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Boolean modelling is a powerful framework to understand the operating principles of biological networks. The
regulatory logic between biological entities in these networks is expressed as Boolean functions (BFs). There
exist various types of BFs (and thus regulatory logic rules) which are meaningful in the biological context. In
this contribution, we explore one such type, known as link operator functions (LOFs). We theoretically
enumerate these functions and show that, among all BFs and even within the biologically consistent effective
and unate functions (EUFs), the LOFs form a tiny subset. We then find that the AND-NOT LOFs are
particularly abundant in reconstructed biological Boolean networks. By leveraging these facts, namely, the tiny
representation of LOFs in the space of EUFs and their presence in the biological dataset, we show that the
space of acceptable models can be shrunk by applying steady-state constraints to BFs, followed by the choice
of LOFs which satisfy those constraints. Finally, we demonstrate that among a wide range of BFs, the LOFs
drive biological network dynamics towards criticality.
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1. Introduction

Kauffman (1969a, 1969b, 1993) and René Thomas
(1973, 1979) pioneered the use of the discrete-state
framework to model gene regulatory networks and
demonstrated its potential to reproduce biological out-
comes. In the past two decades, the use of the Boolean
framework to reconstruct gene networks from experi-
mental biological data has gained momentum. With the
advent of sequencing technologies and boost in com-
putational power, it has been possible not only to

reconstruct gene networks but also to reproduce gene
expression patterns (Mendoza et al. 1999; Albert and
Othmer 2003; Kauffman et al. 2003; Fauré et al. 2006;
Mendoza and Xenarios 2006).
The notion that complex biological systems are sit-

uated in the neighbourhood of a critical dynamical
regime has been studied quite extensively both outside
(Mora and Bialek 2011) and within the Boolean
framework (Shmulevich and Kauffman 2004; Nykter
et al. 2008; Villani et al. 2017, 2018; Daniels et al.
2018). The study of damage spreading in Boolean
models of gene regulatory networks provides an insight
into their dynamical ‘regime’. One of the more
frequently employed associated characteristics isThis article is part of the Topical Collection: Emergent

dynamics of biological networks.
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obtained by generating a Derrida plot (Derrida and
Pomeau 1986). The Derrida plot is partitioned into 3
regions: ordered, critical and chaotic regimes. For
models in the ordered regime, perturbations (small
random changes in the state of the system) tend to
remain small or disappear. In the case of models falling
in the chaotic regime, perturbations spread out over
many nodes in the network. In the critical regime, the
dynamics is neither ordered nor chaotic. More recently,
Daniels et al. (2018) considered a static measure as a
proxy for damage spreading; specifically, the authors
used the average sensitivity of a network and showed
that most biological models largely fall in the critical
regime for which the average sensitivity of the network
is equal to 1.
In this work, we focus our attention on a certain type of

Boolean function (BF) called link operator functions
(LOFs) (Mendoza and Xenarios 2006; Zobolas et al.
2022). First, we show the relationship between the dif-
ferent LOFs, and subsequently enumerate the LOFs for
different numbers of inputs. Thereafter, we show that
LOFs represent an infinitesimal fraction of the space of
all BFs, even if considering only the effective and unate
functions (EUFs). Next, we show that a sizable propor-
tion of BFs in biological systems are regulated by a
specific LOF, namely, the AND-NOT logic. Following
this, we present two case studies wherein we impose a
given network structure but allow different BFs to
examine the consequences of having to satisfy steady-
state constraints corresponding to biological phenotypes
(Henry et al. 2013; Zhou et al. 2016). In particular, we
show that limiting the choice of BFs to LOFs during such
model selection can dramatically shrink the size of the
search space. Lastly, by computing the ‘static’ network
sensitivity for a wide range of fixed biological network
structures, but imposing different types of functions
(effective functions, EUFs and LOFs), we find that the
AND-NOT and OR-NOT logic in LOFs are closest to
reproducing the average sensitivity distribution of bio-
logical regulatory logic.
We now briefly introduce the Boolean framework for

