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Cooking forms the core of our cultural identity other than being the basis of nutrition and health. The increasing
availability of culinary data and the advent of computational methods for their scrutiny are dramatically changing
the artistic outlook towards gastronomy. Starting with a seemingly simple question, ‘Why do we eat what we
eat?’, data-driven research conducted in our lab has led to interesting explorations of traditional recipes, their
flavor composition, and health associations. Our investigations have revealed ‘culinary fingerprints’ of regional
cuisines across the world. Application of data-driven strategies for investigating the gastronomic data has opened
up exciting avenues, giving rise to an all-new field of ‘computational gastronomy’. This emerging interdisci-
plinary science asks questions of culinary origin to seek their answers via the compilation of culinary data and
their analysis using methods of complex systems, statistics, computer science, and artificial intelligence. Along
with complementary experimental studies, these endeavors have the potential to transform the food landscape by
effectively leveraging data-driven food innovations for better health and nutrition.
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1. Introduction

Gastronomy has largely been considered an artistic
endeavor despite efforts made for understanding its
scientific basis (Savarin 2009). Cooking is the art of
transforming raw ingredients into delicious dishes that
are central to nutrition and health. Cultures across the
world have imbibed idiosyncratic practices for pro-
cessing ingredients into their respective cuisines.
Understanding the nuances of cuisines, food, and
cooking enables asking many interesting questions.
Why do we eat what we eat? What is the molecular
basis of flavor, of ingredients, and recipes? Can we
quantify the taste of a recipe? How do we measure the
nutritional profile of a recipe? How does one make
sense of contradictory assertions about the health
consequences of food ingredients? How have world

cuisines evolved? Can we create a tasty and healthy
recipe?
It is increasingly becoming apparent that investigat-

ing such questions of gastronomic origin requires a
strong foundation in data and computation. Clearly, a
data science approach to food is something novel and a
path hitherto not taken. Similar to many other domains
(weather prediction and face recognition, among oth-
ers), which have been dramatically transformed with
the application of data science and computation, there
is abundant scope to investigate food from a data-dri-
ven perspective (Zeevi et al. 2015; Sonnenburg and
Sonnenburg 2015). This is the vision portrayed by
computational gastronomy, a data science that blends
food, data, and the power of computation for achieving
data-driven food innovations. This review investigates
various dimensions of computational gastronomy –
availability of structured gastronomical data, the
molecular basis of flavor, quantification of taste, evo-
lution of world cuisines, algorithms for novel recipe
generation, among others (Figure 1).
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2. Recipe data

Probing food from a data-driven perspective requires
the availability of well-curated, structured data
resources. Traditional recipes encode the cultural wis-
dom that has gone into making a delicious dish. While
there is a plethora of websites (such as allrecipes.com,
geniuskitchen.com, epicurious.com, foodnetwork.com,
and tarladalal.com) that provide compilation of human-
readable recipes, there has been a dearth of structured
compilation of these recipes which enables complex
queries. Addressing this problem needs implementation
of natural language processing (NLP) algorithms that
capture relevant information (quantity, unit, tempera-
ture, processing state, etc.) from the recipe text. Diwan
et al. (2020) designed named entity recognition (NER)
models for extracting such details using knowledge-
mining techniques. These models have applications
when translating recipes between languages, deter-
mining similarity between recipes, generating novel
recipes, and estimating the nutritional profile of recipes.
RecipeDB (https://cosylab.iiitd.edu.in/recipedb/) has

been created to investigate the culinary correlates of
dietary elements for probing their association with
sensory responses as well as consequences for nutrition
and health (Batra et al. 2020). It is a structured com-
pilation of recipes, ingredients, and nutrition profiles
interlinked with flavor profiles and health associations.
This repertoire comprises more than 118,000 recipes
from cuisines across the globe (6 continents, 26 geo-
cultural regions, and 74 countries), cooked using var-
ious processes (heat, cook, boil, simmer, bake, etc.), by
blending thousands of ingredients. Ingredients are
further linked to their flavor molecules, nutritional
profiles, and empirical records of disease associations
obtained from Medline.

