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Cancer: More than a geneticist’s Pandora’s box
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Despite identical genetic constitution, a cancer cell population can exhibit phenotypic variations termed as non-
genetic/non-mutational heterogeneity. Such heterogeneity – a ubiquitous nature of biological systems – has
been implicated in metastasis, therapy resistance and tumour relapse. Here, we review the evidence for
existence, sources and implications of non-genetic heterogeneity in multiple cancer types. Stochasticity/noise
in transcription, protein conformation and/or external microenvironment can underlie such heterogeneity.
Moreover, the existence of multiple possible cell states (phenotypes) as a consequence of the emergent
dynamics of gene regulatory networks may enable reversible cell-state transitions (phenotypic plasticity) that
can facilitate adaptive drug resistance and higher metastatic fitness. Finally, we highlight how computational
and mathematical models can drive a better understanding of non-genetic heterogeneity and how a systems-
level approach integrating mathematical modeling and in vitro/in vivo experiments can map the diverse
phenotypic repertoire and identify therapeutic vulnerabilities of an otherwise clonal cell population.
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1. Introduction

Cancer is thought to originate from an individual nor-
mal cell that gains genetic mutation(s) offering it
growth advantage over other cells. A clonal population
of cells can arise from this ‘first’ cancer cell; this
population has identical genetic composition (Nowell
1976; Greaves and Maley 2012). As time progresses,
some of these cells can gain additional mutations, thus
leading to sub-clones, some of which can be more fit as
compared to others and thus undergo natural selection
to become the predominant sub-clone(s). Recent stud-
ies across clonal populations in cancer cells as well as

other biological contexts (such as microorganisms;
Davidson and Surette 2008) have proposed that phe-
notypic variations exist among genetically identical
cells (Brock et al. 2009). These phenotypic variations
are referred to as non-genetic heterogeneity (NGH),
highlighting their non-genetic/non-mutational origin.
Such non-genetic mechanisms can include a combi-
nation of various processes such as stochasticity or
noise in gene expression (Balázsi et al. 2011), asym-
metry in distribution of molecules during cell division
(Huh and Paulsson 2011), variability in epigenetic
status of cells (Bell and Gilan 2020), promiscuity in
protein–protein interaction networks due to disorder in
protein structures (Lin et al. 2019) and ability of cells
to exhibit multiple phenotypes (multistability) as a
result of feedback loops embedded in a gene regulatory
network (Evans and Zhang 2020; Hari et al. 2020).
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Consequently, cells in a clonal population can have
variability in their protein levels, chromatin accessi-
bility status, metabolites, etc., which can eventually
manifest as different phenotypes. Non-genetic hetero-
geneity has been shown to offer survival advantages to
cells in fluctuating environments such as drug treat-
ment, hypoxia and nutrient deprivation, by facilitating
‘bet-hedging’, an evolutionary strategy to achieve fit-
ness across environmental conditions (Veening et al.
2008a, b; Pisco and Huang 2015; van Boxtel et al.
2017; Bell and Gilan 2020; Sahoo et al. 2021a).
However, unlike genetic heterogeneity that has been
extensively investigated for decades (McGranahan and
Swanton 2017), understanding the underlying mecha-
nisms and implications of non-genetic heterogeneity in
cancer research is still in its infancy (Marine et al.
2020; Barzgar Barough et al. 2021; Lewis and Kats
2021; Shlyakhtina et al. 2021).
The ‘one gene–one enzyme’ hypothesis postulated in

1941 (Beadle and Tatum 1941) was among the first to
propose a one-to-one mapping between the genotype
and phenotype. However, as we now realize, a phe-
notype is the outcome of extensive cross-talk among
many biological factors that form regulatory networks
at various length scales and time scales, revealing
pleiotropy (Tyler et al. 2009) in the genotype–pheno-
type map. Regulatory networks in biological systems
consist of multiple feedback loops which can produce
more than one phenotype depending upon cell-intrinsic
(e.g., rates of transcription, translation and protein
degradation) and cell-extrinsic (e.g., temperature,
oxygen and nutrient availability) factors (Brandman
and Meyer 2008). Thus, despite having identical
genetic composition, clonal cancer cells can display
differences in phenotypic properties such as growth
rates (Vega et al. 2004), tumour initiation capabilities
(Mani et al. 2008; Pasani et al. 2021) and the ability to
evade therapeutic attacks (Sharma et al. 2010; Paek
et al. 2016; Shaffer et al. 2017). Intriguingly, cells can
switch back and forth among these different pheno-
types, driving reversible changes which may or may
not be inherited, unlike mutational effects which are
irreversible in nature and ‘hard-wired’ to be passed on
to progeny.
In this review, we first discuss the tacitly assumed

essentiality and sufficiency of mutations for some
aspects of cancer progression and highlight some
observations that cannot be completely explained by
the somatic mutation theory alone. Next, we provide
evidence of non-genetic heterogeneity observed in
clonal cancer cell populations and offer mechanistic
details for some of its sources. Finally, we discuss the

implications of such heterogeneity in various hallmarks
of cancer. We also highlight the contribution made by
mathematical models to understand non-genetic
heterogeneity and suggest that a systems-level under-
standing integrating theory and experimental observa-
tions may provide a better understanding of non-
genetic heterogeneity and how this knowledge may be
leveraged to restrict aggressive clinical outcomes.

2. Are mutations necessary for cancer
progression?

For many years, DNA mutations have been considered
to be the main cause of cancer initiation wherein a
mutation in an oncogene or tumour suppressor gene
can drive abnormal cell growth. Such mutations are
implicitly assumed to be necessary and sufficient for
cancer progression, leading to the most popular and
widely accepted concept in the field of cancer biology
– somatic mutation theory (SMT) – which posits a
mutation in a single somatic cell as the first step of
cancer (Sonnenschein et al. 2014). This mutation in a
cell is considered to be sufficient to perturb its cell
cycle regulation, leading to uncontrolled cell prolifer-
ation. However, many observations in cancer biology
do not appear, at least prima facie, in consensus with
SMT, such as spontaneous regression of childhood
neuroblastoma without any cytotoxic therapy (Haas
et al. 1988), ependymomas in children (MacK et al.
2014), reprogramming of cancerous cells to normal
cells when implanted into normal microenvironments
(Mintz and Illmensee 1975; McCullough et al. 1997;
Kasemeier-Kulesa et al. 2008; Bussard et al. 2010),
stromal induction of carcinogenesis in epithelial cells
(Barcellos-Hoff and Ravani 2000; Maffini et al.
2004, 2005; Barclay et al. 2005), and the cycling of
hepatic cells from cancerous to normal (dormancy) by
the dialling up or down of the wild-type MYC onco-
gene (Shachaf et al. 2004; Shachaf and Felsher 2005).
Thus, an alternative to SMT, although yet not that