modelling gene regulatory networks. A Boolean model
is defined by a set of N nodes and L directed edges,
where the N nodes correspond to the biological com-
ponents such as genes or proteins, and the L directed
edges correspond to the (oriented) interactions between
them. Each node i is associated with a variable xi(t)
which takes only binary values (0 or 1 for ‘OFF’ or
‘ON’, respectively), which defines the state of node i at
time t. Furthermore, each node i has ki incoming edges
and is thus associated with a BF fi of ki variables. The
BFs fi (for all nodes i from 1 to N) along with an

updating scheme, synchronous or asynchronous
(Kauffman 1969a; Thomas 1991; Garg et al. 2008),
determine the state of the system at the next time step,
t?1. The above description is succinctly expressed by
the equation

xi t þ 1ð Þ ¼ fi x
1
i tð Þ; x2i tð Þ; . . . ; xkii ðtÞ

� �
; ð1Þ

where x j
i is the jth input variable (j [ [1, ki]) of the ith

node (i [ [1, N]). There are many types of functions fi
that have been defined in the literature that represent
underlying molecular logic (see, for instance, Sub-
baroyan et al. 2021). Under the above-mentioned
deterministic update rules, the system converges to a
steady state (also called fixed point attractor) or into a
cyclic attractor.

2. Link operator functions and their properties

2.1 Motivation and definitions

Mendoza and Xenarios (2006) defined a type of veto
regulatory logic in Boolean networks which they used
to model the differentiation of T-helper cells. Such a
logic has been further studied by others (Ebadi and
Klemm 2014). In the above-mentioned works, the veto
logic operates as follows. If any inhibitor is present
(ON), the regulated gene is turned OFF. If all inhibitors
are absent and at least one activator is present, then the
regulated gene is turned ON; otherwise, the gene is
turned OFF.
In a recent contribution, Zobolas et al. (2022) used

the structure of the logical expression of these veto BFs
to explore a number of other BFs possessing similar
logical structure and defined these as ‘link operator
functions’ (LOFs). Their Boolean expression is con-
structed by linking a set of m activators (labelled as xi)
to a set of n inhibitors (labelled as yj) by a logical
operator shown as � in equation (2). We use the
symbol k to denote the total number of regulators of the
considered node, i.e., k = m ? n. The general expres-
sion for these functions is given by:

ðx1; x2; . . . ; xmÞ � ðy1; y2; . . . ; ynÞ; ð2Þ

where the link operator � can be NOR, NAND, AND-
NOT, OR-NOT, NOR-NOT, NAND-NOT, XOR, pairs,
XNOR, among others. The activators (or inhibitors) x1,
x2, … , xm (or y1, y2, … , yn) are typically connected by
only AND or OR operators. The LOFs are defined for
functions which have at least one activator (m C 1) and
one inhibitor (n C 1).
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Notably, Zobolas et al. (2022) showed that only
some link operators in equation (2) satisfy biologically
relevant ‘consistency’ properties, namely, monotonicity
and essentiality (or effectiveness). First, a BF exhibits
unateness or monotonicity (Aracena 2008) if its output
is an increasing or decreasing monotonic function of
each of the k inputs. More explicitly, if an input is
activatory (respectively, inhibitory), then, on increasing
the value of that input from 0 to 1 and keeping all other
inputs fixed, the output must never decrease (respec-
tively, increase). BFs which are unate (or monotonic) in
all inputs are known as unate functions (UFs). Second,
a BF exhibits essentiality if each of the inputs of the
function is essential. An input i of a BF with k inputs is
said to be essential if it is used, i.e., if there exists at
least one combination of the other (k-1) inputs for
which a change in input i causes a change in the output
of the function. BFs which are essential (or effective) in
all inputs are known as effective functions (EFs).
Biological regulatory logic rules are typically expected
to possess both of these ‘consistency’ properties
(Raeymaekers 2002; Aracena 2008; Subbaroyan et al.
2021). BFs which possess both of the properties of
unateness (or monotonicity) and essentiality (or effec-
tiveness) in all inputs are known as effective and unate
functions (EUFs).
In their recent work, Zobolas et al. (2022) focussed