3. Flavor data

Ingredients are chosen to be used in recipes, primarily,
by virtue of their taste and odor (together referred to as
flavor). Experimental assays such as gas chromatog-
raphy and mass spectroscopy probe the constituent
flavor molecules that are present in ingredients. A
structured compilation of flavor compounds from nat-
ural ingredients is a prerequisite for quantification of
taste of ingredient combinations and any subsequent
investigations. FooDB (http://foodb.ca), one of the
resources that addressed this need, compiled molecules
from food ingredients, albeit its focus was not on the
chemical basis of flavor. Another resource called

Flavornet provides a list of flavor molecules and their
odor profiles, but does not furnish information of their
natural sources (Arn and Acree 1998). Some other
attempts in this direction have focused on the flavor-
specific compilation of data, such as bitter (BitterDB)
and sweet (SuperSweet), and volatile compounds of
scents (SuperScent) (Dunkel et al. 2009; Ahmed et al.
2011; Wiener et al. 2012). Some other efforts have
targeted nutritional factors (NutriChem), polyphenols
(Phenol-Explorer), and the medicinal value of food
(Neveu et al. 2010; Scalbert et al. 2011; Rothwell et al.
2013; Jensen et al. 2015).
FlavorDB (http://cosylab.iiitd.edu.in/flavordb/) is a

comprehensive repository of flavor compounds,
physicochemical structures, their natural sources, flavor
percepts, and functional groups (Garg et al. 2018). It
helps to find molecules of desired flavor percepts,
explore ingredient molecules, discover relevant food
blendings, and know the chemical properties of flavor
compounds. FlavorDB contains 25,595 flavor mole-
cules, 34 ingredient categories covering 936 ingredi-
ents linked to 527 unique natural resources. The
resource is conceptually divided into two parts – entity
space, representing natural ingredients utilized in food,
and flavor space, representing flavor molecules and
their chemical properties. Each molecule is described
with a range of descriptors such as PubChem ID, CAS
number, IUPAC, SMILES, and 2D/3D properties. In
connection with the flavor percepts, it lists 33 taste and

Figure 1. Computational gastronomy is a science that
blends food with data and the power of computation for
achieving data-driven food innovations.
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1,068 odor receptors with unique UniProt ID and
name. Users can search FlavorDB via the entity (in-
gredient) name, their category, flavor molecules, and
their percepts.

4. Food pairing

In a reductionist manner, a recipe can be perceived as
nothing but a combination of ingredients. With this
notion, the theoretical number of recipes that can be
generated is astronomically large. Even with a con-
servative estimate, one gets 1030 recipes with an
average recipe size of 10 and 1,000 available ingredi-
ents. Traditional recipes, obviously, do not represent all
possible combinations of ingredients due to bias in
preferences, climate, geography, cultural lock-ins,
religious taboos, and, to an extent, even genetics. One
of the interesting questions in this regard is, ‘Are there
guiding principles for the choice of ingredient combi-
nations in traditional recipes?’
One of the possible answers to this question was

provided by Chef Heston Blumenthal (2008) through
the food pairing hypothesis – ‘ingredients with similar
taste tend to blend well together’. Availability of data
on ingredients used in the recipes and flavor profiles of
natural ingredients facilitates investigation of food
pairing hypothesis in a quantifiable manner. Food
pairing index is defined as the average number of
shared flavor molecules across all ingredient pairs in a
recipe.
In one of the earliest computational gastronomy

investigations, Ahn et al. probed the data of 56,498
recipes as a bipartite network of 381 ingredients used in
the recipes from a range of world cuisines and their
1,021 flavor molecules (Ahn et al. 2011; Ahnert 2013).
Here, ingredients and flavor molecules are nodes, and
an edge represents association between the two. The
authors created a monopartite projection of this net-
work representing the flavor graph and investigated the
food pairing phenomenon in cuisines under consider-
ation. For this purpose, they compared the average food
pairing of recipes in a cuisine with that of a random
cuisine (a random control created by generating recipes
by an arbitrary combination of ingredients while
maintaining the recipe size distribution). In the absence
of statistically significant difference between the food
pairing index of a real cuisine vis-à-vis its random
counterpart, one may infer that the prior does not differ
from the latter in terms of preferential use of ingredient
combinations. A positive deviation in food pairing
would indicate uniform blend of ingredients confirming

the food pairing hypothesis. On the contrary, a negative
deviation would be a signature of contrasting blend of
ingredient combinations.
Ahn et al. (2011) observed that cuisines from North