popular, after SMT has been proposed recently – tissue
organization field theory (TOFT) (Soto and Sonnen-
schein 2011). TOFT considers cancer to be a tissue-
based disease (instead of a cell-based disease as con-
sidered by SMT) akin to development gone awry.
According to TOFT, cancer arises as a result of
simultaneous occurrence of two steps: a disturbed
interaction between parenchyma and stroma resulting
in altered tissue organization and a weaker inhibitory
control exerted by tissues over cell proliferation (Son-
nenschein and Soto 2015). TOFT is further supported
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by observations that primary tumours can metastasize
to only few specific organs, indicating that the stroma
of an organ plays an important role in determining
whether or not cancer cells attached to it can start
metastatic growth in it (Tarin 2011). This concept is
endorsed by recent observations suggesting that cancer
cells can carry their own stroma (‘soil’ as per Paget’s
‘seed and soil’ hypothesis; Paget 1889) for successful
metastasis (Duda et al. 2010). While the discussion
about similarities, differences and complementarity
between SMT and TOFT is beyond the scope of this
review, the dynamics of cancer metastasis offers an
intriguing scenario to dissect the role of mutations in
cancer progression.
Despite tremendous advances in high-throughput

single-cell sequencing in the last decade, no unique
mutational signature has yet been identified for
metastasis (Celià-Terrassa and Kang 2016; Welch and
Hurst 2019). However, non-genetic variability due to
network architecture between metastasis suppressors
and metastasis drivers has been shown to generate a
subpopulation of pro-metastatic cells without gaining
any additional genetic changes (Lee et al. 2014). This
variability further leads to cellular or phenotypic plas-
ticity – the ability of cells to reversibly switch their
phenotypes, and has been proposed as a hallmark of
metastasis (Bhatia et al. 2020; Biswas and De 2021;
Sacchetti et al. 2021). One of the key axes of pheno-
typic plasticity during metastasis is epithelial–mes-
enchymal plasticity (EMP), where cells can transition
among a range of phenotypes spread over a spectrum
ranging from more epithelial (usually more adhesive
and less invasive) to more mesenchymal (usually more
invasive and having reduced cell–cell adhesion) (Gupta
et al. 2019; Pastushenko and Blanpain 2019). EMP can
have transcriptional (Yang et al. 2004; Cieply et al.
2012; Ocaña et al. 2012; Roca et al. 2013; Subbalak-
shmi et al. 2020) and/or epigenetic (Ruscetti et al.
2016; Jia et al. 2019; Nihan et al. 2019; Serresi et al.
2021) regulatory control. Thus, the dynamics of com-
plex interconnected networks at various levels of reg-
ulation can dictate the propensity of a cell to slide along
the ‘EMP axis’. Moreover, EMP can influence other
axes of plasticity such as stemness/tumour initiation
potential (Celià-Terrassa et al. 2012; Jolly et al. 2015),
resistance to cell death caused by anchorage indepen-
dence (anoikis) (Huang et al. 2013), resistance to var-
ious targeted therapies and immunotherapy across
cancers (Chouaib et al. 2014; Tripathi et al. 2016;
Dongre et al. 2017; Sahoo et al. 2021a; Shafran et al.
2021), increasing cancer cell fitness during the meta-
static cascade. Thus, EMP is a canonical example of

phenotypic plasticity and consequent non-genetic
heterogeneity implicated in successful metastasis.
Metastasis is a highly inefficient process (Luzzi et al.

1998; Cameron et al. 2000) during which the local
microenvironment of disseminated cells is quite
dynamic, and cells need to adapt rapidly to survive the
bottlenecks they face. The timescale of obtaining the
‘right’ mutation that can tunnel cells through that bot-
tleneck is over multiple cell divisions, thus being lar-
gely inconsequential to the probability of cells
surviving that bottleneck. Moreover, while a newly
acquired mutation may enhance the survival likelihood
of a circulating tumour cell for a given bottleneck, it
can compromise the ability of the cell to adapt to
additional bottlenecks due to irreversible changes in its
phenotypic repertoire. Put together, fast and reversible
adaptations at a phenotypic level (i.e., Shachaf and
Felsher 2005, non-genetic) seem to be playing an
instrumental role in enabling cancer metastasis as
compared to slow and irreversible adaptations available
at a genetic level. Hence, it is not surprising that while
cells from various sub-clones of the primary tumour
have been seen in circulating tumour cells and capable
of metastasizing (Lyberopoulou et al. 2015; Simeonov
et al. 2021), no unique mutational footprints have yet
been deciphered, unlike other hallmarks of cancer, for
which mutations in various oncogenes and/or tumour
suppressor genes have been pinpointed (Hanahan and
Weinberg 2011; Mantovani et al. 2019). Such plasticity
during metastasis can lead to phenotypic (non-genetic)
heterogeneity, as witnessed in circulating tumour cells
(CTCs) across cancer types (Yu et al. 2013; Bocci et al.
2021). Consistent with the observed impact of plas-
ticity on the evolvability of cellular traits (Fierst 2011),
non-genetic heterogeneity has been identified to impact
evolutionary dynamics in lung cancer beyond genetic
heterogeneity as well (Sharma et al. 2019).
Besides metastasis, phenotypic plasticity and non-

mutational heterogeneity have been implicated in the
emergence of adaptive drug resistance (Boumahdi and
de Sauvage 2020; Qin et al. 2020; Oren et al. 2021),
particularly through drug-tolerant persister (DTPs) – a
subpopulation of cells that can survive sustained ther-
apeutic attack by entering a reversible slow-prolifera-
tion state (figure 1). DTPs adapt to environmental
fluctuations through epigenomic, transcriptional and
metabolic reprogramming events, and are capable of
expanding into a colony (Shen et al. 2020b). Initially
reported in lung cancer (Sharma et al. 2010), persisters
have been reported in other cancer types as well such as
melanoma and colorectal cancer (Hangauer et al. 2017;
Shen et al. 2020a; Karki et al. 2021; Mikubo et al.

