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Abstract. Artificial intelligence techniques like machine learning and deep learning are being increasingly
used in astronomy to address the vast quantities of data, which are now widely available. We briefly introduce
some of these techniques and then describe their use through the examples of star-galaxy classification and the
classification of low-mass X-ray binaries into binaries, which host a neutron star and those which host a black
hole. This paper is based on a talk given by one of the authors and reviews previously published work and some
new results.
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1. Introduction

Abundant astronomical data is now freely available
because of surveys like the the Sloan digital sky sur-
vey (SDSS, see Abdurro’uf et al. (2022) for the latest
data release and references) and the more recent Sub-
aru hyper suprime-cam survey (see Aihara et al. 2022
for the latest data release and references). Conven-
tional data analysis techniques will seriously constrain
the scientific projects which can be undertaken with
such databases due to the sheer volume of the data.
To tap the full potential of the data, it is necessary
to use artificial intelligence techniques like machine
learning (ML) and deep learning (DL), which have
evolved rapidly over the past few decades (e.g., Baron
2019), making them very useful for a variety of appli-
cations. These developments and the availability of
software platforms like TensorFlow 2 and Keras (Ten-
sorFlow 2 is a free and open-source software library for
ML, DL, etc., developed by Google researchers, see
https://www.tensorflow.org/guide/effective_tf2. Keras
is a deep learning API written in Python, running on
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top of the machine learning platform TensorFlow 2,
developed by Chollet, François et al. see, https://keras.
io) have enabled astronomers to use ML and DL for
addressing the very large volumes of imaging, spectral
and catalogue data that are now easily accessible to
them.

Some examples of application of ML and DL
to astronomy include photometric redshift estimation
(D’Isanto & Polsterer 2018; Pasquet et al. 2019), gravi-
tational lensing identification (Cheng et al. 2020), light
curve classification (Lochner et al. 2016; Mahabal et al.
2019; Möller & de Boissière 2020), stellar spectrum
classification and interpolation (Kuntzer et al. 2016;
Sharma et al. 2020a, b), galaxy morphology classifi-
cation (Dieleman et al. 2015; Abraham et al. 2018;
Domínguez Sánchez et al. 2018; Barchi et al. 2020;
Walmsley et al. 2020), and star-galaxy classification
(Philip et al. 2002; Ball et al. 2006; Vasconcellos et al.
2010; Abraham et al. 2012; Soumagnac et al. 2015;
Kim & Brunner 2017; Clarke et al. 2020).

In the following, we will briefly describe a few
important ML and DL techniques and two illustrative
applications to astronomy: star-galaxy separation and
establishing the identity of the compact object in low-
mass X-ray binaries on the basis of their X-ray energy
spectra.
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2. Machine learning and deep learning algorithms

A number of algorithms are conventionally grouped
together under ML. These are used to build com-
puter programs which automatically improve with
experience. While the algorithms can be used for
classification and regression, we will be consider-
ing only the former in our examples. For a classi-
fication problem, the input to the program consists
of a large number of training examples with each
example having a number of measurable attributes,
and belonging to one of several defined classes. The
program learns from the training set to distinguish
between the classes based on the attributes. After
the learning is complete, the program is able to
predict the class of previously unclassified objects
on the basis of their attributes, i.e., the program is
able to generalize the classification, learned using a
finite training sample and to the examples beyond
the training set. This process is known as supervised
learning, because the input training set includes the
known class of the objects in the sample. In unsuper-
vised learning, the program can be asked to classify
a training sample into a given number of classes
on the basis of attributes with no prior classifica-
tion being specified. Unsupervised learning is useful
when possible novel classification schemes are to be
investigated.

Machine learning includes algorithms like random
forest (RF) and artificial neural networks (ANN) (see
e.g., Mitchell 1997), while DL, which is also a part
of ML, but is generally mentioned separately includes
algorithms like convolutional neural networks (CNN),
recurrent neural networks (RNN), generative adversar-
ial networks (GNN), etc., (see e.g., Lecun et al. 2015;
Goodfellow et al. 2016; Guo et al. 2016). We will briefly
describe below about ANN, random forest and CNN,
and two applications which will provide some insight
into how the algorithms work.