America, Western Europe, Southern Europe, and Latin
American show uniform (positive) food pairing, con-
firming Chef Blumenthal’s food pairing hypothesis.
East Asian cuisine (recipes from South Korea), on the
other hand, showed the signature of a contrasting blend
of flavor profiles.
In another study that focused on recipes from the

Indian subcontinent, authors investigated food pairing
phenomenon in 2,543 recipes from across eight regio-
nal cuisines of India (Jain et al. 2015a, b). These
recipes (compiled from TarlaDalal.com) were com-
posed of 194 ingredients each of which was exclu-
sively categorized into one of the 15 ingredient
categories such as vegetables, herbs, lentils, fruits,
herbs, etc. Building on the study of Ahn et al. (2011),
this study compiled 1,170 unique flavor compounds
(Burdock 2010) and reported a signature of contrasting
food pairing in Indian recipes.
Importantly, this study probed for the role of place-

ment of specific ingredient in the recipes by performing
intra-category shuffling of ingredients. For example, to
find the role of placement of vegetables, all veg-
etable category ingredients were shuffled with a ran-
domly selected vegetable while maintaining the
position of ingredients of all other categories. No or
little (statistically insignificant) change in the food
pairing index of the cuisine indicates that the placement
of an ingredient does not play a key role in specifying
the food pairing. It was observed that, barring the
‘spice’ category of ingredients, the shuffling of ingre-
dients does not affect the food pairing in Indian cuisine.
However, shuffling of spice ingredients had a dramatic
(statistically significant) impact on the food pairing,
suggesting that spices are the molecular fulcrum of
Indian recipes. This study also built statistical models
to identify factors that contribute to the food pairing to
conclude that popularity of ingredients (frequency of
use) plays a key role in specifying the contrasting food
pairing observed in Indian cuisine. In studies con-
ducted with a similar spirit, data of Arabian (Tallab and
Alrazgan 2016) and Medieval European (Varshney
et al. 2013) cuisines were investigated and it was
observed that they were characterized with positive
food pairing.
Further to food pairing, Simas et al. (2017) proposed

the food bridging hypothesis which identifies molecu-
lar association between two ingredients even in the
absence of shared flavor profiles. It generalizes the idea
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of food pairing by creating a bridge between any two
ingredients via intermediate ingredients. Starting with
the data of 1,530 ingredients and 1,106 flavor com-
pounds, same as the one used by Ahn et al. (2011), this
study identified semi-metric paths between ingredient
pairs (paths with non-zero intermediate ingredients).
The food bridging score for a recipe is defined as the
mean of all semi-metric links present in the recipe’s
sub-graph. It was concluded that while Eastern cuisine
follows the food bridging hypothesis, Western cuisines
do not.
These early studies paved the way for food pairing

analysis of worldwide cuisines. Issa et al. (2018) inves-
tigated Eastern Mediterranean cuisine by probing recipes
from Jordan (136), Palestine (193), Lebanon (169), and
Syria (214). The analysis revealed positive food pairing in
these cuisines with a strong signature of uniform blending
of ingredients in Jordanian recipes, followed by those
from Palestine, Lebanon, and Syria. It was observed that
the food pairing could be either explained by ingredient
popularity (Syrian and Lebanese cuisines) or by category
composition (Jordanian and Palestinian) of recipes. In
another study, Chinese cuisine comprising 8,498 recipes
and 2,911 ingredients was investigated by Zhu et al.
(2013) for the food pairing phenomenon to conclude a
uniform blend of ingredients.
In one of the comprehensive food pairing studies that

