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Opinion statement

Primary progressive aphasia (PPA) is a neurodegenerative disease that primarily affects
language functions and often begins in the fifth or sixth decade of life. The devastating
effects on work and home life call for the investigation of treatment alternatives. In this
paper, we present a review of the literature on treatment approaches for this neurode-
generative disease. We also present new data from two intervention studies we have
conducted, a behavioral one and a neuromodulatory one using transcranial direct current
stimulation (tDCS) combined with written production intervention. We show that speech-
language intervention improves language outcomes in individuals with PPA, and espe-
cially in the short term, tDCS augments generalization and maintenance of positive
language outcomes. We also outline current issues and challenges in intervention ap-
proaches in PPA.

Introduction

Primary progressive aphasia (PPA) is a neurodegenera-
tive syndrome that mainly affects language abilities,
including word finding, word usage, word comprehen-
sion, and sentence construction [1•, 2•, 3•]. PPA is

characterized by insidious onset and gradual deteri-
oration of language associated with atrophy of the
frontal and temporal regions of the left hemisphere
[1•, 4]. In this neurodegenerative condition,



language is disproportionately impaired for at least
2 years, without impairment in other cognitive do-
mains other than praxis [5•]. PPA is comprised of
three main variants, each with specific clinical fea-
tures and pathophysiology: non-fluent agrammatic
PPA, semantic variant PPA, and logogpenic variant
PPA [3•, 6]. Difficulty naming is an early and per-
sistent impairment common to all three variants of
PPA [7•, 8, 9].

Non-fluent agrammatic PPA (nfaPPA) is charac-
terized by core features of agrammatic language pro-
duction and/or apraxia of speech [10, 11•, 12].
Spoken modality-specific naming impairments are
reported in nfaPPA [13] as are naming deficits spe-
cific to impaired naming of actions rather than ob-
jects [13, 14•, 15]. Individuals with nfaPPA may
become mute early in their disease progression [16]
and develop clinical features of parkinsonism and
related syndromes, such as corticobasal syndrome
or progressive supranuclear palsy [17]. Imaging ab-
normalities are present in left posterior frontal and
insular regions [10, 18, 19]. The pathology is typical-
ly a tau-opathy, such as corticobasal degeneration,
progressive supranuclear palsy, or frontotemporal
lobar degeneration-tau [3•].

Semantic variant (svPPA) is defined by marked
anomia and single-word comprehension deficits
ac ross input and output modal i t i e s [20] .
Individuals with svPPA may display progressively
impaired object naming, with preserved naming of
actions, and greater difficulty in the written versus
spoken modality, although both modalities are
compromised [14•, 15]. This variant is associated
with atrophy in ventrolateral anterior temporal
lobes bilaterally, usually greater atrophy on the
left [10, 19]. Speech fluency, syntax, and word
r epe t i t i on a r e r e l a t i v e l y p r e s e r v ed [10 ] .
Individuals with svPPA also manifest behavioral
symptoms as their disease progresses [21, 22].
The pathology is most often frontotemporal lobar
degeneration-TDP-43 [3•].

Logopenic variant (lvPPA) is distinguished by
word retrieval and phrase and sentence repetition def-
icits. Single-word comprehension and speech articu-
lation are relatively spared [3•, 23•]. Generalized cog-
nitive decline, including language abilities, attention,
memory, and visuospatial skills, is manifested over
time [24]. Imaging abnormalities are seen in the left
temporoparietal junction [10, 19]. The pathology is
usually Alzheimer’s disease [3•].

Due to its onset in middle age, PPA profoundly
impa c t s wo r k and home l i f e . B ehav i o r a l
interventions—mainly for spoken naming—have been
described to remediate the language deficits in PPA [25–
27, 28••, 29••].Word production impairments (both in
oral and written modalities as manifested in deficits in
picture naming and spelling) have important clinical
value in PPA since they are the two earliest symptoms,
thus allowing for early detection and intervention.Word
finding and fluency difficulties are among the first symp-
toms in logopenic (lvPPA) and non-fluent (nfaPPA)
variants [30]. Spelling is also impaired early in every
subtype and may predict the PPA subtype early in the
course of the disease [31•]. For example, surface
dysgraphia symptoms are usually found in semantic
variant (svPPA) or lvPPA but more rarely in nfaPPA.
Those with nfaPPA sometimes rely on spelling when
they eventually become mute [3•].

