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Opinion statement

White matter disease is commonly detected on brain MRI of aging individuals as white
matter hyperintensities (WMH), or ‘leukoaraiosis.” Over the years, it has become in-
creasingly clear that the presence and extent of WMH is a radiographic marker of small
cerebral vessel disease and an important predictor of the lifelong risk of stroke, cog-
nitive impairment, and functional disability. A number of large population-based stud-
ies have outlined the significance of WMH as a biomarker for long-term cerebrovascular
disease and dementia. In this review, we describe the conceptual framework and meth-
odology that support this association and link the existing knowledge to future lines of
investigation in the field.

Ischemic stroke and leukoaraiosis – a definition for the 21st century
The definition of “stroke” has undergone a significant evo-
lution throughout the decades of cerebrovascular studies.
Most recently, the expert consensus statement from the
American Heart Association/American Stroke Association
underlined the importance of the presence of objective

clinical (neuroimaging) or laboratory (pathological) evi-
dence of cerebral infarction, or brain cell death attributable
to ischemic injury in a defined vascular distribution, for a
diagnosis of ischemic stroke, whether symptomatic or si-
lent. [1••] In addition, a common condition that is found



on brain MRI of asymptomatic aging adults is WMH, or
“leukoaraiosis.” Defined by Hachinski in 1985,
“leukoaraiosis” implies “diminished density of whitemat-
ter which is seen on brain-computed tomography (CT),”
which in turn ishyperintenseonT2-weighted, proton-den-

sity-weighted, and fluid-attenuated inversion recovery
(FLAIR) brain MRI sequences [2, 3]. Over the years, MRI
has demonstrated greater sensitivity in detecting abnormal
white matter, including lesions not otherwise visible on
head CT [4].

Radiographic assessment of WMH severity

There are primarily two radiographic approaches to the assessment of
WMH severity (Fig. 1). First, the visual rating scales that are used to
measure white matter lesions (WMLs) on CT or MRI are based on the
location and severity of white matter disease. MRI-based scales, such as
the Fazekas scale, rate both periventricular hyperintensity (PVH) and
deep white matter locations of WML (score 0–3) [5]. The Scheltens scale
adds the location, size, and number of WML in PVH (score 0–6), WMH
(score 0–24), basal ganglia hyperintensities (BG) (score 0–30), and
infratentorial foci of hyperintensities (ITF) (score 0–24) [6]. The RotterdamScan
Study (RSS) scale rates WML in the periventricular region (score 0–9) and
subcorticalWML [7]. TheAge-RelatedWhiteMatterChanges (ARWMC) scale for
rating WMH on CT and MRI include the location, size, and number of WMLs
(score 0–3) and basal ganglia lesions (score 0–3) in five different regions
(frontal, parieto-occipital, temporal, basal ganglia, and infratentorial) of the
bilateral hemispheres [8].

Second, a volumetric approach to WMH analysis has been based on the
various semi-automated protocols, using analytical software such as Sparc
5 (SUN, Palo Alto, CA) [9] or MRIcro (University of Nottingham School of
Psychology, Nottingham, UK; www.mricro.com), which quantify WMH

Figure 1. Severity of MRI-detected white
matter hyperintensity. Total burden of
white matter disease varies significantly
among asymptomatic adults and patients
with known cerebrovascular disease. In
age-matched individuals, white matter
hyperintensity (WMH) volume may vary
from mild to very severe (upper panel).
Using validated semi-automated volu-
metric protocol, WMH volume can be
quantified (lower panel, in red, WMH maps
are derived from contiguous
supratentorial axial T2-FLAIR MRI slices
using previously published method [10])
with a high degree of accuracy and
precision.
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volume (WMHv) on axial FLAIR of either the entire brain or just the
supratentorial region [10] (Fig. 1). Albeit more labor-intense, volumetric
methods provide more accuracy and reliability in assessing WMH se-
verity, especially when evaluating WMH progression, as compared to the
visual rating scales [11, 12]. Some WMH progression scales, such as the
Rotterdam Progression and Schmidt Progression scales, are also sensitive,
consistent, and relate to volumetric volume change [12].