probed 45,772 recipes from 22 regions worldwide,
Singh and Bagler (2018) showed the ubiquitous nature
of positive food pairing. Consistent with earlier studies,
it showed that recipe size follows a Gaussian distri-
bution with an average recipe containing 9 ingredients.
Cuisines from 16 regions (Italy, Africa, USA, France,
China, Thailand, Canada, East Asia, Caribbean, Spain,
Greece, Mexico, India, Middle East, Australia & New
Zealand, and South America) showed positive food
pairing while negative food pairing in the remaining six
regions (Japan, Korea, DACH countries, Scandinavia,
Eastern Europe, and Britain). By investigating the
global culinary landscape in thorough detail along with
an improved dataset of flavor profiles (FlavorDB), this
article highlighted the importance of comprehensive
data compilation.
One of the relevant topics in the context of food

pairing is food-beverage pairing. Charles Spence pro-
posed two pairing principles, viz. perceptual (sense-
based) pairing and cognitive/intellectual (mind-based)
pairing (Spence 2020). While the former involves food-
beverage pairing based on similar aroma, taste, color,
and flavor, the latter involves pairing based on cultural
and geographical identity. Perceptual pairing has
become quite popular lately vis-à-vis cognitive pairing.

Another question around the notion of food pairing is
whether one can predict the new pairings. Park et al.
(2019) proposed a model called KitcheNette to deter-
mine the food-ingredient pairings scores and to predict
the unknown pairings. Towards this objective, they
used MIT’s Recipe1M database. KitcheNette utilized
Siamese neural network and in-depth network to obtain
maximum performance in predicting unknown pair-
ings. Pointwise mutual information score, the ratio of
probability of two ingredients occurring in a recipe to
probability of ingredients occurring separately, was
used to find good and bad pairings. A positive score
indicated good pairing and a negative score, a bad
pairing. The pairings obtained by the KitcheNette
model were compared with those from FlavorDB as a
reference. Such data-driven models can propel the
identification of compatible ingredients in future.
As an extension of food pairing analysis, one can

consider whether a recipe from one cuisine could be
‘transformed’ into a recipe from an altogether different
cuisine (Kazama et al. 2018). This goal was achieved
starting with the Yummly dataset of 39,774 recipes
from 20 countries. The cuisine of given recipe was
identified, and ingredient replacements were suggested
using a modified word2vec algorithm. Further, a neural
network containing 2 hidden layers and 20 output
layers matching the number of cuisines was imple-
mented to classify the cuisine. The input to the model is
a recipe (binary) vector in which each dimension rep-
resents an ingredient in the dataset. As a demonstration,
the authors converted a Japanese recipe ‘Sukiyaki’ into
its French avatar by substituting ingredients based on
the cosine similarity.

5. Health and nutrition

Beyond the flavor, nutrition and health impacts of food
ingredients are among the major aspects. Food interacts
with the human body in a complex manner, making it a
challenging problem to predict their health conse-
quences. Not so surprisingly, the scientific literature is
replete with many contradictory assertions. Towards
the objective of laying the data-driven foundation of
computational gastronomy, it is critical to create an
interactive data repository of food-disease associations.
Towards this goal, as a first step, Rakhi et al. (2018)

mined the MEDLINE database for spice-disease asso-
ciations. A list of 188 culinary herbs and spices were
identified from foodb, Wikipedia, Food Plant Interna-
tional, Plants For A Future and FlavorDB. A total of
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8,957 spice-disease (8,172 positive and 783 negative)
associations were extracted from the abstracts of
research articles using named entity recognition and
machine-learning-based candidate sentence extraction.
The Convolution Neural Network (CNN) classifier
presented with an accuracy of 86.7% and precision of
90.7%. TaggerOne was used to map disease entities
with their MeSH (Medical Subject Headings) IDs at
three levels: category, sub-category, and specific
disease.
The analysis of spice-disease associations suggests