2.1 Artificial neural networks

The basic unit of an ANN is a artificial neuron, which
is historically loosely based on a biological neuron. An
ANN with an input layer, a hidden layer and an output
layer is shown in Figure 1. A neuron in the hidden layer
receives inputs from all neurons in the preceding input
layer and contributes to every output neuron. The output
of the j th neuron is given by

o j = σ(y j ), y j =
4∑

i=0

w j i xi ,

Figure 1. An ANN with four inputs, one hidden layer and
two output classes.

where the w j i is known as the weights and σ is a non-
linear activation function. The usual forms of σ used
are the sigmoid function

σ(y) = 1

1 + exp (−y)

or the rectified linear unit ReLU function σ(y) =
max(0, y), which is preferred because it leads to faster
training for many layered ANN. To avoid dead neu-
rons, which have output zero and which sometimes arise
when ReLU is used and a leaky ReLU is used, where
σ(y) = y for y ≥ 0 and σ(y) = 0.01y for y < 0.
In general, there can be any number of input nodes,
and depending on the complexity of the classification
boundaries in the multi-dimensional space of the inputs,
there can be several hidden layers. Each neuron in the
ANN is connected to all the neurons in the preceding
and succeeding layers, so the ANN is said to be fully
connected.

For supervised learning, training the network con-
sists of suitably adjusting the weights so that the desired
known output is obtained for a given input. In the star-
galaxy problem described below, a certain number of
parameters are measured for objects which are known
to be stars or galaxies. The parameters for a large num-
ber of such known objects are in turn input to a network,
with desired output −1 for a star and 1 for a galaxy
(say). A loss function is now defined which compares
the output for a starting random choice of weights with
the desired inputs for the training set. The loss func-
tion is then minimized over the multiple passes of the
training data, using a technique known as back propa-
gation (Mitchell 1997). Suitable definitions are used to
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measure accuracy (or precision), which is the ratio of
true positives to the sum of true and false positives over
all classes, and the completeness (or recall), which is
the ratio of true positives to the sum of true positives
and false negatives over all classes. There are many
variations possible on the basic structure of an ANN
described here, and there are details of many matters
and technicalities which we have not mentioned.

2.2 Random forest

Random forest (RF) is an ensemble technique which is
used to boost the prediction made by an individual deci-
sion tree (Breiman 2001). A decision tree is one of the
most intuitive, yet powerful ML algorithms (Breiman
et al. 1984). A decision tree is made up of branches of
nodes, where sets of if-this-then-that rules are applied
to the features of the input data, and based on the result,
leads down to one of the branches of the tree. The final
layer of nodes, also known as leaf nodes, contain a pre-
dicted class label which is compared to the expected
class for a particular input vector. Although the decision
tree algorithm has proven to be very efficient (see e.g.,
Vasconcellos et al. 2011), a decision tree, if improperly
trained, can at times over-fit the data (Mitchell 1997,
Chapter 3). The idea behind RF is to combine the deci-
sions of several such trees to improve upon the decision
of a single over-trained tree. Taking a majority-vote over
the decision of all the trees, helps in reducing the vari-
ance of the predictions (Breiman 2001). The probability
of a source belonging to one class or the other is also
calculated in a similar way, i.e., by dividing the number
of trees that predicted the same class by the total num-
ber of trees. We illustrate the decision making process
of a RF algorithm in Figure 2.