Clinical application of different scales may depend on their sensitivity
for a specific functional domain. For example, in the Leukoaraiosis And
DISability (LADIS) study, visual rating scale and volumetric methods
demonstrated greater WMH burden in subjects with impaired physical
performance and cognition as compared to normal controls [13]. How-
ever, volumetric assessment was more sensitive than visual scores in
detecting memory symptoms [9]. Many studies have used WMHv to
evaluate the association between leukoaraiosis and risk of stroke, cog-
nitive impairment, dementia, mortality, stroke severity, and other func-
tional disabilities.

Burden of WMH and risk of stroke
Risk of first-ever stroke in population-based studies

Six large prospective population-based studies provided pivotal evidence
of correlation between WMH and risk of first-ever stroke (Table 1). The
Atherosclerosis Risk in Communities (ARIC) study followed up 1,684
persons in four U.S. communities for 4.7 years and found that people
with WML had a higher 5-year cumulative incidence of clinical stroke
than people without WML (6.8 % vs. 1.4 %; RR 3.4; 95 %.CI, 1.5–7.7),
independent of common stroke risk factors [14]. The Rotterdam Scan
Study in the Netherlands, which followed 1,077 participants for an av-
erage of 4.2 years, demonstrated that WML in both periventricular and
subcortical locations significantly increased the risk of stroke [15]. The
Cardiovascular Health Study (CHS) included 3,293 persons in four U.S.
communities followed for an average of 7 years, and showed that the
risk of stroke increased proportionally to the WMH grade increase, in-
dependent of conventional stroke risk factors [16]. A prospective cohort
study in Shimane, Japan, demonstrated that marked PVH and subcortical
white matter lesion (SWML) burden independently increased the risk of
stroke in 2,684 subjects followed for an average of 6.3 years [17]. The
Three-City (3C) study in Dijon, France, which followed 1,643 persons
for an average 4.9 years, showed a significant increase in the risk of
stroke with increasing WML [18]. And finally, the Framingham Offspring
Study, which systematically evaluated 2,177 persons during 5.6 years of
follow-up, demonstrated that greater WMHv was associated with an in-
creased risk of stroke (HR 2.28, 95 % CI, 1.02–5.13), independent of
vascular risk factors [19].

The meta-analysis of these six large population-based cohort studies dem-
onstrated a significant association of WMH with risk of stroke (HR 3.1, 95 %
CI, 2.3–4.1, pG0.001) [20•]. Furthermore, a pooled population-based anal-
ysis of the ARIC and CHS, which included 4,872 stroke-free individuals
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Table 1. Association of WMH with stroke, recurrent stroke, intracerebral hemorrhage, hemorrhagic trans-
formation and mortality

Author Population Results
Risk of first-ever stroke
Wong TY 2002 [14] ARIC Study 5-year cumulative incidence of clinical stroke:

WML vs. without WML: 6.8 % vs. 1.4 %; RR 3.4; 95 % CI, 1.5–7.7
Vermeer SE 2003 [15] Rotterdam Scan Study 3rd vs 1st PVH tertile: HR 4.7; 95 % CI, 2.0–11.2

3rd vs 1st SWML tertile: HR 3.6; 95 % CI, 1.4–9.2
Kuller LH 2004 [16] CHS WML grades ≥ 5 vs grades 0–1: 2.8 % vs 0.6 %; HR 3.0; 95%CI, 1.9–4.7
Bokura H 2006 [17] Shimane Study Marked vs. mild PVH: OR 2.08; 95 % CI 1.04 –4.17

Marked vs. no SWML: OR 2.73; 95 % CI 1.32–5.63
Buyck JF 2009 [18] 3–City Dijon Study 4th vs 1st total WMHv quartile: HR 5.7; 95 % CI, 2.0–16.4