strong positive association with diabetes mellitus, car-
cinogenesis and inflammation, while hypertension,
dermatitis, hypersensitivity, and allergy show strong
negative (adverse) associations. For the quantitative
analysis of spice-disease associations, a ‘spectrum
score’ was defined which captures adverse and thera-
peutic effects across the MeSH disease spectrum and its
integral sub-categories. The benevolence score high-
lights the relative benevolence vis-à-vis the adverse
impact. In general, culinary herbs and spices were
observed to have a high benevolence score compared
to their adverse score. Spices like ginger, turmeric, and
garlic showed a high benevolence spectrum score,
whereas liquorice, fenugreek, ginger, sunflower, celery,
and ginkgo showed an adverse spectrum score. The
article also probed the spice-phytochemicals associa-
tion using Phenol Explorer (Neveu et al. 2010) and
KNapSAcK (Afendi et al. 2012) and association with
diseases using CTD (Comparative Toxicogenomic
Database) (Davis et al. 2017). The tri-partite data of
spice-phytochemical-disease associations is available
as an online repository, SpiceRx (https://cosylab.iiitd.
edu.in/spicerx).
SpiceRx (Nk et al. 2018) is a repository of evidence-

based information on the health effects of culinary
herbs and spices, along with their phytochemicals and
disease associations. Users can search associations
based on the spices, disease or phytochemical names.
Spices can be queried based on their common name,
scientific name, and NCBI ID. Diseases can be sear-
ched based on the name, MeSH ID, disease category or
sub-category. Apart from spice and disease, SpiceRx
can also be searched using chemical constituents of
herbs and spices through IUPAC name, PubChem ID,
SMILES, molecular weight, hydrogen donors/accep-
tors or molecular hydrophobicity. SpiceRx thus pro-
vides a platform to investigate tripartite associations
between spices, their chemicals and associated health
effects.
Extending the scope of SpiceRx, Tuwani et al. have

built a repository DietRx (https://cosylab.iiitd.edu.in/

dietrx) which integrates the associations among food,
diseases, chemicals, and genes. DietRx represents
1,781 food entities obtained by text-mining around
38,000 Medline articles using named entity recognition
techniques. The data is further enriched with 6,992
food-chemicals and 20,550 food-genes associations,
thereby providing a platform for the investigation of
dietary ingredients and their health consequences.
Data from social networks is another dimension that

can be explored to associate food with diseases. Abbar
et al. (2015) analyzed the food consumption of US citi-
zens through 502 million tweets of 210,000 users. The
authors compared the Twitter data obtained across mul-
tiple dimensions such as gender, education and income
levels with the actual obesity data provided by the Center
for Disease Control (CDC) of around 50 US districts. The
authors identified the tweets by checking specific key-
words, e.g., food, eating, cooking, calorie count and
famous food chains. The results were correlated with the
CDC’s state-wise obesity and diabetes data. The highest
Pearson correlation with obesity was 77.2%, and with
diabetes was 65.8%. Further, diets were analyzed based
on users’ interests across different dimensions. Interests
such as television shows, education and business were
positively related to obesity, whereas baseball, football,
travel and such were negatively correlated. The chances
of becoming obese increase by 57% if one had an obese
friend in the network.
In another study that probed food-nutrition axis,

Sajadmanesh et al. (2017) classified dishes based on
ingredients, their flavor molecules and nutritional
advantages. Various health statistics were used to
investigate the relation of these factors with distinct
health indicators such as obesity, diabetes and health
expenditure. By probing 157,000 recipes the authors
conclude that while sugar and carbohydrates show
negative association with diabetes and obesity, proteins
have positive association.
To determine the link between nutrition, sustain-

ability and recipes, van Erp et al. (2021) explored
nutrition and sustainability with recipe and nutrition
databases. For analyzing the food’s nutritional infor-
mation, these authors used a nutriscore scale that helps
users to make a healthier purchase. A tool resulting out
of the analysis provides the health, social, economic
and environmental footprints of recipes submitted by
users. The authors proposed a recommendation system
to minimize food waste, to recommend recipes based
on ingredients, and to link recipes with supply chain
and modes of production.
In another study that looked into the nutritional and

dietary preferences, a knowledge-graph-based semantic

Computational gastronomy Page 5 of 10    12 

https://cosylab.iiitd.edu.in/spicerx
https://cosylab.iiitd.edu.in/spicerx
https://cosylab.iiitd.edu.in/dietrx
https://cosylab.iiitd.edu.in/dietrx


approach was developed that takes ingredients as input
and provides healthier ingredient substitutions (Shirai
et al. 2021). An ingredient substitution heuristic rooted
in the semantics of the ingredients was developed for
the identification of substitutions. This approach was
evaluated using web-scraped databases and was shown
to outperform the state-of-the-art methods by suggest-
ing healthy substitutions.