2.3 Deep learning: convolutional neural networks

Conventional ML uses as inputs features extracted from
the raw data, like images or spectra. As the data get
complex, for example, when images of galaxies are to be
classified, extracting a manageable number of features
can be very difficult or even impossible. If all the pixels
of an image were to be used directly as input to an
ANN, then for CCD images with millions of pixels, the
number of input nodes, hidden nodes and weights for all
the connections would become so large as to make the
network unmanageable. DL techniques are designed to
get over these difficulties by using raw data to avoid the
extraction of features to be used as inputs to the network.
In fact, the network itself extracts features from the raw

Figure 2. Illustration of the decision making procedure in
a random forest algorithm.

data by convolving it with a set of filters to provide a
representation of the image at a more abstract level for
the classification (Lecun et al. 2015). The classifier in
the network uses downsized extracted features, so that
number of weights remain manageable.

In convolutional neural networks (CNN), is the only
DL technique that we will consider in this paper. A
CNN has three types of layers, convolutional layers,
pooling layers and fully connected layers. In a network,
the convolutional layers alternate with the pooling lay-
ers and following a number of such pairs, there are the
fully connected layers, which lead to the final classi-
fied output. In a convolutional layer, the input image
is convolved with a set of kernels to generate feature
maps. The kernels for extracting specific features like
edges at various orientations and other motifs are not
provided by the user, they are learned by the network
for the input data being used. A convolutional layer is
followed by a pooling layer, in which the dimensional-
ity of a feature map is reduced by taking the maximum
(or average) pixels over a 2×2 array, say, which strides
over a feature map. After the final pooling layer, a set
of fully connected layers is used to produce the output.
These perform like a conventional ANN and the output
provides the categories for classification with a proba-
bility associated with each class. The weights for all the
layers are trained using back propagation, as in the case
of an ANN. The need for a CNN and its operation can
be better understood through the problem of star-galaxy
classification discussed in Section 3.

3. Star-galaxy classification

Very compact galaxies or large galaxies at great
distances, can resemble stars in their appearance in
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astronomical images at optical or near-infrared wave-
lengths. So separating such galaxies from stars for
galaxy surveys can be difficult on the basis of just their
images. Stars have the appearance of the point spread
function (PSF) for the image, which is determined by
the earth’s atmosphere to a large extent with contribu-
tions made by the telescope optics and structure, etc.
In the ideal case, the PSF is a 2-dimensional circular
Gaussian with a full-width at half-maximum (FWHM)
of ∼1 arc-sec in good-seeing conditions, but is some-
what distorted in practice. Compact or distant galaxies
which are significantly larger than the PSF can be eas-
ily distinguished as such. But the images of galaxies
approaching the PSF in size are more difficult to dis-
tinguish: even though their shape is different in detail
from the shape of the PSF, the differences are small and
hard to discern. An expert astronomer would be needed
to separate such galaxies from stars, but the task would
take simply too long for large data sets, and therefore
there is a very good case for the use of ML.

3.1 Star-galaxy classification with ANN

We will discuss here one of the early works, which uses
ML for star-galaxy classification (Philip et al. 2002; a
few other early results are cited in the reference). Philip
et al. (2002) used R band images from the publicly avail-
able NOAO deep wide field survey (Jannuzi et al. 2000).
The training set was constructed from a sub-image of
the R band image NDWFSJ1426p3456, which had the
best-seeing conditions for the data released in 2001 A
total of 402 objects in the training set, in the magni-
tude range of 20–26, were visually classified as stars
or galaxies independently by two of the authors, and
the ∼2% cases where the classification turned out to be
different, were resolved by a joint inspection. The final
training set had 83 stars and 319 galaxies. The number
of stars was smaller than the number of galaxies because
of the high galactic latitude of the field and the faintness
of the objects.

For each object, three parameters were measured: (1)
an elongation measure, which is the ratio of the second
order moments along the major- and minor-axes of the
faintest isophote, (2) a standardized FWHM measure,
which is the logarithm of the ratio of the FWHM of
the object to the FWHM of the PSF for the image and
(3) a gradient parameter which is the logarithm of the
ratio of central peak count to the FWHM of the object,
normalized to the standardized FWHM measure. A dif-
ference boosting neural network (DBNN, Philip et al.
2002) was used in the training with the three parameters
as the inputs. The trained network was used to classify a

test set consisting of a total of 154 stars and 558 galax-
ies from the two sub-images of the field, which had
been previously visually classified as stars and galaxies
as in the case of the training set. An overall accuracy
of 98.1% classification was obtained, which was better
than the 96.1% accuracy obtained for the same test set
using SExtractor (Bertin & Arnouts 1996).