4th vs 1st PVH volume quartile: HR 6.2; 95 % CI, 2.0–19.5
4th vs 1st deep WMHv quartile: HR 4.1; 95 % CI, 1.5–11.3

Debette S 2010 [19] Framingham Offspring Study extensive WMHv: HR 2.28; 95 % CI, 1.02–5.13
Debette S 2010 [20•] Meta-analysis WMH: HR 3.1; 95 % CI, 2.3–4.1
Folsom AR 2012 [21] ARIC and CHS Study Risk of ICH:

WMH grade 4–9 vs. WMH grade 0–1: HR 3.96; 95 % CI, 1.90–8.27
WMH grade 3 vs. WMH grade 0–1: HR 3.52; 95 % CI, 1.80–6.89

Risk of recurrent stroke
Yamauchi H 2002 [22] Japanese WML score at baseline: HR 1.60; 95 % CI, 1.02–2.54
Appelros P 2005 [23] Swedish WML score at baseline: HR 1.7 95 % CI, 1.2–2.7
Fu JH 2005 [24] Chinese Severity of WML: HR 4.18; 95 % CI, 2.0–8.6
Gerdes VE 2006 [25] Amsterdam Vascular

Medicine Group
PVH vs. without PVH: HR 3.2; 95 % CI, 1.3–8.4
deep vs. without deep WML: HR 1.5; 95 % CI, 0.6–3.8

Naka H 2006 [26] Japanese For ischemic stroke:
advanced WMH: HR 10.7; 95 % CI, 2.6–43.7

Debette S 2010 [20•] Meta-analysis WMH: HR 7.4; 95 % CI, 2.4–22.9
Risk of ICH and hemorrhagic transformation
Smith EE 2004 [10] American For recurrent ICH:

CT-WMH (grade 1) vs. without CT-WMH: HR 3.7; 95 % CI, 1.1–12.3
Naka H 2006 [26] Japanese For ICH:

advanced WMH: HR 0.016; 95 % CI, 0.001–0.258
Shi ZS 2012 [43] American Moderate or severe deep WMH on preintervention MRI:

Predict hemorrhagic transformation: OR 3.43; 95 % CI, 1.23–9.57,
after mechanical thrombectomy

Predict parenchymal hematoma: OR 6.26; 95 % CI, 1.74–22.45,
after mechanical thrombectomy

Mortality
Bokura H 2006 [17] Shimane Study Marked vs. mild PVH: OR 4.01; 95 % CI, 1.91–8.45

Marked vs. no SWML: OR 1.06; 95 % CI, 0.45–2.53
Ikram MA 2009 [32] Rotterdam Scan Study For all-cause mortality:

4th vs 1st WMH quartile: HR 2.05; 95 % CI, 1.32–3.20
WML per SD: HR 1.38; 95 % CI, 1.16–1.65
For cardiovascular mortality:
WML per SD: HR 2.52; 95 % CI, 1.65–3.84

Debette S 2010 [19] Framingham
Offspring Study

Risk of death:
WMHv: HR 1.38; 95 % CI, 1.13–1.69
extensive WMHv: HR 2.27; 95 % CI, 1.41–3.65

Risk of vascular death:
WMHv: HR 1.96; 95 % CI 1.13–2.92
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followed for a median of 13 years, demonstrated that higher WMH grade on
baseline MRI is a significant predictor of spontaneous intracerebral hemor-
rhage (ICH) (p for trend G 0.0001) [21].