Cancer: More than a geneticist’s Pandora’s box Page 3 of 20    21 



2021; Oren et al. 2021; Rehman et al. 2021). Intrigu-
ingly, DTPs can act as a reservoir subpopulation
through which genetically mutated cells can emerge to
stabilize diverse drug resistance mechanisms at a
longer timescale (Ramirez et al. 2016). Thus, genetic
and non-genetic mechanisms can be thought to coop-
erate to allow cancer cell adaptation at different time-
scales during the emergence of drug ‘resistance’
(Salgia and Kulkarni 2018; Hayford et al. 2021).

3. Are mutations sufficient for cancer progression?

Investigations into mechanisms of cancer initiation
have also questioned the sufficiency of genetic
mutations in cancer cells. For example, transformation
of a normal cell to a cancerous melanoma cell has
been shown to be triggered by imbalance in physio-
logical factors along with exposure to the environ-
mental carcinogen ultraviolet B (UVB) (Berking et al.
2004). Using human skin grafting experiments in
immune-compromised mice, it was found that
exposing normal melanocytes to increased levels of
fibroblast growth factor, stem cell factor and
endothelin-3, along with exposure to UVB, could
transform normal melanocytes to a cancerous mela-
noma within four weeks of treatment, while treatment
with individual growth factor along with UVB had no
effect (Berking et al. 2004). This study suggests that
only an external carcinogen is not always sufficient to

initiate cancer; instead, some internal physiological
imbalance is crucial as a permissive key to trigger
neoplastic transformation. Consistently, another study
in UV-induced melanoma argues that the susceptibil-
ity or resistance of mice to develop cancer strongly
depends upon the presence of variants in the modifier
genes along with the pathogenic genetic mutation
(Ferguson et al. 2019). Thus, apart from genetic
mutation(s), the overall genetic make-up of an
organism and/or perturbation in the local environment
may contribute to the induction of carcinogenesis,
offering possible reconciliation between SMT and
TOFT.
A commonly asked question in cancer biology is, ‘If

mutations in cancer-associated genes are sufficient for
neoplastic transformation, why do normal cells carry-
ing similar somatic mutations not get transformed and
develop cancer?’ With advancements in DNA-se-
quencing technologies, it is now possible to detect low-
frequency somatic mutations in normal cells (Kennedy
et al. 2019). The existence of somatic mosaicism (ge-
netically distinct somatic cells harboured by an indi-
vidual through DNA structural abnormalities,
epigenetic changes and errors in chromosome parti-
tioning) is well established (Youssoufian and Pyeritz
2002). Thus, genetic instability is not necessarily a
unique property of cancer cells but inherent to all
somatic cells, further emphasizing the role of altered
microenvironments and/or other permissive cues in
tumour initiation (Lichtenstein 2018). For example,

Figure 1. Non-genetic heterogeneity in a cell population and its impact on therapeutic efficacy. Upon exposure to a given
therapy, a majority of cancer cells die (fractional killing), but a few of them can survive either due to pre-existing mutations
and/or pre-existing (non-genetic) heterogeneity or due to additional non-genetic adaptations such as a phenotypic switch.
Application of another therapy may lead to further phenotypic diversification.
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deleterious, age-associated, somatic mutations in the
TP53 gene, commonly associated with serous ovarian
cancer, are also detected at a very low frequency in the
peritoneal fluid from women without cancer (Krimmel
et al. 2016). Similarly, cancer-associated somatic
mutations arising due to clonal expansion of
hematopoietic cells have been reported in healthy
individuals (Genovese et al. 2014; Xie et al. 2014).
Such mutations are also detected in solid tissues of
healthy individuals such as skin, colon, endometrium,
brain, etc. (Kennedy et al. 2019). Conversely, in
ependymomas – common childhood brain tumours –
no significant recurrent mutations were detected in a
cohort (MacK et al. 2014).
Together, these studies provide a strong indication

that the presence of genetic mutations may not always
result in tumour initiation, and that other permissive
cues within a cell and/or its local microenvironment
may drive neoplastic transformation of normal cells
and tumour progression as well.

4. Evidence of non-genetic heterogeneity in clonal
population of cells

The evidence of non-genetic heterogeneity in clonal
populations was first noted in microorganisms. For
example, Dictyostelium discoideum shows a bimodal
(two-peak) distribution of motility speed and calcium
content within 15 minutes upon starvation. The
observed differences also reverted within 15 minutes
after restoration of the nutrient medium, indicating
reversible state transitions (Goury-Sistla et al. 2012).
Similarly, variations in the levels of intracellular cyclic
AMP (cAMP) in Saccharomyces cerevisiae has been
shown to be associated with heterogeneity in growth
rate and in acute stress tolerance. Perturbing this
heterogeneity can impact these functional traits: while
increase in intracellular cAMP levels increases sus-
ceptibility to acute heat stress, PKA inhibition decrea-
ses it, suggesting that underlying population structures
get altered in opposite directions by these perturbations
(Li et al. 2018).
While cell-extrinsic perturbations can reveal non-

genetic heterogeneity, it may also arise due to cell-
intrinsic variations in functioning of homeostasis in cell
organelles. For example, variability in mitochondrial
membrane potential among cells was correlated with
that in proliferation rate, stress tolerance and resistance
to therapy in yeast, identified using high-throughput
automated microscopy (Dhar et al. 2019). Similar to
unicellular organisms (Elowitz et al. 2002), eukaryotes

also exhibit non-genetic cell-to-cell variability. For
instance, the clonal population of mouse hematopoei-
tic cells showed a distribution of levels of the stem cell
marker Sca-1. While the Sca-1high subpopulation with
increased expression of PU.1 preferentially differenti-
ated to a myeloid lineage, the Sca-1low subpopulation
expressing higher levels of GATA1 showed greater
preference towards erythroid differentiation, high-
lighting how stochasticity can impact lineage choice in
mammalian progenitor cells (Chang et al. 2008).
More recently, a population of cancer cells with

identical genetic background has been observed to
show differential gene expression and protein levels
and consequently functional readouts such as response
to drugs and tumour initiation. Advancement in flow
cytometry methods, single-cell transcriptomics, lineage
tracing and fate-mapping techniques have provided
increasing evidence of phenotypic heterogeneity in a
genetically homogenous cancer cell population (Sasa-
gawa et al. 2013; Celià-Terrassa et al. 2018; Karacosta
et al. 2019; Specht et al. 2019; Cook and Vanderhyden
2020). Single-cell expression variability is not unique
to cancer cells; it has been witnessed among homoge-
nous population of non-cancerous cells too, with
important functional implications. For instance, highly
variable genes in lung airway epithelial cells were
enriched with collagen formation; those in dermal
fibroblasts were found to be involved with keratiniza-
tion, and those in lymphoblastoid cells were enriched
with cytokine signaling (Osorio et al. 2020).
Multilineage differentiation programs operated in