In the above project, the size of the training and test
set was small because of the difficulty in visually iden-
tifying compact galaxies. The small sample can result
in the overfitting of the network, which while providing
good accuracy in the training, does not perform well in
generalizing to a variety of images outside the training
set. Moreover, it would be difficult to visually identify
large samples of galaxies and to measure parameters for
the training of galaxies which are faint and/or irregular,
like the galaxies shown in Figure 3. It is therefore, neces-
sary to use a technique based on DL, so that raw images
of stars and galaxies can be used in the training. It is
also necessary to have large samples of known galaxies
and stars for the training of a DL based network.

3.2 Star-galaxy classification with CNN

We will now consider work by Chaini et al. (2022)
on star-galaxy classification which satisfies the above
requirements. The authors consider a more general star-
quasar-galaxy separation with the aim being to identify
these objects on the basis of their photometric properties
alone, but we will only consider the star-galaxy sec-
tor. The training sample consists of spectroscopically
identified stars and galaxies from SDSS data release
16 (DR16, Ahumada et al. 2020). The spectroscopic
identification is secure and no visual identification is
necessary. In the training only photometric data of the
five SDSS passbands u, g, r, i, z are used. The sample is
limited to compact objects, which are defined as those
which have the ratio

c = half light radius

FWHM
< 0.5.

Here, half light radius, or de Vaucouleurs radius, is the
radius containing half of the total light of the object,
and the average of the ratio in the five passbands is
used. When only a faint subset is to be considered, the
criterion for faintness is that the average of the five band
magnitudes 〈m〉 > 20. The training dataset consists of
80,000 objects each for the two classes, chosen ran-
domly from larger sets, which satisfy the criteria.

The CNN used in this case is based on the inception
network (Szegedy et al. 2014) and has five dense layers
of size 1024, 512, 256, 128 and 64, respectively (a dense
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Figure 3. Four faint compact galaxy r, g, b band composite images from the SDDS.

layer has its neurons connected to every neuron in the
preceding layer) with varying kernel sizes. Each layer
is itself made up of four parallel convolutional layers,
each activated by a leaky ReLU and averaging pool-
ing layers are used. The loss function used is known
as categorical-cross entropy and a total of 25,544,807
neurons are trained. The final layer contains a softmax
function, which provides the output as probabilities for
the two classes, star and galaxy.

When the training, validation and test samples are all
drawn from the dataset described above, and compact
objects are considered, the accuracy for star-galaxy sep-
aration reached with the CNN is 97.4%. If compact and
faint objects with average of the five band magnitudes
〈m〉 > 20 are considered, the accuracy drops marginally
near to 95.2%. The reason for the drop of course is that
the fainter objects have poorer signal-to-noise ratio, so
the separation into stars and galaxies is more difficult.

Chaini et al. (2022) have also used photometric
parameters for each object provided by the SDSS data
processing pipeline to carry out the separation using an
ANN. The parameters are the magnitudes in the five
bands corrected for extinction, the half light radius,
FWHM of the PSF and the extinction in each of the
five bands, and the colours u–g, g–r, r–i and i–z,
making a total of 24 parameters. The accuracy reached

for the separation with the ANN is 97.9% and 96.0%,
respectively, for compact objects, and compact and faint
objects. Chaini et al. (2022) further consider an ensem-
ble of the CNN and ANN that they call MargNet, which
has a combined accuracy of 98.1% and 96.9% for the
two cases. Using the ensemble of CNN and ANN is
therefore the best option. The important point to note
here is that the CNN works directly on star and galaxy
images, and does not need any measured parameters
and provides high accuracy. It is therefore useful even
when a dependable pipeline for measuring photometric
parameters is not available. Other examples of star-
galaxy-quasar classification using CNN include Kim &
Brunner (2017) and Clarke et al. (2020).