on 3 types of LOFs, namely, AND-NOT, OR-NOT
and their function pairs (which in this article we call
AND-pairs) that satisfy the above-mentioned two
consistency properties (see table 1 for the exact
definition). The AND-NOT, OR-NOT and AND-pairs
are given by:

fAND-NOT ¼ ðx1 _ x2 _ . . . _ xmÞ ^ � ðy1 _ y2 _ :::
_ ynÞ

ð3Þ

fOR-NOT ¼ ðx1 _ x2 _ . . . _ xmÞ _ � ðy1 _ y2 _ :::
_ ynÞ

ð4Þ

fAND-pairs ¼ ðx1 _ x2 _ . . . _ xmÞ ^ ð� y1 _ � y2
_ ::: _ � ynÞ

ð5Þ

where _ is the OR operator, ^ is the AND operator
and * is the NOT operator. For an illustration of the
LOFs, see figure 1.
We find that in addition to these three types of LOFs,

another type of LOF can be constructed which satisfies

the two consistency properties, and is complementary
to the AND-pairs in a manner that the OR-NOT is
complementary to the AND-NOT. (Note that if one
complements an AND-NOT function, one gets an OR-
NOT function but with the activators and inhibitors
exchanged. Similarly, if one complements the AND-
pairs, one gets the OR-pairs but with the activators and
inhibitors exchanged.) We call this the OR-pairs and it
is given by the expression:

fOR-pairs ¼ ðx1 ^ x2 ^ . . . ^ xmÞ _ ð� y1 ^ � y2 ^ :::

^ � ynÞ;
ð6Þ

where _ is the OR operator, ^ is the AND operator and
* is the NOT operator.
The biological interpretation for each of the LOFs is

as follows:

• AND-NOT: The presence of a single inhibitor
represses transcription independent of the presence
of multiple activators. Thus, transcription takes
place only in the absence of inhibitors and in the
presence of at least one activator.

• OR-NOT: The presence of any activator guarantees
transcription independent of the presence of
inhibitors. In the absence of both inhibitors and
activators, gene transcription takes place.

• AND-pairs: The presence of at least one activator
and the absence of at least one inhibitor is sufficient
to ensure transcription.

• OR-pairs: All activators must be present, or all
inhibitors must be absent in order for transcription
to take place.

Table 1 lists the four consistent types of LOFs, their
expression and the additional types of BFs to which
they belong, and figure 1 depicts the various LOFs.
Henceforth, we reserve the word LOF to mean only the
4 consistent types, namely, AND-NOT, OR-NOT,
AND-pairs and OR-pairs (table 1).

2.2 Relationship between the different types
of LOFs

We note that there may be overlaps between two dif-
ferent types of LOFs, and between LOFs and other
types of biologically meaningful BFs (Subbaroyan
et al. 2021). Within the space of LOFs we observe that:

(a) AND-NOT and OR-NOT do not overlap.
(b) AND-pairs and OR-pairs do not overlap.

LOFs can drive Boolean biological networks to critical dynamics Page 3 of 11    17 



(c) The AND-NOT LOF is equivalent to the AND-
pairs LOF if there is only one inhibitory input
(n=1), for any value of k.

(d) The OR-NOT LOF is equivalent to the OR-pairs
LOF if there is only one activatory input (m=1),
for any value of k.

The above observations (c) and (d) serve as a moti-
vation to construct a set of 4 non-overlapping types of
LOFs (table 1). We first define two non-overlapping
types of LOFs:

(i) AND-pairs (n[1) as the AND-pairs with more
than one inhibitory input, and

(ii) OR-pairs (m[1) as the OR-pairs with more than
one activatory input.