Cognitive mechanisms underlying spoken and written
word production and implications for therapy
In this section, we review the cognitive mechanisms in-
volved in spoken and written production since spelling,
naming, and reading deficits are among the first andmost
disruptive symptoms in PPA, and their remediation is the
goal of most interventions. Figure 1 shows the close
relationship between spoken and written word produc-
tion mechanisms in models of cognitive architecture.
Specifically, word representations in either the written
or spoken modality may be accessed from the other
modality or the semantic (word meaning) system [32,
33]. The implication, which is the basis of several treat-
ment studies in post-stroke aphasia [34, 35], is that both
lexical and sublexical routes from one modality may
contribute to word retrieval in the other. Thus, behavioral
treatments stimulating residual knowledge across the se-
mantic, phonological, and orthographic domains have
resulted in cross-domain improvements [36–39]. For ex-
ample, a combination of spelling treatment with spoken
repetition [37, 40, 41] improved written and spoken
production even in participants with semantic
impairments.

Spoken and written production intervention studies in
PPA
Intervention studies in PPA are, in general, difficult due
to the degenerative nature of the disease, the variable
rate of decline among individuals and the inherent het-
erogeneity of each variant. For example, individuals with
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nfaPPA decline more rapidly in action than object
naming, while those with svPPA show the opposite
pattern [42•], and those with svPPA show most notable
decline in object semantics [43, 44]. Therefore, most
intervention studies are case reports or include a small
number of participants (for a review, see [45••]).
Behavioral studies—across all PPA subtypes—have
mostly investigated treatment of word retrieval: (a)
svPPA [46••, 47••, 48••, 49••, 50], (b) nfaPPA
[51••, 52, 53], and (c) lvPPA [28••, 54••, 55••].
These studies have shown encouraging results of
language therapy, i.e., potential for new lexical learn-
ing in svPPA [56••] and lvPPA [28••], benefit of
implementing errorless strategies [50], the impor-
tance of early intervention [56••], and potential for
generalizability and retention of therapy gains [25,
28••]. Long-term effects of therapy gains are either
not systematically examined or outcomes were vari-
able when examined. For example, Meyer and col-
leagues [57] reported response to repetition and
reading/writing therapy for anomia in four individ-
uals with PPA. They found significant improvements
in some but not all treatment conditions over
5 months.

Different approaches may be used to address the
naming impairment, or anomia, common in primary
progressive aphasia. Graham et al. [46••] used repeated
practice of names paired with pictures or descriptions of
targeted items. Jokel et al. [48••] advocated errorless

learning in their treatment paradigm in which pictures
and spoken descriptions of itemswere provided, and the
patient was instructed to attempt to name the target only
if he was certain of the accuracy of his response. This
errorless learning strategy was used successfully in sub-
sequent treatment studies [49••, 50]. Beeson et al. [25]
employed generative naming, in which individuals
name members in categories under a time constraint in
an intensive regime of 2-h treatment sessions, 6 days/
week for 2 weeks, along with approximately 1 h of daily
homework. Similarly, Henry et al. [56••] employed a
rigorous therapy conducted once daily for 90 min, for a
total of 12 treatment sessions over 16 days to improve
lexical retrieval in the context of generative naming. In
the treatment study by Meyer et al. [57], repetition and
writing tasks, as well as forced-choice recognition, were
used. In the repetition treatment, participants viewed a
picture and a string of symbols and repeated the picture
label after a spoken presentation. In the writing treat-
ment, participants viewed a picture and its correspond-
ing printed label, and then copied the label. In both
treatments, a forced-choice recognition task was used
to ensure that participants attended to both the pictures
and the words. This therapy facilitates naming by
accessing phonology via the non-semantic or orthogra-
phy route. Thus, there is an evidence base that a variety
of methods are effective in facilitating naming perfor-
mance. Speech-language pathologists must consider this
evidence as well as individual patient needs, degree of
deficit, and cognitive models of language processing
when planning treatment [45••].