6. Taste prediction

Flavor molecules are characterized by taste and odor
percepts. While there are five broad taste attributes,
namely, sweet, bitter, salty, sour and umami, the
number of odor percepts are much larger (Garg et al.
2018). Prediction of taste and odor based on molecular
attributes is one of the outstanding problems in com-
putational gastronomy (Keller et al. 2017). The latter is
far more challenging than the former due to the com-
plexity of odor space. Various attempts have been made
towards the prediction of taste, specifically that of bitter
and sweet taste (Dagan-Wiener et al.; Wiener et al.
2012; Rojas et al. 2017; Zheng et al. 2018; Banerjee
and Preissner 2018).
Significantly, Tuwani et al. (2019b) built on the

existing work to contribute state-of-the-art, machine-
learning algorithms for the prediction of bitter-sweet
taste. Towards this they curated 918 bitter, 1510 non-
bitter, 1205 sweet, and 1171 non-sweet molecules.
Molecular descriptors were generated using ChemoPy,
Dragon 2D, Dragon 2D/3D, Canvas and ECFPs, which
served as features. The dataset was trained using 5-fold
stratified cross-validation and feature selection was
done using Boruta algorithm. All the models were
evaluated using various performance metrics such as
precision, recall, AuPR, AuROC, F1 and sensitivity
score. To determine the redundant components, pre-
processing was implemented using PCA (principal
component analysis) and Boruta algorithm. Random
Forest, Ridge Logistic Regression and Adaboost
algorithms were used to predict the taste of molecules.
Adaboost and Random Forest models in coordination
with Boruta algorithm with Dragon 2D/3D molecular
descriptors gave more accurate results for sweet/non-
sweet, whereas Random forest with PCA gave good
results for bitter/non-bitter prediction. It was inferred
that the average precision is a better metric as opposed
to other metrics, and yielded a performance of 90%.
The dataset used in this study as well as an user-

friendly implementation has been made publicly
available, BitterSweet (https://cosylab.iiitd.edu.in/

bittersweet). The webserver can be used for predict-
ing the taste of small molecules starting with their
IUPAC, SMILES, or common name. The database
comprises of 394,152 molecules with predicted Bit-
terSweet taste profiles and 3,086 with verified taste
profiles.

7. Culinary evolution

Cuisines have been modified over a long time to
acquire their present shape. ‘What are the factors that
have gone into the evolution of cuisines?’ is one of the
most interesting questions in culinary sciences. One of
the earliest studies that examined this question probed
the recipes from British, Medieval, Brazilian and
French cuisines and proposed a copy mutate model to
explain their ingredient composition (Kinouchi et al.
2008). According to this model, starting with an initial
cuisine containing randomly concocted recipes, a
recipe is chosen randomly and mutated (modified) into
a daughter recipe based on the ingredient’s fitness. The
daughter recipe is treated as a novel recipe if the same
is not present in the existing cuisine. With such a
simple ‘copy-mutate model’, the authors showed that
fitness-based ingredient modification can solely explain
the observed ingredient popularity in present-day
cuisine.
Building on this work, Tuwani et al. (2019a) added a

layer of flavor profile information and investigated 25
regional cuisines across the world by copy-mutate
models. The authors created a variation of this model to
account for random ingredient replacement, ingredient
category-based replacement and a mixed strategy. They
concluded that different models matched with reality
depending on the cuisine under consideration.
Going beyond investigating evolution of the cuisi-

nes, efforts have been made to probe the interrelated-
ness of cuisines by virtue of their similarity. In one of
the studies (Sajadmanesh et al. 2017), using the data of
157,000 recipes from World Bank, BBC and Yummly
website, the authors obtained Jensen-Shannon diver-
gence to find the ingredient-based similarity between
the cuisine. To find a similar cuisine based on flavor
molecules, a flavor-based correlation matrix was
formed between recipes. The results showed that Welsh
cuisine was dominated by Asian culture, whereas
Indian cuisine was found to be having similarities with
Ethiopian and African cuisines with the dominance of
spices.
In another study, Sharma et al. (2020) curated