AND-pairs (n[1) and OR-pairs (m[1) do not overlap
with the AND-NOT and OR-NOT LOFs, respectively.
Moreover, we observe that both AND-NOT and OR-

NOT LOFs are ‘nested canalyzing functions’ (NCFs).
A k-input BF is said to be ‘nested canalyzing’ if there
exists a permutation of k input variables, such that
setting the ith variable to its ‘canalyzing’ input value
fixes the output of the BF, under the condition that the
previous (i-1) variables are not set to their canalyzing
values (Kauffman et al. 2003; Szallasi and Liang
1998). The AND-pairs (n[1) and OR-pairs (m[1), on
the other hand, are ‘collectively canalyzing functions’.
A k-input BF is said to be ‘collectively canalyzing’
if by fixing a certain subset of i inputs (such that
1\ i \ k), the output of the function is determined
(Reichhardt and Bassler 2007), while it is not when
fixing fewer than i inputs.

2.3 Cardinality of the different types of LOFs

It is straightforward to count the number of LOFs.
Consider the AND-NOT LOFs for instance. For a
given number of inputs (k) and for a given number of
activators (m) and inhibitors (n), there are C(k,m) (the
binomial coefficient) ways to assign m activators and
n inhibitors. Since all the activators are connected by
an AND or an OR operator (see table 1), the permu-
tations between them do not alter the BF. Hence, there
are exactly C(k,m) BFs in the AND-NOT category. A
similar argument holds for the number of functions in
the OR-NOT category. For the AND-pairs (n[1) and
OR-pairs (m[1), the number of functions for m acti-
vators and n inhibitors is C(k,m) - C(k,1) and C(k,n) -
C(k,1), respectively. To calculate the total number of
LOFs of a given type for k inputs, we sum over all the
values of m. Hence, for both AND-NOT and OR-NOT,
there are a total of 2k-2 BFs each. We subtract ‘2’
because LOFs do not include the cases where there are
no activators or inhibitors, i.e., C(k,m=0) and C(k,n=0)
are not counted.
Based on this exact counting of LOFs, it can be

easily seen that LOFs form an extremely small subset
of the space of all BFs and that their corresponding
fraction decreases fast with increasing number of inputs
(supplementary table 1). Furthermore, even within the
space of EUFs, LOFs form a tiny subset. Figure 2 is a
semi-log plot that shows this decrease in the fraction of
LOFs with the increase in the number of inputs. Note
that even if one pools the 4 classes of LOFs under
consideration, the number of functions (for a given
number of inputs) increases approximately by a factor

Table 1. The different types of consistent link operator functions (LOFs)

Type of LOF Boolean expression Effective Unate Canalyzing
Nested

canalyzing
Collectively
canalyzing

AND-NOT (x1 _ x2 _ … _ xm)
^ * (y1 _ y2 _ … _ yn)

Yes Yes Yes Yes No

OR-NOT (x1 _ x2 _ … _ xm)
_ * (y1 _ y2 _ … _ yn)

Yes Yes Yes Yes No

AND-pairs (n[ 1) (x1 _ x2 _ … _ xm)
^ (*y1 _ *y2 _ … _ *yn)

Yes Yes No No Yes

OR-pairs (m[ 1) (x1 ^ x2 ^… ^ xm)
_ (*y1 ^ *y2 ^ … ^ *yn)

Yes Yes No No Yes

The 4 different types of LOFs are AND-NOT, OR-NOT, AND-pairs and OR-pairs. From this table, it can be ascertained that these 4
types of LOFs satisfy all the consistency properties considered in Zobolas et al. (2022). Note that Zobolas et al. (2022) have only
considered the first 3 types in their work.
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of 4, which nevertheless does not affect our conclusion.
Table 2 and figure 2 illustrate this point.