Risk of stroke in high-risk populations
Many prospective studies have evaluated WMH and risk of stroke in
high-risk populations (Table 1). A study in 89 Japanese participants who
had clinical lacunar infarction and who were followed up for a mean of
51 months found that extensive WMH at baseline was a significant
predictor of stroke risk (RR 1.60; 95 % CI, 1.02–2.54, pG0.05) [22]. A
study in 121 American patients with lobar ICH demonstrated that
CT-based evidence of white matter damage nearly quadrupled the risk of
recurrent ICH (HR 3.7, 95 % CI, 1.1-12.3, p=0.02) after 2.7 years of
follow-up [10]. A study of 81 Swedish patients with lacunar infarction
found that severity of WML was a predictor of recurrent stroke (OR 1.7,
95 % CI, 1.2-2.7), in long-term follow-up (5 years) [23]. Similarly,
extensive WML was associated with recurrent stroke in a study of 228
Chinese patients with stroke (p=0.0001) [24]. The Amsterdam Vascular
Medicine Group in the Netherlands reported that patients (n=230) with
confirmed atherosclerotic disease – including recent myocardial infarc-
tion (MI), ischemic stroke (IS), or peripheral arterial disease (PAD) –
and evidence of PVH on neuroimaging had a higher recurrent ischemic
stroke rate at 3.5 years compared to those without PVH (18 % vs. 5 %,
p=0.001) [25]. A study in 266 Japanese patients with ischemic stroke or
ICH found that the subgroup of patients with advanced WMH but no
microbleeds had the highest recurrence rate of ischemic stroke of the
four patient subgroups (10.5 % in 1-year and 17.4 % in 2-year follow-up, HR
10.7, 95 % CI, 2.6–43.7) [26].

Finally, combined data analyses demonstrate convincingly that WMH
severity is linked to the risk of recurrent stroke. A meta-analysis from
three studies in high-risk populations reported HR 7.4, 95 % CI, 2.4–

Table 1. (continued)

Author Population Results
extensive WMHv: HR 4.18; 95 % CI, 1.72–10.15

Risk of cardiovascular death:
WMHv: HR 1.86; 95 % CI 1.20–2.89
extensive WMHv: HR 3.49; 95 % CI, 1.30–9.37

Kuller LH 2007 [33] CHS Ventricular grade ≥ 6: HR 1.58; 95 % CI, 1.21–2.07
White matter grade ≥ 5: HR 1.87; 95 % CI, 1.43–2.32

Tveiten A 2013 [34] Norwegian 30-day mortality: WMH score: OR 1.6; 95 % CI, 1.06–2.5
Long-term mortality: WMH score: OR 1.6; 95 % CI, 1.2–2.1

Fu JH 2005 [24] Chinese Survival: severity of WML: HR 2.02; 95 % CI, 1.032–3.960
Debette S 2010 [20•] Meta-analysis WMH: HR 2.3; 95 % CI, 1.9–2.8

Abbreviations: ARIC – Atherosclerosis Risk In Communities study, CHS – Cardiovascular Health Study, CI – confidence interval, CT – com-
puted tomography, HR – hazard ratio, ICH – intracerebral hemorrhage, OR – odds ratio, PVH – periventricular hyperintensity, SD – standard
deviation, SWML – subcortical WML, WML – white matter lesions, WMH – white matter hyperintensity, WMHv – WMH volume
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22.9, p=0.001, whereas pooled data from six population-based studies
and three high-risk populations showed HR 3.5, 95 % CI, 2.5–4.9,
pG0.001 [20•].

Burden of WMH and risk of vascular cognitive impairment
and dementia
Risk of vascular cognitive impairment

There have been multiple population-based studies that have evaluated the
association between leukoaraiosis and the risk of cognitive impairment
(Table 2). Some studies used the severity of WMH at baseline, while many
assessed the progression of WMH longitudinally.

A study in 67 American participants with normal cognition demonstrated
that high baseline WMHv was related to the risk of progression to mild
cognitive impairment (MCI) (HR 3.3; 95 % CI, 1.33–8.2, p=0.01) [27].
However, the Framingham Offspring Study, which followed up 1,694 per-
sons for a mean duration of 6.2 years, found that the severity of WMHv did
not correlate with the risk of all MCI or amnestic MCI [19]. Similarly, the
Austrian Stroke Prevention Study followed 329 participants for 6 years and
demonstrated that WMHv progression was associated with cognitive decline
in some domains, including memory, conceptualization, and visuopractical
skills, but that changes in WMHv were not related to cognitive decline after
adjustment for brain volume [28].