4. Low-mass X-ray binaries

Low-mass X-ray binaries (LMXBs) are binary systems
where one of the components is a black hole (BH) or a
neutron star (NS); the other component is a less mas-
sive star, usually on main sequence or an evolved star of
mass M < 1 M�. Some LMXBs show long quiescent
periods, which can last from a few months to decades,
when the source is very faint. There are also short peri-
ods, lasting from days to months, when the source is in
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outburst, with the flux increasing by several orders of
magnitude (see e.g., McClintock & Remillard 2006).

The energy spectra of LMXB systems are described
by two main components: (1) a thermal component
which is usually described by a multi-color disc black-
body, thought to be produced by an accretion disc and
(2) a hard component thought to be produced by a
corona, which is a region of hot plasma around the
compact object. This component is usually described by
a thermal Comptonization model. The contribution of
these components to the X-ray emission varies during an
outburst, leading to modification of its spectral and tim-
ing properties. References to the details about LMXB
energy spectra are provided in Pattnaik et al. (2021).

One of the important questions about LMXBs is
whether the compact object in the binary is a NS or
a BH. The nature of the compact object has a sig-
nificant impact on the physical interpretation of the
observations. With the large scale sky surveys and tran-
sient search programs, e.g., INTEGRAL/JEM-X (Lund
et al. 2003), Swift/BAT transient monitor (Krimm
et al. 2013), MAXI (Matsuoka et al. 2009), eROSITA
(Merloni et al. 2012), the sample of LMXBs keeps
increasing. Such newly detected transient sources are
usually characterized by their fast variation (days) of
luminosity by orders of magnitude. Early identification
of the nature of the compact object is very important for
the community to be able to plan observing campaigns
(Middleton et al. 2017).

There are only a few methods for identifying the
nature of the compact object. For example, coherent
pulsations and the presence of thermonuclear bursts
(for reviews see, Lewin et al. 1993; Cumming 2004;
Galloway et al. 2008; Strohmayer et al. 2018), indi-
cate that the compact object is a NS. Based on the mass
function of the X-ray binary system, if the mass of the
compact object is estimated to be greater than about
3 M�, then the compact object can be taken to be a
black hole. Apart from that, one can surmise the nature
of the compact object by comparing its X-ray timing
and spectral properties and X-ray-radio correlation with
those of sources where the nature of the compact object
is known.

One technique that is yet to be fully explored to clas-
sify LMXBs is the use of ML algorithms. ML has been
used by Huppenkothen et al. (2017) to classify light
curves of the unusual BH X-ray binary GRS 1915+105.
It has also been used by Gopalan et al. (2015) to dis-
tinguish between different types of X-ray binaries. We
describe below how ML can be applied to the X-ray
energy spectra of LMXB to identify the nature of the
compact object.

4.1 Data

We used the Rossi X-ray timing explorer (RXTE) mis-
sion (Bradt et al. 1993) data archive,1 which provides
more than 8500 observations of 33 NS systems and more
than 6000 observations of 28 BH systems. We used data
from the proportional counter array (PCA, Glasser et al.
1994) instrument aboard RXTE, which has an energy
range of 2–60 keV to create the energy spectra. We
selected a total of 61 sources, which are classified as
BH or NS binaries, with classification well established
(see e.g., Corral-Santana et al. 2016; Tetarenko et al.
2016, for BH). In the dataset, we have a fairly balanced
representation of the two classes, with 8669 observa-
tions from 33 sources identified as neutron-star LMXBs
(58%) and 6216 observations from 28 sources identified
as black-hole LMXBs (42%). The number of observa-
tions per source varies greatly from source to source. A
few sources have >1000 observations while some have
<20 observations. Some details of the procedure fol-
lowed to obtain the energy spectra for our analysis are
described in Pattnaik et al. (2021).

For each observation, we used 43 channels in the
energy range of 5–25 keV. The number of channels is
kept fixed at 43 for all the observations since ML algo-
rithms require each observation used in the training and
testing to have the same size. The 43 count rate values
are used directly as an input vector for the algorithm.