solid tissues have been proposed as potentially
responsible for non-genetic heterogeneity observed in
cancer cells. For example, six molecular subtypes of
normal Fallopian tube epithelium (FTE; cells of origin
of serous ovarian cancer (SOC)) were identified using
transcriptomic analysis of 4000 normal FTEs, which
was used to deconvolute non-genetic heterogeneity
observed in high-grade SOC (Hu et al. 2020). Simi-
larly, using single-cell PCR gene-expression profiling,
non-genetic transcriptional variability observed in
human colon cancer was demonstrated to be similar to
different lineages of normal colon epithelium (Dalerba
et al. 2011). Different single-cell transcriptomics or
proteomics methods are offering unprecedented
insights into elucidating patterns of heterogeneity in a
homogenous cell population. For example, co-se-
quencing of microRNA-mRNA in individual cells
using the half-cell genomics approach showed that
variability of microRNA levels may drive non-genetic
heterogeneity among cells (Wang et al. 2019). Simi-
larly, two distinct cell populations within a melanoma

Cancer: More than a geneticist’s Pandora’s box Page 5 of 20    21 



tumour were observed to be characterized by variable
expression levels of microphthalmia-associated tran-
scription factor (MITF) (Tirosh et al. 2016; Rebecca
and Herlyn 2020). Further, subpopulations with vary-
ing differential EphA cluster morphologies and intrin-
sic migration potential were observed in breast cancer
cells using single-cell assays (Ravasio et al. 2020).
Identification of such heterogeneity has revealed that
multiple cancer subtypes may coexist within an indi-
vidual tumour (Yeo and Guan 2017). Relative propor-
tions of cells exhibiting distinct subtypes constituting a
tumour are expected to be highly dynamic and under
constant drug-induced evolutionary pressures.
An outstanding example of phenotypic plasticity in

cancer is EMP, which includes transition of cells
among epithelial (E), mesenchymal (M) and hybrid
E/M states (Celià-Terrassa and Jolly 2020). Epithelial–
mesenchymal transition (EMT) and its reverse mes-
enchymal–epithelial transition (MET) – which together
constitute EMP – are fundamental processes in devel-
opment and wound-healing where they facilitate the
movement of cells from one location to another (Nieto
et al. 2016). This property of EMT–MET is exploited
by and benefits cancer cells, where it not only confers
cell motility (Pearson 2019) but also is implicated in
metabolic reprograming (Krebs et al. 2017; Jia et al.
2021), tumour-initiation potential (Grosse-Wilde et al.
2015; Kröger et al. 2019), multi-drug resistance (Shi-
bue and Weinberg 2017), immune evasion (Chen et al.
2014; Dongre et al. 2017; Sahoo et al. 2021b) and
eventually patient survival (Tan et al. 2014; George
et al. 2017). Clonal population of cancer cells may
display a dynamic EMP status depending upon the
relative levels of inducers and/or stabilizers of mes-
enchymal states (EMT-inducers such as ZEB/SNAIL
family members) and those of epithelial ones (MET-
inducers such as GRHL, OVOL and miR-200 family
members) which often regulate the cellular levels of
one another through reciprocal feedback loops (Bra-
bletz and Brabletz 2010; Kvokackova et al. 2021).
Various stabilizers of hybrid E/M phenotypes such as
NRF2 and NUMB can influence the cell-state transition
rates among different phenotypes along the ‘EMP axis’
(Hong et al. 2015; Bocci et al. 2017, 2019b; Biswas
et al. 2019).
At a cell morphological level, EGF-induced EMT in

breast cancer cells can be classified into three distinct
reversible morphological states and function in a dose-
dependent manner: cobble, spindle and circular
(Devaraj and Bose 2019). Similarly, using a Z-cad
dual-sensor system with an epithelial and a mes-
enchymal marker together, dynamic changes in breast

cancer cells undergoing EMT or MET can be observed,
which can help isolate the subpopulation displaying
mesenchymal properties from a population consisting
of predominantly epithelial-like cells (Toneff et al.
2016). Moreover, the percentage of cells in E, hybrid
E/M and M states at various timepoints during EMT
induction can be quantified using such a sensor and/or
single-cell RNAseq data, highlighting patterns of
heterogeneity (Jia et al. 2019; Cook and Vanderhyden
2020; Deshmukh et al. 2021). Reversible changes in
the frequency of epithelial and mesenchymal cell states
have been seen not only in vitro but also in the circu-
lating tumour cell (CTC) composition of cancer
patients with each cycle of response to therapy (Yu
et al. 2013). Further, there may be heterogeneity in
hybrid E/M states as well, as identified in primary skin
and mammary tumours (Pastushenko et al. 2018) as
well as in breast and lung cancer cells (Hong et al.
2015; Schliekelman et al. 2015; Karacosta et al. 2019;
Brown et al. 2021). Thus, EMP is an excellent example
of non-genetic heterogeneity where hybrid E/M cells
can possess markers/traits of both E and M states
within a predominant epithelial or mesenchymal cell
population (Grosse-Wilde et al. 2015; Andriani et al.
2016; Celià-Terrassa et al. 2018).
A major reason enabling non-genetic heterogeneity

in EMP has been multistability in underlying regula-
tory networks (Steinway et al. 2015; Font-Clos et al.
2018; Watanabe et al. 2019), which can often introduce
asymmetry in the ‘paths’ taken by cells during EMT vs.
those taken during MET. Indeed, transcriptional pro-
filing of metastatic prostate cancer reveals that the
expression profiles of cells at various timepoints are not
just the reverse of those seen when cells underwent
EMT (Stylianou et al. 2019). Similar patterns of hys-
teresis were seen in proteomics of lung cancer cells
(Karacosta et al. 2019). Therefore, despite much
investigation, we do not have a unique EMP signature
that can be applied in a pan-cancer manner to identify
whether cells are undergoing EMT or MET at a given
timepoint and, by extension, a signature that can esti-
mate the metastatic potential of cells.
Non-genetic heterogeneity has also been reported for