Risk of dementia
The link between severity of leukoaraiosis and risk of dementia has been
examined in a number of large prospective population-based studies (Table 2),
including the Cardiovascular Health Cognitive Study, in which 480 of 3,608
persons developed dementia in up to 8 years of follow-up. The study found that
extensiveWMH grade at study baseline was a significant risk factor for dementia
(HR 1.8) and Alzheimer’s disease (AD) [29]. The Rotterdam Scan Study dem-
onstrated that WML, predominantly in the periventricular region, indepen-
dently increased the risk of dementia in 1,077 cognitively intact participants at
5.2 years (HR 1.67; 95 % CI, 1.25–2.24) [30]. Similarly, the Osaki-Tajiri Project
in Japan followed 204 healthy adults and 335 participants with questionable
dementia for a period of 5 years and showed that WML was a predictor for
progression to vascular dementia (VaD) [31]. The FraminghamOffspring Study
(n=2,013) reported that severity of WMHv was significantly associated with
increased risk of dementia (HR 2.22, 95 % CI, 1.32–3.72 for WMHv; HR 3.97,
95%CI, 1.10–14.3 for extensiveWMHv) in amean follow-up of 5.9 years [19].
Lastly, ameta-analysis of three population-based studies confirmed a significant
association between WMH and risk of all types of dementia (HR 2.9; 95 % CI,
1.3–6.3, p=0.008) [20•].

WMH as biomarker of total burden of cerebrovascular disease
Association with mortality

Several large prospective population-based studies have evaluated the asso-
ciation between WMH and mortality (Table 1). In a cohort of 2,684 neuro-
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Table 2. Association ofWMHwith cognitive impairment, dementia, gait abnormalities and urinary incontinence

Author Population Results
Risk of vascular cognitive impairment
Smith EE 2008 [27] American High WMHv: HR 3.30; 95 % CI, 1.33–8.22
Debette S 2010 [19] Framingham Offspring

Study
For MCI
WMHv: OR 1.06; 95 % CI, 0.83–1.36
extensive WMHv: OR 1.26; 95 % CI, 0.67–2.39
For amnestic MCI
WMHv: OR 1.24; 95 % CI, 0.98–1.57
extensive WMHv: OR 1.67; 95 % CI, 0.96–2.93
For amnestic MCI, age ≥ 60
WMHv: OR 1.49; 95 % CI, 1.14–1.97
extensive WMHv: OR 2.47; 95 % CI, 1.31–4.66

Schmidt R 2005 [28] Austrian Stroke
Prevention Study

WMHv: β -0.025; 95 % CI, -0.047 to -0.004 (memory)
WMHv: β -0.022; 95 % CI, -0.043 to 0.0004 (conceptualization)
WMHv: β -0.035; 95 % CI, -0.059 to -0.011 (visuopractical skills)
WMHv: β -0.017; 95 % CI, -0.036 to -0.002 (attention/speed)

Risk of dementia
Kuller LH 2003 [29] Cardiovascular Health

Cognitive Study
WMH ≥ 3: HR 1.7; 95 % CI, 1.36-2.10 (total dementia)
WMH ≥ 3: HR 1.5; 95 % CI, 1.17-1.99 (AD)
WMH ≥ 3: HR 2.1; 95 % CI, 1.36-3.11 (VaD/mixed dementia)

Prins ND 2004 [30] Rotterdam Scan Study PVH: HR 1.67; 95 % CI, 1.25–2.24
Meguro K 2007 [31] The Osaki-Tajiri Project PVH: OR 0.78 (non-significant) (AD)

Deep WMH: OR 1.07, 1.02 (right , left, non-significant) (AD)
PVH: OR 4.14 (pG0.005) (VaD)
Deep WMH: OR 4.04, 3.27 (right , left, pG0.05) (VaD)