4.2 Random forest for classifying LMXB

We wish to determine the nature of the compact object
on the basis of the energy spectrum. The object can be
any one of two types, a black hole or a neutron star.
The training set consists of 14,885 spectra of 61 X-ray
binaries for which we know which of the two kinds the
compact object is. This is a supervised binary classifi-
cation problem of classifying an X-ray spectrum into
two labeled classes. There are several ML algorithms
that can be used for handling this type of binary clas-
sification problem. From those, we have to choose the
one which provides the best accuracy, i.e., the highest
percentage of correct classifications. We experimented
with a number of algorithms including classification
and regression trees (CART), more commonly known
as decision trees (Breiman et al. 1984), random for-
est (RF) (Breiman 2001) which we briefly described in
Section 2.2, XGBoost (XGB) (Chen & Guestrin 2016),
logistic regression (LR) (Cox 1958), K-nearest neigh-
bors (KNN) (Cover & Hart 2006) and support vector

1https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/w3browse.pl.

https://heasarc.gsfc.nasa.gov/cgi-bin/W3Browse/w3browse.pl
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machines (SVM) (Cortes & Vapnik 1995). These are
all traditional ML algorithms that are usually known
to show satisfactory performance even with a limited
amount of data. They also have significantly lower
execution times compared to DL methods (see e.g.,
Kotsiantis et al. 2007).

To establish the best algorithm, we compared their
performance using accuracy as a metric. Here accuracy
is defined as the ratio of the number of observations
correctly classified to their class (neutron star or black
hole), to the total number of observations. Using a k-fold
cross-validation technique (Burman 1989), in which the
set of 14,885 observations is split into training and test
sets in many different ways, we find that RF provides
the best accuracy of 91 ± 2% and use it in the subse-
quent analysis. We implement the RF algorithm using
the scikit-learn2 (Pedregosa et al. 2011) library
of python.

4.3 Methods and results

We apply the RF algorithm with the best combina-
tion of hyper-parameters to the dataset described above.
Hyper-parameters are a set of parameters defined prior
to the training process that are used to tune the perfor-
mance of the ML algorithm. Since the dataset contains
14,885 observations for 61 individual X-ray sources,
each source has multiple observations taken at different
times. The LMXB are variable in nature, so observations
for the same source taken at different times typically
sample a different physical spectral state, which cor-
respond to different geometrical configurations in the
source. We can therefore, assume that each observa-
tion for a given source is considered independent of the
other observations. Traditionally, the data set of 14,885
spectra would be randomly split into a training set con-
taining 90% (say) of the sources with the other 10%
(say) forming the test set. However, this can lead to
biases because in this method, some spectra of a given
source can belong to the training set, while other spec-
tra of the same source could belong to the test set. This
can lead to overestimation of the accuracy reached and
affect the predictive power of the nature of the compact
source for the spectra of new LMXB. We therefore,
chose not to use this method.

We find that optimal use of the data is made when
we keep all observations from one source as the test
data, while using all the remaining sources for training,
and this experiment is repeated for each source. This
provides the results for all the observations from each

2https://scikit-learn.org/stable/.

of the 61 sources. The size of the training and test sets
vary in each run and each model uses one source less
than the total number in the data. The final model is
trained on the entire dataset. We show in Figure 4, the
accuracy obtained for each source using this method.
There are four sources that lie below the 50% average
accuracy mark. The sigma-clipped average accuracy is
87 ± 13%, which gives a lower bound proxy on the
performance of our final model.

While the RF algorithm provides good overall classi-
fication of low-mass X-ray binary sources into BH and
NS types, there are a few sources for which the accu-
racy is low and most of the observations of those sources
are misclassified. Four sources, XTE J1118+480 (BH),
XTE J1748−288 (BH), IGR J00291+5934 (NS) and
1A 1246−588 (NS), have <50% accuracy, out of
which the observations of XTE J1118+480 and XTE
J1748−288 are consistently misclassified with overall
accuracy percentage of ∼30%. Two factors that can
influence the energy spectra are the signal-to-noise ratio
(SNR) and the physical state of LMXB systems at the
time of observation.