3. LOFs in biological networks

3.1 AND-NOT LOFs are particularly abundant
in Boolean models of biological systems

Even though the LOFs are ‘consistent’ in terms of the
effectiveness and monotonicity properties, it remains
to be shown how frequently they arise in biological
systems. To investigate this, we took as our dataset a
collection of 57 Boolean models of biological systems
from the Cell Collective database that are a result of
the work of many authors, covering a wide variety of
biological processes in a number of species spanning

the multiple kingdoms of life. Only those models in
the Cell Collective database where both the biological
network and BFs were curated manually were con-
sidered in this study (supplementary table 2). It is
clear from table 3 and figure 3 (see also supplemen-
tary table 3) that the AND-NOT are particularly
abundant in reconstructed Boolean models, whereas the
other types of LOFs such as OR-NOT, AND-pairs and
OR-pairs are almost absent. Recall that BFs with at least
one activator and one inhibitor can be LOFs. Hence, it
is meaningful to calculate the fraction of LOFs in the
biological dataset among those BFs with at least one
activator and one inhibitor (supplementary table 4).
The dominance of AND-NOT LOFs in the dataset

implies that regulatory logic is primarily governed by a
special type of veto mechanism wherein the presence of
a single inhibitor determines the output of the gene,

Figure 1. Illustrative figure for the various types of consistent LOFs. The inputs to LOF BFs are divided into two sets,
namely, activators and inhibitors, denoted by the variables xi and yj, respectively. There are m activators and n inhibitors. The
logical operators which connect the variables are the AND (^), OR (_) and NOT (*) operators. The 4 types of LOFs shown
are (a) AND-NOT logic, (b) OR-NOT logic, (c) AND-pairs logic and (d) OR-pairs logic.
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independent of the presence of activators. In other
words,

(i) the activators can function only in the absence of
the inhibitors, and

(ii) the ‘vetoing power’ of all inhibitors is the same.

Thus, even though the activators are far more
numerous than inhibitors in the biological dataset, the
inhibitors generally control the logic output. Results
inferred from empirical data are typically and rightly
subject to scrutiny, in that they could be artefacts of a
biased dataset. In the present case we believe that this is
highly unlikely given the diversity of biological pro-
cesses being modelled. Note that 54 out of 57 models
in our dataset belong to the Eukaryota domain; the
biological literature therein is abundant with cases
where the repressor (or inhibitor) is able to suppress
transcription even in the presence of many activators
(Gaston and Jayaraman 2003).

3.2 LOFs as facilitators of Boolean model
reconstruction and selection: Two case studies

Model selection is the problem of searching for models
which exhibit high fidelity to behaviours identified in
the biological data. In general there are many ways to
satisfy such constraints (Laubenbacher and Stigler
2004; Cho et al. 2007; Dimitrova et al. 2011; Zhou
et al. 2016). In this work, we follow the model selec-
tion procedure by Zhou et al. (2016): One begins by
determining the network structure of the system via
experimental data providing information on the regu-
latory interactions between the biological components.

Figure 2. The reduction in the size of the space of
consistent LOFs in comparison to the space of all BFs with
increasing number of inputs. The decrease of the fraction of
consistent LOFs with increasing number of inputs is
extremely rapid. Here LOFs (orange circles) refer to the
sum of the fractions of all 4 consistent LOFs, namely, the
AND-NOT, OR-NOT, AND-pairs and OR-pairs (with any
redundancies removed). The blue triangles represent any one
of the aforementioned 4 types of LOFs, since each of them
have the same number of functions.

Table 2. Number of link operator functions (LOFs) as a function of the number of activators (m), the number of inhibitors
(n) and the total number of inputs (k)

k m n EUFs

LOFs

Fraction of EUFs that are LOFs

AND-
NOT

OR-
NOT AND-pairs (n[1) OR-pairs (m[1) Total

2 1 1 4 2 2 0 0 4 1
3 1 2 27 3 3 0 3 9 0.333
3 2 1 27 3 3 3 0 9 0.333
4 1 3 456 4 4 0 4 12 0.0263
4 2 2 684 6 6 6 6 24 0.0351
4 3 1 456 4 4 4 0 12 0.0263
5 1 4 34470 5 5 0 5 15 4.35 � 10-4