118,071 recipes and identified the most significant
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patterns in 26 geo-cultural cuisines from across the
world using frequent itemset mining and ingredient
authenticity. To find the similarity between cuisines,
these authors implemented hierarchical agglomerative
clustering using three distance metrics (Jaccard,
Cosine, and Euclidean). Euclidean distance-based
clustering gave good results when validated using
geographical distance among cuisines. Some clusters
(India and Africa, French and Canada) showed simi-
larities in their cuisines despite being geographically
separated.

8. Novel recipe generation

For ages chefs and culinary enthusiasts have attempted to
create novel recipes by tweaking ingredients and pro-
cessing. This process is inherently laborious and time
consuming due to trail-and-error methods involved.
Recent advances in computational gastronomy have led
to the question, ‘Can computers generate novel recipes?’
One of the earliest approaches used in this direction is text
generation. Text generation is a subfield of natural lan-
guage processing which captures the stylistic nuances of a
corpus to generate novel text similar in style to that of the
corpus. It involves training of the models using various
word representations for imbibing the notion of phrases,
grammar and sentence construction. Recipes are struc-
tured texts with a variety of named entities such as
ingredient names, quantity and unit. Novel recipe gener-
ation algorithms attempt to capture the structure and style
of recipes from a large corpus of recipes in an effort to
generate healthy, tasty, vegan or non-vegan, personalized,
disease or diet-specific recipes.
In one of the earliest studies in novel recipe gener-

ation, Kiddon et al. (2016) proposed a globally
coherent text generation model, the ‘neural checklist
model’ which takes the list of ingredients as an input.
This model used a traditional encoder-decoder archi-
tecture that implemented Recurrent Neural Network for
generating text. It further implemented an attention
mechanism that keeps track of ingredients used and
those unused from a user-provided list. The recipes
generated were evaluated for the grammatical correct-
ness and use of suggested ingredients. The outcome of
the checklist model was compared with four baseline
models and subsequent human evaluations were per-
formed. While the model had an average human score
of 4.2 on a scale of 1 to 5, it was observed to be heavily
reliant on fine-tuning of the hyper-parameters.
In another study conducted with a similar spirit, Lee

et al. (2020) introduced an online pre-trained

transformer-based application to generate recipes –
RecipeGPT. RecipeGPT generates recipe instructions
starting from a title and list of ingredients or produces a
list of ingredients given a title and set of instructions.
The GPT-2 transformer, tuned for MIT’s Recipe1M
recipe dataset, served as the backbone of RecipeGPT.
The model implemented an evaluation system to
identify overlapping ingredients and to compare
recipes generated with reference recipes.
Another dimension of this domain is to generate

recipes from food images. However, since food images
are often not accompanied by ingredients or recipes,
Salvador et al. (2019) proposed an ‘inverse cooking
system’ that generates recipes from images using
ingredients of a recipe. Both images and ingredients
serve as input to the model, leading to the cooking
instructions as the output. The proposed model
demonstrated that image-to-ingredients prediction was
more effective as compared to image-to-recipe retrie-
val. By comparing two retrieval models, the authors
showed that their model outperforms both human and
retrieval baselines. Further, on comparing the quality of
recipes generated from the dataset and retrieval base-
lines, it was observed that human-written recipes were
shorter than the computer generated recipes. Failure in
recognizing ingredients, lack of correlation between
ingredient and instruction, and repeated ingredient
enumeration were among the key shortcomings of this
study.
Recently, Wang et al. (2020) proposed Decomposed

Generation Network model, which generates cooking
instructions by predicting structure of food images. The
instructions were split into phases based on cooking
process and sub-generator was assigned, which was
concatenated to generate the recipe. The paper
achieved a new state-of-the-art score to generate a
recipe from food images using MIT’s Recipe1M
dataset.
Depending on the user’s culinary preference,