Intervention studies in individuals with apraxia of
speech (AOS) associated with nfaPPA, characterized by
syntactic disorders and apraxia of speech (AOS) in the
initial stages, have targeted the single-word level. A re-
cent study used reading of multisyllabic words as an
intervention strategy in PPA with lasting and generaliz-
able results [58].

Only two behavioral studies of which we are aware
have examined treatment of written language in
PPA—one treating sublexical mechanisms [29••] and
the other treating lexical processes [28••]. Both treat-
ments were successful, but long-term follow-up was
examined only in one study [28••] and was successful
only for treated items. These studies have shown that
results with language therapy alone are encouraging
although limited, either because they have not shown
generalization to untrained items or because they have
lacked follow-up to evaluate the sustainability of
therapy gains.

Fig. 1. Interactive model of lexical processing.
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Transcranial direct current stimulation to augmenting
language interventions
Transcranial direct current stimulation (tDCS) has been
identified as a promising intervention to augment behav-
ioral treatment benefits in language therapy programs,
mostly in stroke [59••, 60••, 61••] and Alzheimer’s
disease (AD) [62••, 63••, 64]. The benefits of
tDCS—its low expense, high safety profile, and non-
invasive nature—justify research on its use in PPA as a
possiblemeans to augment behavioral intervention effects
and reduce the rate of decline in language. The precise
mechanisms of tDCS are unknown; however, it is thought
that tDCS changes themembrane potentials of neurons in
a relatively focal area of brain tissue under the skull [65••,
66, 67]. Anodal stimulation increases the likelihood of
neural firing [67]. tDCS induces a subthreshold polariza-
tion of neurons too weak to generate action potentials,
but sufficient to modulate the neuronal response thresh-
old. Thus, tDCS alters the spontaneous firing rate of neu-
rons to modulate their response to afferent signals [68].
These changes in response threshold correlate with task
performance. Thus, increases or decreases in cortical excit-
ability induced by tDCS are believed to promote long-
term potentiation (LTP) and long-term depression (LTD).
The changes in brain networksmay include recruitment of
undamaged areas of the brain to assume functions of
damaged areas during language tasks [69, 70••].

The positive effects of tDCS in motor and higher
cognitive functions—including language—have been
identified in studies of healthy controls. After a single
tDCS session, participants experienced improved perfor-
mance lasting up to 5 h; however, long-lasting effects of
tDCS have been documented only in studies with re-
peated consecutive tDCS sessions [61••, 71, 72••, 73].
Besides these proof-of-concept studies of healthy con-
trols’ motor skill learning, there is a recent proof-of-
concept study of verbal word learning [74, 75••, 76]
confirming memory formation and consolidation after
repeated consecutive sessions. The clinical importance
of tDCS requires establishing therapy generalization and
maintenance of treatment in clinical populations. Two
research groups have provided relevant evidence:
Fridriksson’s group in spoken naming remediation in
post-stroke aphasia [61••, 77••] and Boggio’s group in
associative memory remediation in AD [78••, 79••,
80••]. After five consecutive stimulations, therapy gains
were found to last up to 4 weeks [64, 78••, 79••, 80••].
The brain mechanisms that induce such effects are
thought to be late long-termpotentiation and/or protein
synthesis [71, 72••, 73, 74], which may constitute the

physiological basis of long-termmemory formation and
offline consolidation. Given that long-lasting learning
reflects synaptic connectivity changes, the effects of tDCS
are expected to be manifested in connectivity changes
between nodes of neural networks. Indeed, studies that
have looked at effects of tDCS on functional connectiv-
ity using resting-state fMRI (rsfMRI) have found signifi-
cant changes in healthy controls [81–85].