5 2 3 68940 10 10 10 10 40 5.80 � 10-4

5 3 2 68940 10 10 10 10 40 5.80 � 10-4

5 4 1 34470 5 5 5 0 15 4.35 � 10-4

Evidently, the total number of inputs (k) is equal to the sum of activators (m) and inhibitors (n), i.e., k = m ? n. Importantly, a LOF
should have at least one activating input (mC1) and at least one inhibiting input (nC1), and thus, LOFs can exist only for nodes with
2 or more inputs (kC2). Here, we give the number of LOFs for different possible combinations of m activators and n inhibitors for a
given number of inputs k. Moreover, we report separately the number of functions in the 4 different types of consistent LOFs,
namely, AND-NOT, OR-NOT, AND-pairs (n[1) and OR-pairs (m[1). In addition, the table also gives the number of effective and
unate functions (EUFs) for different possible combinations of m and n. As k increases, it can be seen that the LOFs become a tiny
fraction of the EUFs.
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Next, dynamical models must reproduce the biological
steady states, and in the Boolean framework, this cor-
responds to imposing constraints on the truth table or
function assigned to every node of the network. Finally,
among the various types of BFs, biologically mean-
ingful functions can be chosen to ensure high biologi-
cal relevance. Thus, by applying such successive
constraints, we can zero in on a much smaller subset of
models within the space of all possible models. We
illustrate such a model selection procedure on two
reconstructed gene regulatory networks (figure 4): a
pancreas differentiation model (Zhou et al. 2016) and
an epithelial–mesenchymal transition (EMT) model
(Joo et al. 2018).
Table 4 illustrates the reduction in the number of

possible models when imposing our successive con-
straints. Following Zhou et al. (2016), the network
connectivity is imposed as well as the sign of each
interaction when it is known. The problem is then to
search the space of BFs at each node. The constraint of
reproducing the steady states factorizes, and thus the
number of models satisfying the constraints is given by
the product of the number of BFs satisfying the con-
straints on each node. For instance, in the EMT model,
there are a total of 268435456 (=1925691692569
256) models if one imposes neither steady state con-
straints nor constraints on the type of BFs, whereas
there are 262144 (=196494932932) models satisfy-
ing the steady-state constraints but ignoring further

constraints on the type of BFs. These numbers also
reflect the fact that even with a fixed network structure
along with steady-state constraints on BFs, the number
of models is astronomical.
By taking advantage of the tiny fraction of LOFs in

the space of all BFs, we can tremendously shrink the

Table 3. The abundance of link operator functions (LOFs) in the collection of BFs from reconstructed models of biological
systems

k m n BFs in biological dataset EUFs

LOFs

AND-NOT OR-NOT AND-pairs (n[ 1) OR-pairs (m[ 1) Total

2 1 1 158 150 147 3 NA NA 150
3 1 2 35 32 30 1 1 NA 32

2 1 94 87 47 2 NA 0 49
4 1 3 16 16 13 1 0 NA 14

2 2 38 35 17 0 0 0 17
3 1 57 48 18 0 NA 0 18

5 1 4 4 4 1 0 0 NA 1
2 3 16 15 10 0 0 0 10
3 2 25 24 8 0 0 0 8
4 1 20 17 4 0 NA 0 4

The dataset consists of BFs from 57 Boolean models compiled in the Cell Collective database (https://cellcollective.org/). Notably, a
LOF should have at least one activating input (mC1) and at least one inhibiting input (nC1), and thus, LOFs can exist only for nodes
with 2 or more inputs (kC2). Therefore, the dataset consists of the subset of BFs in the 57 reconstructed models that have at least one
activating input (mC1) and at least one inhibiting input (nC1). The table classifies the BFs in the empirical dataset into effective and
unate functions (EUFs) and different types of consistent LOFs. It is evident that EUFs, and moreover, the AND-NOT LOFs within
EUFs, are abundant in the dataset regardless of k. In this table, we display the statistics for BFs in the biological dataset up to 5
inputs (kB5). In supplementary table 3, we display the statistics for all BFs in the biological dataset with kB12 inputs. ‘NA’ means
‘not applicable’, corresponding to values of m and n for which the LOF under consideration does not exist.