a trait connected with EMT-Cancer Stem Cells (CSCs).
CSCs were earlier thought to occupy the apex of cell
differentiation (i.e., hierarchical model), but recent
evidence has shown that CSCs and non-CSCs can
interconvert among one another at both molecular and
functional levels (Tang 2012; Thankamony et al.
2020). Moreover, CSCs can have multiple categories
with varied EMT status: the CD44?/CD24- CSCs in
breast cancer are more mesenchymal-like, while the
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ALDH? and CD44? CD24? ones map to a hybrid
E/M phenotype (Liu et al. 2014; Colacino et al.
2018; Bocci et al. 2019a; Asadullah et al. 2021).
Such subpopulations may stochastically transition
among one another, suggesting that the tumorigenic
potential of cancer cells is strongly associated with
intrinsic plasticity rather than CSC multipotency per se
(Dirkse et al. 2019). Similarly, in lung cancer, different
subpopulations (holoclone, paraclone and meroclone)
displayed variable tumour initiation capacity and EMT
traits (Tièche et al. 2018). They maintained distinct
morphology during short-term culture and displayed
distinct markers and RNA expression profiles. While
holoclones displayed the maximal epithelial trait, the
paraclones displayed the most mesenchymal one, with
meroclones being intermediate. Moreover, holoclones
showed the highest and paraclones the lowest tumour-
initiation capacity in vivo. On the other hand, para-
clones showed the highest and holoclones had the
lowest drug resistance features (Tièche et al. 2018).
Subpopulations of CSCs have also been seen in squa-
mous cell carcinoma (Biddle et al. 2011, 2016) and
colorectal cancer (Hirata et al. 2019) among others.
Another axis connected to EMT that has growing

evidence of phenotypic plasticity and heterogeneity is
that of drug resistance. Of course, resistance can emerge
due to de novo existing mutations in a subpopulation of
cells and/or additional mutations gained during thera-
peutic assault, but non-genetic factors can play a role in
driving drug resistance too (Salgia and Kulkarni 2018;
Marine et al. 2020; Rebecca and Herlyn 2020). For
instance, a partial or full EMT can drive ER? breast
cancer cells into resistance to tamoxifen and/or doc-
etaxel; intriguingly, tamoxifen-resistant cells tend to be
more mesenchymal than their sensitive counterparts,
indicating a mutual causal connection between these
axes (Prieto-Vila et al. 2019; Sahoo et al. 2021a). Sim-
ilarly, non-genetic heterogeneity may provide a mecha-
nism to adapt to drug treatment. By using quantitative
proteomics and computational modeling, it was shown
that immediately after exposure to RAF/MEK inhibitors
such as vemurafenib, the BRAFV600E melanoma ‘per-
sister’ cells show adaptive changes involving brief pul-
satile reactivation of the MAPK pathway which can
activate ERK signaling in neighbouring cells too. These
pulses enable ‘persister’ cells to escape cell cycle arrest
and sustain long-term resistance at a non-genetic level.
This study providesmechanistic detail of the role of non-
genetic heterogeneity in emergence of drug resistance in
a genetically identical population (Gerosa et al. 2020).
Additional analysis of drug-tolerant ‘persisters’ in mel-
anoma has indicated how vemurafenib treatment can

trigger cell-state transitions into a more undifferentiated
phenotype which is therapeutically resilient (Su et al.
2017, 2019; Pillai and Jolly 2021). Such transitions are
often reversible, as seen for EMT (Tripathi et al. 2020),
thus enabling resumption of growth upon drug removal.
Also, these drug-tolerant ‘persisters’ can serve as a
reservoir of cells some of which may acquire additional
mutations at prolonged timescales, leading to ‘stabi-
lization’ of the drug-resistant phenotype, as seen in lung
cancer cells treated with gefitinib (Ramirez et al. 2016).
The concept of persisters was initially reported in

bacterial populations which, when exposed to antibiotic
drugs, show differential killing rates such that the
majority of bacterial cells (drug-sensitive) show fast
killing rates and a steep decrease in their survival, while
a small fraction of cells show slow killing with relatively
slower decrease in their survival (Brauner et al. 2016;
Rossi et al. 2019). This biphasic time-kill curve pin-
pointed the existence of a small fraction of cells called
‘persisters’, which, when isolated and grown in drug-
free medium, repopulated the initial bacterial population
consisting of drug-sensitive and persister cells, indicat-
ing phenotypic switching (Balaban et al. 2004) rather
than inherited genetic mutations (Moyed and Bertrand
1983). Persister cells may arise from dormant bacterial
cells even before exposure to antibiotics as suggested
from single-cell and flow cytometry studies (Harms
et al. 2016; Rossi et al. 2019), indicating the idea of bet-
hedging, an evolutionary strategy to maximize fitness
and survival of clonal population in dynamic environ-
ments by incorporating phenotypic heterogeneity
(Veening et al. 2008a, b). Moreover, it indicates that
within a clonal population, cells can have different
interconvertible subpopulations, indicating bistability in
biological systems (Feng et al. 2014; Jolly et al. 2018a).
Reinforcing observations are reported in luminal breast

cancer using single-cell RNA sequencing, where a sub-
population of ‘pre-adapted’ cells, with reduced levels of
estrogen receptor (ERa) and increased properties of qui-
escence and migration, undergo transcriptional repro-
gramming upon drug treatment and gather copy number
changes to gain long-term resistance to endocrine therapy
(Hong et al. 2019). Another study investigating the
mechanism of drug resistance in triple-negative breast
cancer has shown that after treatment with doxorubicin
combined with cyclophosphamide, the residual tumour
cells maintained the sub-clonal architecture of an
untreated tumour; however, their transcriptomic, pro-
teomic andhistological profileswere different from that of
the untreated tumour profiles. Once the drug treatment
was stopped, residual tumours gave rise to drug-sensitive
tumours with similar expression profiles as that of the
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untreated tumour, indicating reversible chemotherapy
tolerance (Echeverria et al. 2019). Similar analysis of
trajectories of escapees fromALK inhibitor treatmentwas
seen in NSCLC, where both genetic and non-genetic
mechanisms contributed to gradual adaptation and gained
resistance (Vander Velde et al. 2020).
Considered together, emerging evidence along mul-

tiple axes of cellular plasticity – EMT, CSCs and drug
resistance – strongly endorses the role that non-genetic
heterogeneity and consequent possible cell adaptation
trajectories can play in facilitating tumour survival,
therapy resistance and relapse.