tDCS interventions in neurodegenerative disease
tDCS has been shown to enhance cortical excitability and
function [86, 87••, 88] when anodal current is applied in
healthy individuals. Tasks employed in these studies in-
clude fluency, interference, picture naming, verbal learning,
and proper noun learning. In clinical populations, tDCS
has been used mainly to improve motor and language
recovery, primarily after stroke [60••, 61••, 62••, 86, 88,
89••, 90, 91••, 92••, 93••, 94]. Awide range of tasks have
been targeted in post-stroke aphasia, including verb nam-
ing [91••], auditory verbal working memory [86], repeti-
tion of syllables, andwords for treatment of speech apraxia
[94], word retrieval, or picture naming for anomia treat-
ment [62••, 72••, 81, 90, 94–96]. Despite the plethora of
reports on language recovery using tDCS after stroke, only
a few studies have examined it in neurodegenerative dis-
eases: three studies on AD [64, 80••, 97••], including only
one study in which tDCS was applied for more than one
session (five sessions) [80••] and which showed greater
improvement with tDCS vs. sham in a visual recognition
task (9 vs. 2.6 %) but without any task performed during
either tDCS or sham conditions, two studies on
frontotemporal dementia (FTD) [98••, 99••] (one session
only with no effect of tDCS [98••] but also no task prac-
ticed during treatment, and ten sessions with more im-
provement over tDCS vs. sham [99••] coupled with an
oral naming task), andours in PPA [100••] where (after 15
treatment sessions coupled with a spelling task) we found
greater improvementwith tDCS vs. sham(35%of patients
made significant improvement on untrained words with
tDCS vs. 16 % of patients made significant improvement
on untrained words with sham). The tasks used in the
tDCS studies were verbal and visual recognition memory
in AD, spoken verbal fluency and naming in FTD, and
spelling in our study in PPA. In the visual recognition
memory task used in tDCS interventions in AD, two items
(drawings of animals, persons and objects) were displayed
on a computer screen for 10 s and then, 1 s later patients
were shown a single picture and were asked to say wheth-
er the picture (test trial) had been presented before. The
naming task used in the other FTD study [99••]
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comprised a picture naming task of black and white draw-
ings of objects displayed on a computer screen. There were
two balanced lists of pictures, treated and untreated stimuli
that were further split and practiced in each week of treat-
ment (2weeks of treatment overall). Itemswere specifically
tailored for each patient and practiced for 25 min during
anodal tDCS or sham. Treatment included several steps to
elicit the oral production of a target noun: repetition of the
target word, oral picture naming, and reading of the target
word. In our spelling study in PPA, we used a similar
treatment protocol: two sets of ten letters and correspond-
ing words (starting with the same grapheme) were selected
as trained and untrained items, respectively. Different sets
of letter-word correspondences were practiced in each pe-
riod (sham or tDCS). Participants were randomized in
either sham or anodal tDCS for the first period in a
within-subject cross-over design. Each period lasted
3 weeks, thus they received tDCS or sham for 15 consecu-
tive sessions. In each trial, participants were given a sound
towhich theyhad to find the corresponding letter andwere
asked to write a word starting from it. Written production
of the target word was induced by repetition, reading,
studying, and copying. Less-impaired participants were
also encouraged to produce as many words as they could.

One FTD study [98••] did not find any effect of tDCS
in improving verbal fluency which may have been be-
cause there was only one 40-min stimulation session
that was not coupled with language therapy. In this
study, spoken verbal fluency was used as ameasurement
but not as treatment. Other studies that did not couple
tDCS with language therapy have repeatedly yielded no
improvement in both healthy and patient populations
[101–103]. A highly consistent finding across studies
using a wide array of tasks is that tDCS-induced facilita-
tion is highly dependent on the task subjects perform
during stimulation and that tDCS-only conditions are
consistently unsuccessful [101–105].