SNR is defined as the net count rate divided by the
error in the net count rate for each spectrum. The SNR
over the sample ranges from <4 to >5800. We find
that for observations with SNR <100, the distribution
of predicted probabilities peaks at 0.58. For SNR in the
range of 100–1000 and for SNR> 1000, the distribution
peaks are at 0.87 and 0.91, respectively. The perfor-
mance of the classification model therefore, improves
with the increase in SNR. Among the sources which
were misclassified, only 1A1246−588 had an average
SNR < 100. Therefore, there are reasons other than low
SNR for the poor classification of sources. We find that
the algorithm performs better for soft-state observations
as compared to hard-state observations for individual
sources (see Figures 8 and 9 of Pattnaik et al. 2021).

4.4 Prediction for a sample of sources

We have used the RF model trained on all 61 sources
to predict the classification of 13 systems which have a
total of 766 spectra, but where the nature of the com-
pact object is still not established (Table 1). If >50% of
the spectral observations of a source were predicted to
belong to a particular class, then that class was assigned
to the source. It is seen from the table that five sources
have very few observations (<10) that meet our criteria
for good data and it is difficult to make any comments
on the predicted classes for these sources. The remain-
ing eight sources all have >30 observations each and
six of these sources are classified as BH LMXBs, while

https://scikit-learn.org/stable/
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Figure 4. Plot showing individual source wise accuracy using the leave-one source out method of cross-validation. The
filled circles are black hole binaries while open circles are neutron star binaries. The area of the points corresponds to the
number of observations in each source. The figure is based on (Pattnaik et al. 2021).

Table 1. Classification results for sources in the prediction
set. A class was assigned to a source if the majority of its
observations were predicted to belong to that class. In cases
where the ratio was 50-50 (XTE J1719-291) it is indicated
that the source can belong to either class. Table taken from
(Pattnaik et al. 2021).

Total Class Prediction Avg.
Source name obs. (predicted) (%) SNR

4U1822−371 97 BH 55.67 67
4U1957+11 121 BH 72.73 22.38
IGRJ17285−2922 5 BH 60 10.03
IGRJ17494−3030 97 NS 54.64 25.84
SAXJ1711.6−3808 34 NS 94.12 34.35
SLX1746−331 65 BH 87.69 26.82
SWIFTJ1842.5−1124 49 BH 51.02 25.71
XTEJ1637−498 76 BH 65.79 8.41
XTEJ1719−291 2 NS/BH 50 2.82
XTEJ1727−476 4 BH 100 6.3
XTEJ1752−223 210 BH 67.14 56
XTEJ1856+053 5 BH 100 10.75
XTEJ1901+014 1 BH 100 1.1

two sources are classified as NS LMXBs. Six of these
eight sources have prediction percentage >60%, while
the remaining two sources have prediction in the range
of 50–60% . All the 13 sources have an average SNR

<100, which is the region where the algorithm has the
worst performance.

4.5 Discussion

Our classification model is trained specifically on
RXTE data and cannot be used directly to classify
the energy spectra from other X-ray missions. It is in
principle possible to train a classification model for
different missions using data from the missions, but
there may not be enough data in every case to train
a ML algorithm. However, the concept of transfer
learning could be employed to train an algorithm for
another instrument with limited data using our pre-
trained classification model for RXTE data.

Adding more information as input to the algorithm
can also be explored as a means of improving the cur-
rent level of accuracy reached for all the sources in
our dataset. One way of doing that would be to com-
bine the energy spectra with the power spectra of all the
observations for each source.

There is now a considerable amount of data obtained
with LAXPC detector on AstroSat (Yadav et al. 2021).
It should be possible to apply ML and DL techniques to
the data to have further useful information from it than
has been done so far using conventional methods.
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