5. Sources of non-genetic heterogeneity

What are the mechanisms that can result in non-genetic
heterogeneity within a clonal population of cells as
observed in microorganisms and cancer cells, as well as
during embryonic development of a metazoan? Here,
we briefly review some canonical sources of non-ge-
netic heterogeneity in different scenarios, and their
implications.

5.1 Epigenetic regulation and transcriptional
noise

Besides genomic changes, some changes in chromatin
such as covalent modification of chromatin compo-
nents (DNA methylation and histone modification) can
be inherited (Gerlinger et al. 2012). DNA hyperme-
thylation and hypomethylation have been extensively
studied in cancer and may result in the inactivation of
tumour suppressor genes or activation of oncogenes,
respectively (Feinberg et al. 2016; Kazanets et al.
2016). Recently, using single-cell RNA sequencing of
naı̈ve and drug-resistant acute myeloid leukemia
(AML) patient samples, the occurrence of non-genetic
resistance to BET inhibitor – driven by epigenetic
mechanisms and transcriptional plasticity – was
observed (Bell et al. 2019). Similarly, epigenetic
changes can drive reversible drug tolerance observed in
non-small-cell lung cancer cells (Sharma et al. 2010).
These studies highlight the role of chromatin changes
in non-genetic adaptation and pinpoint the compen-
satory mechanisms used by cancer cells to survive
therapeutic attacks (Bell et al. 2019). Such chromatin-
level changes, especially those including pioneer tran-
scription factors, can alter the transcriptional landscape
by mediating access to the corresponding promoter
and/or enhancer regions.

Transcriptional processes are inherently stochastic,
i.e., the production ofmRNAand turnover rate ofmRNA
and protein can produce gene expression noise, which
arises due to random binding of transcription factors to
the gene promoter (Mcadams andArkin 1997; Raser and
O’Shea 2004). Non-continuous transcription may fluc-
tuate the promoter between an ‘ON’ state (which results
in a transcription burst, producingmRNA transcripts at a
high rate) and an ‘OFF’ state (which pauses transcrip-
tion) (Raj et al. 2006; Singh et al. 2012; Kumar et al.
2015; Friedrich et al. 2019). The amount of RNA pro-
duced from a particular gene depends upon the fre-
quency, amplitude and duration of the transcription burst
which may be specific for a particular cell depending
upon extrinsic noise such as concentration and avail-
ability of general transcription factors (Elowitz et al.
2002). The frequency and size of a transcriptional burst
also depends upon the composition of the gene promoter
which can modulate binding affinities and trans-acting
factor concentrations (Hendy et al. 2017). For example,
it is shown that the presence of a TATA box in the gene
promoter is associated with higher noise (Hornung et al.
2012; Tantale et al. 2016). In addition, transcription
bursting also depends upon enhancer–promoter inter-
action and enhancer strength (Fukaya et al. 2016).
Enhancers control the spatial and temporal expression of
genes by recruiting gene-specific transcription factors
(Buecker and Wysocka 2012). Similar to the rate of
synthesis, the rate of degradation of mRNA also influ-
ences gene expression noise (Baudrimont et al. 2019).
Thus, gene expression noise may differ drastically
between genetically identical cells depending on multi-
ple factors (Balázsi et al. 2011; Urban and Johnston
2018) which may result in phenotypic variations in cells
(Brock et al. 2009) by imparting variability and/or
memory for protein levels in a cell (Sigal et al. 2006).
Transcriptional noise has been implicated as a source

for cell-fate decision-making in yeast (Blake et al.
2006), bacteria (Süel et al. 2006) and many mammalian
systems (Moris et al. 2016). More recently, it has been
shown to influence cancer progression. In leukemia,
depletion of acetyl-transferase KAT2A enhances tran-
scriptional bursting and variability, depletes leukemic
stem-like cells and delays disease progression (Dom-
ingues et al. 2020).

5.2 Conformational noise

Intrinsically disordered proteins (IDPs) are proteins,
which, unlikemany other proteins, lack awell-defined 3D
structure either locally or throughout the protein and
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display a high degree of flexibility which can confer
‘conformational noise’ due to promiscuity in their inter-
actions (Mahmoudabadi et al. 2013). This ‘conforma-
tional noise’ may manifest differently in different cells,
depending on the fluctuations that such IDPs may go
through in individual cells. Due to their high conforma-
tional flexibility, IDPs serve as a determinant of protein
activity and can often be present as hub proteins in bio-
chemical networks (Haynes et al. 2006; Patil et al. 2010).
IDPs display faster binding/unbinding rates with their
ligands and may undergo transition from disordered to
ordered states upon binding with their partner or post-
translational modification, and thus may amplify
promiscuity and bring stochasticity in interactions in
biochemical networks (Chakrabortee et al. 2010; Bah
et al. 2015; Jolly et al. 2018a; Lin et al. 2018). This
promiscuity may lead to dynamic rewiring of protein–
protein interaction networks, thus potentially impinging
on transcriptional and translational noise also. For
example, many drivers of EMT such as ZEB1 and
OVOL1/2 (Saxena et al. 2020) have been predicted to
contain intrinsically disordered regions (Mooney et al.
2016), adding to the long list of oncogenes and/or tumour
suppressor genes where IDP regions have been reported
consistently (Lin et al. 2019). Depending on which pro-
teins ZEB1 and/or OVOL1/2 stably interact with in a
given time interval, the phenotypic outcome of cells in a
population may be varied.
For example, an IDP associated with prostate cancer –

ProstateAssociatedGene4 (PAGE4)–has been implicated
in phenotypic heterogeneity (Kulkarni et al. 2017; Singh
et al. 2021). PAGE4 is phosphorylated by two kinases,
namely, Homeodomain Interacting Protein Kinase 1
(HIPK1) and CDC-Like Kinase 2 (CLK2). PAGE4 acti-
vates the Activator Protein-1 (AP-1). HIPK1-PAGE4 has a
stronger affinity to AP-1 when compared with CLK2-
PAGE4. Experimental studies and mathematical modeling
have shown that as a result of differential phosphorylation
of PAGE4 which leads to an altered AP-1/androgen
receptor (AR) regulatory circuit, prostate cancer cells can
have a spectrum of phenotypes with varying sensitivity to
the standard-of-care androgen deprivation therapy (ADT).
Furthermore, the fact that amajority of transcription factors
are intrinsically disordered (Staby et al. 2017; Niklas et al.
2018; Tsafou et al. 2018; Zhang and Tjian 2018) lends
further credence to the argument.

