ecologists and evolutionary biologists may be
mathematically relatively unchallenging but, nevertheless,
of considerable relevance to practitioners in the field.
Such questions often will not get taken up at all by the-
oreticians who do not have a close engagement with
empirical research in that area. I recall that GH Hardy,
embarrassed that his model was mathematically trivial,
had to be persuaded very hard by Reginald Punnett to
publish his insight that the mechanism of Mendelian
genetics, by itself, would not tend to alter the genetic
composition of a large, random-mating population.
On the other hand, mirroring my frustration with

fellow ecologists and evolutionary biologists who shy
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away from engaging with theory, is my frustration with
colleagues trained in the physical sciences who engage
in modelling ecological and evolutionary processes
without seriously coming to grips with the empirical
reality of the systems themselves. This often leads to
theoretical work that is either addressing questions that
are not of much interest to empirical researchers in the
field, or hammering problems in ecology or evolution
into a form that is amenable to analysis by whichever
class of models the researcher is comfortable analyz-
ing. This state of affairs is especially frustrating given
the fundamental and profound contributions made to
our understanding of ecological and evolutionary sys-
tems by those whose primary training was in mathe-
matics or physics but who took the effort to also
engage with the biological systems they modelled, such
as my personal intellectual heroes like Ronald Fisher,
Robert MacArthur, and Robert May.
In addition to the issues raised in the nine sections

echoing the title, I would like to briefly touch upon one
more aspect of models in general, especially for the benefit
of students reading this piece. It is that models are not
judged by whether they are ‘true’ (i.e., accurate mimics of
reality) but by whether they are ‘useful’, reflecting the fact
that science, although preferably done with great idealism,
is essentially a pragmatic activity, even when it is of aca-
demic interest and not explicitly applied to solving real life
problems. As Levins (1966) has beautifully said, ‘‘The
validation of a model is not that it is ‘true’ but that it gen-
erates good testable hypotheses relevant to important
problems. A model may be discarded in favor of a more
powerful one, but it usually is simply outgrown when the
live issues are not any longer those for which it was
designed.’’ The same sentiment was often expressed by the
statistician George Box (1976, and subsequently) as ‘‘all
models are wrong, but some are useful.’’ Models are
invariably ‘wrong’ in the sense of not being accurate rep-
resentations of reality, but can be ‘right’ in the sense of
allowing us to empirically test our assumptions about real
world processes or phenomena by testing the consequences
we draw from our assumptions through modelling
(Enderling and Wolkenhauer 2021). Another relevant
corollary to this ‘true’ versus ‘useful’ distinction is that it
behoves us to be very clear that a model is useful for
understanding some aspect of reality but, ultimately, should
not be conflated with that aspect of reality: ‘‘the best
material model for a cat is another, or preferably the same
cat’’ (Rosenblueth and Wiener 1945). In general, it is
important as a scientist to not just focus on doing science
but also be cognizant about issues in the philosophy of
science. The same is true for modelling. There is a fairly
extensive literature on the philosophy of modelling (e.g.

Orzack 2012 and references therein), which many of us
whomakeandworkwithmodels shouldacquaint ourselves
with, but often do not, to our own loss.
Finally, I would like to share with readers a little gem of

a story from the canons of Zen Buddhism that I first read
when I was a beginning graduate student, fully (over)-
confident – with what Agatha Christie memorably termed
‘the arrogance of youth’ – that with mathematical models
of ecological and evolutionary processes, we could, in
fact, perfectly explain most everything of interest in
organismal biology. The story describes the reply of a Zen
master when asked by novice monks what his life-long
and deep study of Zen has revealed to him. The master
says, ‘‘When I was just beginning to study Zen, the trees
were just trees, the riverwas just a river, and themountains
were justmountains.’’ ‘‘Then,’’ he continues, ‘‘as I began to
delve deeper into Zen, the trees became more than just
trees, the river became more than just a river, and the
mountains becamemore than just mountains.’’ Finally, he
says, ‘‘Then, once I immersed myself deeply in Zen, the
trees went back to just being trees, the river went back to
just being a river, and the mountains went back to just
beingmountains.’’ Over three decades have gone by since
my early graduate student days, and I have now come to
realize that this story also encapsulates my changing
appreciation of the role of mathematical models in ecol-
ogy and evolution rather well. After a brief period of
glorious omnipotence, in my youthful thinking, the
models have gone back to being just what they were:
mappings from reality space to concept space. Nothing
more but, equally importantly, nothing less either!
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