Figure 3. The fractions of the various types of consistent
LOFs in the biological dataset. The AND-NOT LOFs are
clearly abundant among the biological functions with at least
one activator and one inhibitor, whereas the other types,
although present, are not as abundant as the AND-NOT
functions. Note that the fractions for each of the LOFs are
calculated with respect to the number of BFs with at least
one activator and one inhibitor as input.
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number of models which are biologically relevant.
More explicitly, in the case of the EMT model, the
262144 models obtained by applying only steady-state
constraints are reduced to just 8 by demanding that the
BFs are LOFs, whereas in the pancreatic development
model, of 1048576 models which are obtained by
imposing steady-state constraints, only 100 models
satisfy the conditions of both reproducing the steady
states and using LOFs for their regulatory logic. Note
that the reduction factor is little less than 105 in the
EMT model and about 104 in the pancreas model. We
emphasize that both these models primarily serve as
toy models to illustrate the procedure of model selec-
tion and consequently the shrinkage of the space of
BFs which satisfy the attractor constraints. Although
other biological constraints such as the relative stability
(Zhou et al. 2016) could be used to further zero in on

models, applying such constraints is beyond the scope
of this study and hence will not be pursued further in
this contribution. In essence, using LOFs can tremen-
dously shrink the space of Boolean models to be
explored.

3.3 LOFs drive network dynamics towards
‘criticality’

Damage spreading (Derrida and Pomeau 1986) in
discrete dynamical systems measures how two trajec-
tories diverge and thus provides a measure of sensi-
tivity to initial conditions, much like Lyapunov
exponents do in continuous systems. Studies in Boo-
lean models of biological gene regulatory networks
suggest that these exhibit neither ordered nor chaotic

Figure 4. Schematic figure showing the two models of pancreas development and EMT, along with the attractors. Nodes are
associated with genes and edges correspond to directed interactions. The biologically relevant attractors in both models are
steady states. In the pancreas development network, the edges labelled ‘Activator/Inhibitor’ correspond to interactions whose
signs were denoted as unknown in Zhou et al. (2016).

Table 4. Model selection by using different types of BFs with and without the steady-state constraints

BF constraint

Pancreas development EMT

No constraint Steady-state constraints No constraint Steady-state constraints

None 17179869184 1048576 268435456 262144
EUF 104976 7056 1458 140
NCF 65536 3600 1024 96
LOF 1296 100 54 8

The two Boolean models, pancreas development and EMT, with 5 nodes each, are used to illustrate the reduction in allowed models
achieved by using various biologically meaningful BFs, both with and without the steady-state constraints.
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behaviour, but rather an intermediate kind of behaviour
known as ‘critical’. Here we employ a static measure of
damage spreading, as opposed to the one used to
construct Derrida plots, namely, the average sensitivity
of a Boolean network (Shmulevich and Kauffman
2004). First, the average sensitivity of a BF is given by
the proportion of cases where changing one of the
inputs at random changes the output value, averaged
over all possible input combinations. The average
sensitivity of the Boolean network is then the mean of
the average sensitivity of all its BFs. Mathematically,