5.3 Tumour microenvironment

The tumour microenvironment shows a high degree
of heterogeneity in terms of angiogenesis which

modulates oxygen and nutrient availability, composi-
tion of stromal and immune cells, endothelial cell
density and extracellular matrix composition (Quail
and Joyce 2013; Saxena and Jolly 2019). Hypoxia, for
instance, confers certain phenotypes on tumour cells
present in hypoxic regions, such as stemness (Louie
et al. 2010), EMT (Liu et al. 2017) and chemoresis-
tance (Chen et al. 2015). Similarly, varying spatial
localization of stromal cells and immune cells with
respect to cancer cells can govern the autocrine/para-
crine impact they can have on each other. For example,
cancer-associated fibroblasts (CAFs) have been shown
to expand the breast cancer stem cell population by
secreting prostaglandin (PGE2) and IL-6 (Rudnick
et al. 2011), to promote migration and invasion medi-
ated by high expression of COX-2 in nasopharyngeal
carcinoma (Zhu et al. 2020) and to facilitate neo-an-
giogenesis in hepatocellular cancer via placental
growth factor (Liu et al. 2019). Further, not all
fibroblasts are pro-tumour; a subset of them, as iden-
tified via single-cell analysis, can also support anti-
tumour immunity (Hutton et al. 2021). Similarly,
neutrophils may exert pro- or anti-tumour effects and
these subpopulations may also interconvert among one
another (Furumaya et al. 2020), reminiscent of mac-
rophage phenotypic heterogeneity exhibited along the
M1-M2 axis. Also, feedback loops formed between
immune cells and/or cancer cells of varying phenotypes
can allow for dynamic phenotypic composition in a
tumour, thus influencing its prognosis (Li et al. 2019).
Thus, both cell-autonomous (transcriptional, confor-
mational noise and epigenetic changes) and non-cell-
autonomous (tumour–stroma interactions) can amplify
non-genetic heterogeneity in cancer.

6. Mathematical models to understand non-genetic
heterogeneity

In 1957, Waddington proposed an epigenetic landscape
model to explain how a pluripotent stem cell can dif-
ferentiate into multiple lineages represented as valleys
(Waddington 1957) (figure 2A). From a dynamical
systems theory perspective, these valleys represent
‘attractors’ in a high-dimensional landscape. These
‘attractors’ correspond to stable gene expression pat-
terns defining a phenotype, and for a given gene reg-
ulatory network (GRN), these ‘attractors’ can be
identified by simulating their emergent non-linear
dynamics (Wang et al. 2011; Ferrell 2012; Jia et al.
2017). Many GRNs driving phenotypic plasticity are
multistable in nature, i.e., they have multiple attractors.
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Thus, cells having these GRNs can acquire more than
one phenotype, and can also switch among them under
the influence of biological perturbations or noise
(Wooten and Quaranta 2017; Li and Balazsi 2018;
Sahoo et al. 2020) (figure 2B). Considering the large
number of genes in eukaryotes and their web of com-
plex interactions, there can be many possible ‘attrac-
tors’, but the conditions imposed by the underlying
network topology can restrain the ‘solution space’ to
enable acquisition of only a few attractors. These
conditions are akin to those imposed by energy mini-
mization principles during protein folding, such that
only a limited number of protein configurations are
achieved, starting from a given amino acid sequence.
Thus, cells can be postulated to traverse in a landscape
where each ‘attractor’ corresponds to stable phenotypes
and has a specific basin of attraction (Agozzino et al.
2020). During cancer progression, various genomic

changes may alter access to various cell types/attrac-
tors, thus modifying the underlying landscape (Huang
et al. 2009).
Non-genetic heterogeneity in a clonal population

indicates the presence of multiple stable states (or
attractors) of the sameGRN.Each attractor can have sub-
attractors which make its surface rugged (Chang et al.
2008); in other words, each ‘macro-state’ can have
multiple ‘micro-states’. Owing to various cell-intrinsic
and cell-extrinsic factors underlying biological noise
(Balázsi et al. 2011), stochastic perturbations may result
in the establishment of outlier or edge cells which are
present near the borders of a given basin of attraction
(Brock et al. 2009; Gopalan et al. 2021). Similarly,
during metastasis, the presence of hybrid epithelial/
mesenchymal (E/M) phenotype(s) can accelerate disease
progression due to their enhanced ability to switch to
more epithelial or more mesenchymal ones (Ruscetti

Figure 2. Waddington landscape and phenotypic plasticity. (A) Schematic of the Waddington’s landscape showing multiple
different paths that the cells can take during embryonic development (each ball represents a differentiating cell; each valley
represents a phenotype). (B) (Left) In case of multistability, cells can switch back and forth among various phenotypes
(valleys). (Right) Biological noise due to various sources (transcriptional, conformational, etc.) can drive phenotypic
plasticity.
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et al. 2016; Goetz et al. 2020; Jolly et al. 2018b). Further,
the presence of different subpopulations in multiple
cancers is well established. For instance, using aMarkov
model of stochastic cell transition, it was shown that a
subpopulation of cells returns to equilibrium phenotypic
proportions with time, and thus breast cancer stem cells
arise from non-cancer stem-like cells de novo, high-
lighting the role of stochasticity in enabling phenotypic
heterogeneity in a clonal cell population (Gupta et al.
2011). Another study in small-cell lung cancer (SCLC)
used Boolean modeling of the underlying GRN to show
that the network dynamics can stabilize neuro-en-
docrine/epithelial (NE) or non-neuroendocrine/mes-
enchymal-like (ML) phenotypes which act as attractors.
Additionally, they also found that whenNE andML cells
were treated with cytotoxic drugs, these cells converged
towards a hybrid state displaying surfacemarkers of both
NEandML, possibly as a strategy to escape the cytotoxic
effects of the treatment (Udyavar et al. 2017). Similarly,
in melanoma, identification and simulation of an
underlying GRN enabled four different attractors which
mapped to the four distinct phenotypes reported exper-
imentally – proliferative, neural crest-like, intermedi-
ate/transitory and undifferentiated (Rambow et al. 2018;
Pillai and Jolly 2021). This computational analysis could
also recapitulate the cell-state transition trajectory
observed experimentally upon treatment with vemu-
rafenib through single-cell analysis (Su et al. 2019),
offering a platform to identify novel perturbations that
can enrich or deplete certain phenotypes.
Mathematical models have helped construct the