Majumder et al. (2020) generated personalized recipes
by taking ingredients, recipe name, and calorie level as
inputs. The process comprised two sub-computational
tasks, viz. text generation and a recommendation sys-
tem and used dataset of 180,000 recipes and 700,000
user reviews. The base architecture used bidirectional
Grated Recurrent Unit focusing on user’s previously
liked recipes. The results were promising, but the
architecture is heavily dependent on the user’s history.
In view of previous research, Yu et al. (2020) pro-

posed Routing Enforced Generative Model (RGM) to
generate recipes considering ingredients and user
preference. The authors grouped ingredients into dish
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categories (low sugar, high fiber, low fat, grilling, and
frying) to generate category vectors and probability of
a category-specific recipe was computed using a non-
linear squash function. Then, the authors performed
human evaluation with the help of nine judges from
Amazon Mechanical Turk and three native English
speakers on the following factors: readability, accuracy,
feasibility, creativity and overall quality. The recipes
generated by RGM were adequate, while those from
baselines achieved low scores due to repetition of
ingredients or instructions and larger recipe length.
Knowing the growing need of adapting a recipe

based on user preferences, Morales-Garzón et al.
(2021) suggested an unsupervised method for adapting
recipes. They used three datasets, one which they
scraped to train word embedding model, second from
food.com for validation of adaptation, and third was a
nutritional database from COFID, containing 2,913
unique ingredients. These authors adapted a recipe in
three ways: similarity-based (substitute ingredients
based on similar recipes), preference-based (substitute
ingredients based on user preferences), and restriction-
based (substitute ingredients based on user’s food
constraints). While they implemented three models
(word2vec, fast-text, and GloVe), they chose word2vec
due to its simplicity and speed of execution. Finally,
recipes were evaluated through online surveys. This
model did not implement any advanced neural lan-
guage models such as BERT, Elmo or GPT.
Agarwal et al. (2020) presented a Hierarchically

Disentangled Model for text generation with named
entities while curating 158,473 recipes using named entity
recognition and unsupervised methods. The authors used
two models, the type prediction model, and the entity
transformation model, which captured typical patterns
among the same type of entities and then identified the
most relevant entity. The output of the type prediction
model was fed into the entity transformation model. This
architecture can be used for ingredient-to-recipe genera-
tions, image-to-recipe generation, action-graphs-to-recipe
generation, and translating a recipe from one language to
another. This study used transfer learning and action
graph techniques to generate relevant recipe text. This
approach heavily relies on named entities which are
troublesome to annotate.

9. Discussion

Computational gastronomy is a new niche that blends
food with data and computation. As a data and
computation-intensive field it is rooted in well-

curated, structured data and computational algorithms
for their investigation. While, as described in this
review, the computational gastronomy data resources
on various aspects of food have been growing for the
past few years, there is much to be desired on this
front.
While RecipeDB provides a structured repository

of recipes from cuisines across the world, the gran-
ularity with which the recipe data is compiled has
much scope for improvisation. Similarly, while Fla-
vorDB provides a comprehensive picture of flavor
compounds in natural ingredients it lacks the infor-
mation of their concentrations. Despite such a fine-
grained compilation of data, the notion of taste of an
ingredient and that of a recipe are way too complex
and nuanced due to emergent properties. BitterSweet
provides an extensive compilation of sweet and taste
molecules to predict the taste of compounds; how-
ever, its utility is limited to single molecules and it
cannot be used to predict taste of compound mix-
tures. Both SpiceRx and DietRx, while providing one
of the most comprehensive data resources of food-
disease associations, are limited in having inferred
associations from the title and abstract.
The food pairing analysis provides a useful strategy

for quantifying a recipe and cuisine. Going beyond
pairwise ingredient combinations, one may probe the
patterns in recipes via higher-order tuples. When gen-
erating recipes using language modeling, improve-
ments in training strategy are needed to be done. The
novel recipes generated achieve low scores due to
repetition of ingredients or instructions and large recipe
length. As the recipes dataset is crawled from online
repositories which tend to be noisy, rigorous prepro-
cessing is a prerequisite to generate novel recipes.
When generating recipes from food images, one needs
high-resolution food images to generate more accurate
recipes. Going further, the novel recipes can be
improvised to include the information of servings and
nutritional profile.
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