Debette S 2010 [19] Framingham Offspring Study WMHv: HR 2.22; 95 % CI, 1.32–3.72
extensive WMHv: HR 3.97; 95 % CI, 1.10–14.30

Debette S 2010 [20•] Meta-analysis WMH: HR 2.9; 95 % CI, 1.3–6.3
Gait abnormalities
Kreisel SH 2013 [45] LADIS Study Slope of the short physical performance battery (SPPB):

Moderate ARWMC degree: -0.22; 95 % CI, -0.35 to -0.09
Severe ARWMC degree: -0.46; 95 % CI, -0.63 to -0.28

Inzitari D 2007 [47] LADIS Study For patients with 0 or 1 activity limited at entry
Severe vs. mild ARWMC: HR 2.38; 95 % CI, 1.29–4.38
For patients with no activity limited at entry
Severe vs. mild ARWMC: HR 3.02; 95 % CI, 1.34–6.78

Poggesi A 2013 [48] LADIS Study Severe vs. mild white matter change: OR 2.34; 95 % CI, 1.52–3.60
Silbert LC 2008 [49] Oregon Brain Aging Study Total WMHv and rate of changes in timed walking in seconds:

R2 = 0.08, p=0.0052
Total WMHv and number of steps: R2 = 0.12, p=0.0125
Increased PVH and rate of changes in timed walking in

seconds: R2 = 0.12, p=0.0039
Increased PVH and number of steps: R2 = 0.13, p=0.0075

Urinary incontinence
Poggesi A 2008 [53] LADIS Study WMH: OR 1.74; 95 % CI, 1.04–2.90

Abbreviations: AD – Alzheimer disease, ARWMC – age-related white matter changes, CI – confidence interval, HR – hazard ratio, LADIS –
Leukoaraiosis and Disability study, MCI – mild cognitive impairment, OR – odds ratio, PVH – periventricular hyperintensity, SD – standard
deviation, WML – white matter lesions, WMH – white matter hyperintensity, WMHv – WMH volume, VaD – vascular dementia
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logically normal and stroke-free Japanese subjects, the risk of death at
6.3 years was significantly greater if the subjects had obvious PVH on brain
imaging (OR 4.01; 95 % CI, 1.91–8.45) [17]. Similarly, the Rotterdam Scan
Study reported increased fatality rates among 430 subjects with WML [32],
and the Framingham Offspring Study of 2,208 persons demonstrated that
the severity of WMHv was associated with an increased risk of death (HR
1.38, 95 % CI, 1.13–1.69 for WMHv; HR 2.27, 95 % CI, 1.41–3.65 for ex-
tensive WMHv) in a long-term follow-up [19]. On the other hand, in the
Cardiovascular Health Study, 3,245 participants with low WMH grade
demonstrated improved longevity over 10–12 years of follow-up [33]. Meta-
analysis in these four population-based studies showed a significant corre-
lation of WMH with risk of death (HR 2.3, 95 %; CI 1.9–2.8, pG0.001) [20•].

Other studies evaluated the association of leukoaraiosis with mortality in
high-risk populations. A study in southern Norway in 134 persons with first-
ever ICH showed that severe WMH was independently associated with both
short- and long-term fatality in 30-day survivors [34]. Similarly, survival was
reduced in 228 Chinese subjects with WML with first-ever ischemic stroke
when followed for a median of 23 months (p=0.007) [24].

Association with stroke severity and post-stroke outcomes
Severity of leukoaraiosis has been linked to poor functional post-stroke out-
come in both short- (90 days) and long-term follow-up studies (Table 1). In
patients with acute ischemic stroke, severity of WMH is significantly associated
with poor functional outcome at 3months [35–39] and beyond [39, 40]. When
the topographyofWML is considered, PVHburden–but not subcortical or deep
WMH – appears to be linked to unfavorable clinical outcome in both short- and
long-term (9 90 days) studies [35, 36, 39]. A study in patients with spontaneous
ICH also showed that higher leukoaraiosis burden was an independent marker
of worse functional outcome [38].