landscapes of cell-state transitions associated with non-
genetic heterogeneity in cancer, such as those for EMT,
CSCs, metabolic reprogramming and drug resistance,
using both deterministic and stochastic approaches (such
as Gillespie simulations; Gillespie 2007) (Font-Clos
et al. 2018; Kang et al. 2019; Sarkar et al. 2019; Lang
et al. 2021; Sahoo et al. 2021a). Particularly, in EMT, the
concept of partial EMT, also referred as hybrid E/M
phenotypes, has been largely championed by mathe-
matical models decoding the emergent dynamics of
highly inter-connected mutually inhibitory feedback
loops involving miR-200/ZEB and miR-34/SNAIL (Lu
et al. 2013; Tian et al. 2013). These models predicted
that, contrary to previous assumptions, hybrid E/M states
are not mere intermediates or ‘metastable’ states, but are,
instead, stable phenotypes that cells can acquire. Further,
such mechanistic mathematical models have made
experimentally testable predictions about factors stabi-
lizing hybrid E/M states. Validating those predictions
in vitro led to identification of ‘phenotypic stability
factors’ (PSFs) – GRHL2, OVOL1/2, NRF2, NUMB,

NFATc, among others (Hong et al. 2015; Biswas et al.
2019; Bocci et al. 2019b; Pastushenko and Blanpain
2019; Subbalakshmi et al. 2020). Mathematical models
have also elucidated the cell-state transition dynamics
upon EMT induction, identifyingmultiple ‘micro-states’
and/or hybrid E/M phenotypes that cells acquire en route
to EMTin a dose- and/or time-dependentmanner (Zhang
et al. 2014; Steinway et al. 2015; Font-Clos et al. 2018;
Celià-Terrassa et al. 2018; Sha et al. 2020; Deshmukh
et al. 2021). Predictions made by mathematical models
for coupled EMT-stemness networks (Jolly et al. 2014)
about the high tumour-initiating potential of hybrid E/M
phenotypes have also been recently validated in vitro and
in vivo (Bierie et al. 2017; Pastushenko et al. 2018;
Kröger et al. 2019). For instance, the presence of hybrid
E/Mcellswas associatedwith theworst survival in breast
cancer patients and enriched for stem-like cells in dif-
ferent types of breast cancer cell lines with properties
such as increased mammosphere formation and higher
ALDH1 levels (Grosse-Wilde et al. 2015). Another
insight gained bymathematical models of EMThas been
that various positive feedback loops in a GRN drive
plasticity among epithelial, mesenchymal or hybrid E/M
phenotypes (Hari et al. 2020). Indeed, breast cancer cells
with the miR-200/ZEB positive feedback loop perturbed
via CRISPR had reduced metastatic potential in vivo
(Celià-Terrassa et al. 2018), suggesting that mathemat-
ical models can not only elucidate the dynamical prin-
ciples of non-genetic heterogeneity and cell-fate
transitions in cancer, but also pinpoint specific thera-
peutic vulnerabilities to be tested.
The functional role of feedback loops and gene

expression noise in enabling drug resistance was recently
investigated using synthetic gene network circuits to
deconvolute noise from the mean expression of the pur-
omycin-resistance gene with inducible positive and neg-
ative feedback loops in Chinese hamster ovary cells. This
study demonstrated that the greater noise emerging from
the positive feedback loop increased drug resistance at
higher concentrations of puromycin, but at lower drug
concentrations, it delayed long-term adaptation. Further, a
positive correlation between low noise as a result of
negative feedback circuits and mutational adaptation
driving stable drug resistance was observed (Farquhar
et al. 2019). The cross-talk of various positive and nega-
tive feedback loops in a cell can therefore influence its
sensitivity to various chemotherapeutic assaults, leading
to fractional killing (Spencer et al. 2009; Paek et al. 2016;
Miura et al. 2018; Guinn et al. 2020). Such non-genetic
heterogeneity in a clonal cell population, upon the influ-
ence of drug-induced reprogramming, can lead to a rare
and stably resistant subpopulation of cells (Shaffer et al.
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2017). Population dynamics models capturing such
reversible (non-genetic) and/or stable (genetic) resistance
scenarios can suggest combinatorial and/or sequential
therapeutic strategies to prevent or delay the emergence of
tumour (re)growth (Gunnarssson et al. 2020; Cassidy
et al. 2021; Sahoo et al. 2021a).

7. Conclusion

Non-genetic heterogeneity can confer fitness advantage
to a clonal population of cancer cells during metastasis,
acquisition of therapy resistance and tumour progres-
sion. Such heterogeneity can arise from various sources
of biological noise within a cell as well as due to
multistable dynamics of various underlying networks.
Integrated and iterative mathematical–experimental
approaches have been instrumental in identifying the
sources and implications of non-genetic heterogeneity
in cancer. Developing therapeutic strategies which can
target the sources of such heterogeneity in isogenic
cancer cells may result in higher efficacy in preventing
metastasis and tumour progression.

Glossary
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Süel GM, Garcia-Ojalvo J, Liberman L and Elowitz MB
2006 An excitable gene regulatory circuit induces tran-
sient cellular differentiation. Nature 440 545–550

Tan TZ, Miow QH, Miki Y, et al. 2014 Epithelial-
mesenchymal transition spectrum quantification and its
efficacy in deciphering survival and drug responses of
cancer patients. EMBO Mol. Med. 6 1279–1293

Tang DG 2012 Understanding cancer stem cell heterogeneity
and plasticity. Cell Res. 22 457–472

Tantale K, Mueller F, Kozulic-Pirher A, et al. 2016 A single-
molecule view of transcription reveals convoys of RNA
polymerases andmulti-scale bursting.Nat.Commun. 7 12248

Tarin D 2011 Cell and tissue interactions in carcinogenesis
and metastasis and their clinical significance. Semin.
Cancer Biol. 21 72–82

Thankamony AP, Saxena K, Murali R, Jolly MK and Nair R
2020 Cancer stem cell plasticity—a deadly deal. Front.
Mol. Biosci. 7 79

Tian X-J, Zhang H and Xing J 2013 Coupled reversible and
irreversible bistable switches underlying TGFb-induced
epithelial to mesenchymal transition. Biophys. J. 105
1079–1089
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