S ¼ 1

N

XN

i¼1

Xki

j¼1

f ðx� ejÞ � f ðxÞ
* +

x

; ð7Þ

where N is the total number of nodes, ki is the in-degree
of node i, ej is the unit vector corresponding to the jth

input, x labels the possible input k-tuples and f(x) is the
output of the BF when x is the input.
Shmulevich and Kauffman (2004) showed that under

the synchronous update scheme, when using randomly
drawn representatives of classes of functions, it is

possible to infer the damage spreading regime of a
Boolean network without resorting to dynamical sim-
ulations by simply determining the average sensitivity.
Typically, networks with sensitivity s*1 indicate that
they fall in the critical regime, s\1 in the ordered
regime and s[1 in the chaotic regime. Furthermore, by
computing the sensitivity s of a wide range of
biological Boolean models, Daniels et al. (2018)
showed that most biological models fall in the ‘critical’
regime (s*1).
In this work, we compared sensitivities of biological

networks with fixed connectivity structure but varying
functions, namely, EF, EUF, AND-NOT, OR-NOT,
AND-pairs, OR-pairs LOFs and ‘biological functions’
(i.e., the functions as assigned by model builders). We
performed this analysis on 57 models collected from the
Cell Collective database (Helikar et al. 2012; https://
cellcollective.org). In the case of EFs and EUFs, each
node can be assigned BFs ranging over numerous values
of average sensitivities, whereas for the LOFs of a given
kind, there exists multiple functions, but all with the
same value of average sensitivity.

Figure 5. Sensitivity distribution of the various models in the biological dataset using various types of BFs. The sensitivity
of models where the structure of the reconstructed biological network is preserved but with the BFs replaced by one of the
following types: random EFs, random EUFs, AND-NOT, OR-NOT, AND-pairs, and OR-pairs LOFs. For comparison, we
also include the case where the functions are as assigned originally in the reconstructed biological model. Since nodes with
only activators or only inhibitors as inputs cannot be assigned LOFs, we assigned the biological functions to them and
calculated the average sensitivity of the resulting network. This is done even in the case of EFs and EUFs so as to ensure a
fair comparison between the distributions of the average sensitivities of the various BFs being considered.
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In figure 5, we see that networks driven by LOF
regulatory logic push the biological network dynamics
towards criticality (s=1) (supplementary table 5). Based
on the fraction of networks lying in the outliers of the
biological distribution (supplementary table 6), AND-
NOT and OR-NOT LOFs lead to more realistic
behavior than other types of logic functions. Details of
the procedure to generate EFs and EUFs and other
assumptions used in these computations can be found
in the supplementary material.

4. Discussion

A large-scale analysis to assess the abundance of LOFs
in Boolean models of biological networks has not been
carried out so far. The present analysis reveals the high
preference for AND-NOT logic in the regulatory rules
of genetic networks. This preference coupled with the
fact that LOFs occupy a minute region in not only the
space of all BFs but also within EUFs raises the
question: why are LOFs, specifically the AND-NOT
logic, preferred over other choices of BFs? We tackle
this question by determining how the imposition of
various types of regulatory rules affects damage
spreading in such networks. Daniels et al. (2018), by
using average sensitivity that is a static measure of
damage spreading, showed that having canalyzing
rules pushes Boolean models towards criticality. We go
one step further to show that within both canalyzing
functions and ‘consistent’ logic functions (i.e., EUFs),
although LOF logic drives network dynamics towards
criticality, eukaryotic mechanisms are predominantly
driven by AND-NOT logic. Biological networks
governed by OR-NOTs fall slightly in the ordered
regime, in comparison with other types of BFs.
Given that there are multiple advantages to choosing

LOFs as regulatory logic, it is worth noting that LOFs
are also limited in their scope as they require at least
one activator and one inhibitor. We observe that such
nodes, all of whose inputs are either only activators or
only inhibitors, are abundant in biological networks
(supplementary table 4). Thus, it is the combined effect
of those logic functions and the AND-NOT logic that
shape the models we have studied here.
This work raises multiple questions for further

investigations. First, is there a network structure–
function relationship (Henry et al. 2013) which could
give us a deeper insight into why certain logics are
more preferable than others? Second, in tackling the
problem of model selection, if we apply additional
biological constraints such as the relative stability

(Zhou et al. 2016) (in cellular differentiation processes)
of attractors, how faithful will constructed models,
whose functions are LOFs, be to the biology?
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