We are aware of only three other neuromodulation
studies in PPA; all three used repetitive transcranial mag-
netic stimulation (rTMS) [106, 107••, 108••], and all
showed improvement with neuromodulation during
language therapy tasks. Of particular interest is
Trebbastoni et al.’s case study [107••] in which after
TMS stimulation during five consecutive sessions twice
(interleaved with five sham stimulations) over the dor-
solateral prefrontal cortex and close to the inferior fron-
tal gyrus (IFG) andmiddle frontal gyrus (MFG), the PPA
participant showed improvement in phonemic verbal
fluency and written language (decrease of semantic
and syntactic errors in sentences).

Long-term benefits of neuromodulation (tDCS or
TMS) have not been clearly identified; this is especially
true for neurodegenerative diseases. One study in AD
showed improvement in naming one month after tDCS
[78••]. In general, long-term effects—whenever
shown—appeared after at least five consecutive days of
stimulation. Determining the duration of therapeutic
effects is critical, especially in neural degeneration, be-
cause it enables more effective planning of whether and
when treatment should be repeated. In both recent stud-
ies using tDCS in PPA [99••, 100••], long-term effects
(up to twomonths) have been identified, offering prom-
ise of the proposed intervention as a tool of slowing
down the rate of decline in neurodegeneration.

Generalization of treatment gains to other language
and cognitive functions
In addition to generalization to untrained items, general-
ization to untrained tasks is expected, and sometimes
observed when trained and untrained tasks share cogni-
tive functions [34, 35]. Two studies in post-stroke aphasia
evaluated tDCS effects of training oral naming [96] and
syllable-word repetition [89••] and have shown general-
ization to written naming. In published interventions in
PPA, these effects are not fully investigated. Future studies
should test the hypothesis that gains from training both
spoken and written word representations will generalize
to related language and cognitive functions. Furthermore,
since language and cognitive impairments associated
with PPA interfere with activities in daily life and life
satisfaction, future studies should evaluate how improve-
ments in language and cognitive functions enhance qual-
ity of life for individuals with PPA and their families.

Medications
Because the most common pathology underlying lvPPA
is Alzheimer’s disease pathology, the decline in symp-
toms might be reduced with cholinesterase inhibitors
and/or memantine, medications that have been shown
to somewhat reduce the rate of decline in cognition in
clinically diagnosed Alzheimer’s disease. However, a
large randomized clinical trial specifically in lvPPA has
not been completed. Case studies have reported im-
provement in language with steroid treatment [109] or
Omentum Transposition Therapy [110], but these ef-
fects have not been replicated. Theoretically, medica-
tions that enhance neuroplasticity, such as selective se-
rotonin reuptake inhibitors, might augment the effects
of tDCS, but the combination of interventions has not
been studied in PPA.
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Conclusions: challenges and new venues

The present review shows that language interventions are possible and can
be successful in a neurodegenerative disease. All behavioral interventions
in PPA cited above showed improvement of the language function targeted.
However, not all of them showed generalizable and long-lasting effects.
Many reasons may be responsible for these findings: heterogeneity of
symptoms and pathologies reflected by the different PPA variants, different
stages of disease progression at baseline, and variable rate of decline be-
tween participants and studies. Neuromodulation with tDCS offers prom-
ise as a means of augmenting language therapy to improve written language
function at least temporarily in PPA. The consistent finding of generaliza-
tion of treatment benefits to untreated items and the superior sustainability
of treatment effects with tDCS justifies further investigations. To date, there
are only a few studies with small sample sizes, so results require caution in
interpretation but offer hope for improved outcomes of combined lan-
guage therapy and tDCS. Future interventions need to address particular
challenges, such as ways to account for the variable effect of degeneration in
each individual, generalization of treatment to other cognitive functions,
and impact and improvement in quality of life of the individuals with PPA.
Longitudinal studies also need to determine whether interventions have
the potential of altering the rate of disease progression or even slowing
down the progression of symptoms for some time. Future research is
needed to determine whether medications, used alone or in combination
with speech and language treatment with or without neuromodulation, can
be of benefit in reducing the rate of language decline in PPA. Finally, future
research should address the brain mechanisms involved in both behavioral
and neuromodulatory interventions.
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