In addition to being a predictor of functional outcome after stroke, sever-
ity of leukoaraiosis was independently associated with larger infarct cores
[41], greater infarct volume growth [42], and increased risk of hemorrhagic
transformation and parenchymal hematoma following intra-arterial
thrombectomy for treatment of acute ischemic stroke, especially
leukoaraiosis in the deep white matter region [43].

Association with other functional disabilities
The Leukoaraiosis And DISability (LADIS) study is a European multicenter
collaboration evaluating the independent role of white matter change by
neuroimaging in determining many clinical aspects of disability, such as
functional status, cognition, mood, motor performance, and urinary prob-
lems [44] (Table 2). In the LADIS study’s assessment of 639 nondisabled
participants, moderate and severe white matter changes were independently
associated with worsening of gait and balance, [45] whereas progression of
leukoaraiosis was associated with a gradual decline in executive function test
performance [46]. One-year reassessment of 619 elderly LADIS subjects with
baseline functional independence demonstrated that severe WMH placed
them at risk of dependency from motor and cognitive decline in a short time
period [47]. Finally, the LADIS participants with severe baseline WMH and
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WMH progression over the course of a 3-year follow-up had a greater risk of
gait and stance abnormalities, upper motor signs, and finger-tap slowing
(fine motor movement), independent of other vascular lesions [48].

Similarly, the Oregon Brain Aging Study (OBAS), which followed 104
cognitively intact participants for up to 13 years, demonstrated that in-
creased total and periventricular WMHv at baseline and progression of PVH
correlated with gradual gait worsening, whereas progression of subcortical
WMH was associated with memory decline [49]. Finally, a number of studies
reported the association between urinary incontinence and white matter
changes [50–52]. Furthermore, urinary urgency was linked to the initial se-
verity of WMH among the LADIS participants, independent of other con-
founders and vascular brain lesions [53].

Future directions

The role of WMH as a diagnostic and prognostic biomarker of cerebrovas-
cular disease is now commonly accepted. The question remains whether
WMH plays an active role in the pathophysiology of cerebral dysfunction
linked to the severity and progression of leukoaraiosis. Novel methods of
clinical research, including genome-wide association studies (GWAS) and
advanced neuroimaging techniques, may provide evidence of underlying
disease biology in WMH. Of particular interest is the recent report on a
shared genetic contribution between WMH severity assessed on brain MRIs
of healthy aging adults enrolled through the multiple population-based
cohorts of the CHARGE consortium [54•] and hospital-based cohorts of
patients with acute ischemic stroke [55]. In a meta-analysis of WMH GWAS
in 9,361 stroke-free individuals of European descent, the CHARGE consor-
tium identified six novel single-nucleotide polymorphisms (SNPs) from a
locus on chromosome 17q25 associated with WMH burden [54•]. The
association of these SNPs – and most significantly, rs9894383 (p=0.0006) –
with WMHv in ischemic stroke patients was replicated by the International
Stroke Genetics Consortium study [55], which represents a major break-
through in understanding the shared genetic contribution to leukoaraiosis
across the spectrum of small cerebral vessel disease.

Future breakthroughs are also expected to emerge from advanced neuro-
imaging of white matter in health and disease, among which diffusion tensor
imaging (DTI) is most promising. DTI provides detailed data on the white
matter structure (and in recent studies, the association between common
vascular risk factors such as hypertension and serum lipids), and DTI mea-
sure of white matter integrity that has been explored in healthy adults [56,
57]. If validated, these preliminary reports of the effect of resting blood
pressure and serum LDL on white matter integrity warrant further assessment
in subjects with advanced WMH.

Conclusion

The body of literature supports the role of WMH as a biomarker of
longstanding cerebrovascular disease. Advanced neuroimaging and future
studies of genetic architecture of leukoaraiosis will reveal the underlying bi-
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ology of white matter disease and its role in pathophysiology of stroke, de-
mentia, and the total burden of cerebrovascular dysfunction.
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