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Abstract
Purpose of Review Synovial inflammation is characteristic of inflammatory chronic arthropathies and can cause progressive
articular damage, chronic pain, and functional loss. Scientific research has increasingly focused on investigating anti-
inflammatory micronutrients present in fruits, vegetables, spices, seeds, tea, and wine. This review aims to examine the anti-
inflammatory effect of polyphenols (phytonutrients present in plants) and other micronutrients described in randomized clinical
trials conducted in patients with chronic inflammatory arthropathies.
Recent Findings There is an increasing evidence that differences in micronutrient intake might play an essential role in patho-
genesis, therapeutic response, and remission of synovitis. Randomized clinical trials with specific micronutrient- or nutrient-
enriched food intake show improvement of symptoms and modulation of both pro- and anti-inflammatory mediators.
Summary We found convincing evidence of the anti-inflammatory effect of several micronutrients in arthritis symptoms and
inflammation. Although in clinical practice nutritional recommendations to patients with chronic joint inflammation are not
consistently prescribed, the addition of these nutrients to day-to-day eating habits could potentially change the natural history of
inflammatory arthritis. Future research is needed for a consensus on the specific nutritional recommendations for patients with
chronic synovial inflammation.
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Introduction

Rheumatoid arthritis (RA), osteoarthritis (OA), and psoriatic
arthritis (PsA) are among the most common chronic joint in-
flammatory diseases worldwide. Approximately 54.4 million
adults are living with doctor-diagnosed arthritis and this re-
mains a leading cause of disability. Chronic synovial inflam-
mation will cause progressive articular damage, chronic pain,
functional loss, and reduced quality of life [1]. The origin of
chronic synovial inflammation depends on different factors

such as genetics, sex, immune and innate response, structural
factors, and environmental factors like weight, nutrition,
microbiome, and tobacco use that leads to a pro-inflammato-
ry/anti-inflammatory disbalance of local mediators [2]. The
vast majority of pro-inflammatory cytokines within the joints
(TNF, IL-6, and IL-8 in RA, and TNF, IL-17, and IL-23 in
PsA among others) will stimulate the production of degrading
enzymes, causing severe cartilage degeneration and bone
damage, leading to joint destruction [3, 4]. In OA, although
progressive degeneration of cartilage leading to permanent
functional joint failure is a critical feature, increasing evidence
indicates that low-grade synovial inflammation (synovitis)
contributes to OA progression [5]. In addition, a dysregulated
oxidative metabolism, which generates high amounts of reac-
tive oxygen species (ROS), together with an insufficient anti-
oxidant system, also plays a role in the pathophysiology of
rheumatic diseases [6]. Anti-inflammatory and antioxidant
therapeutic options are of great importance in these diseases.

Patients with rheumatic diseases generally trust their rheu-
matologists for counseling. They frequently seek additional
sources of relief and/or treatments with fewer side effects to
improve joint symptoms and disease control. They specifical-
ly ask about dietary recommendations as many perceive
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changes in symptoms after consumption or avoidance of spe-
cific foods. In our experience working with RA patients, we
have noticed that they are very motivated and eager to modify
their diet. Our team interviewed different groups of RA pa-
tients, and their feedback was assessed to build a diet that
incorporates suggested anti-inflammatory ingredients and that
was easily adopted by patients. We were able to identify com-
mon foods that were incompatible with an anti-inflammatory
diet and substituted them appropriately to match patients’ cul-
tural and economic statuses. This diet, which is an omnivo-
rous diet based on a Mediterranean diet (MD), with some
modifications, was assessed in a pilot trial with high adher-
ence and feasibility, which highlights the willingness to
change habits in this population and the importance in nutri-
tion advice in our rheumatological clinics [7].

Dietary components (i.e., food components or microorgan-
isms within food) may compromise the intestinal barrier and
enter the bloodstream, triggering inflammation. However,
even though dietary factors were found to be the single lead-
ing cause of death and disability according to the 2019 Global
Burden of Disease Study [8], and even after an increase of
interest in the influence of diet in other inflammatory diseases,
such as cardiovascular diseases, by the scientific community,
dietary interventions have not been established as a comple-
mentary treatment in RA, OA, or PsA. Furthermore, the data
on dietary or nutraceutical interventions are extremely limited
in PsA, apparent in a recent systematic literature review [9,
10]. In PsA, studies have primarily focused on weight loss,
which has been found to be beneficial [11–13].

Diet modifications can directly change the immune re-
sponse at both the gastrointestinal and systemic levels by pro-
viding an extensive range of nutrients and micronutrients.
Furthermore, diet shapes the human gut microbiota, which is
recognized to have a central role in the modulation of the
immune response and arthritis pathogenesis [14]. There are
many ways in which the diet may be altered in order to
achieve an improvement in diseases. It is known that losing
weight or different patterns or diets, like the Mediterranean
and plant-based diets (vegetarian or vegan), can play an es-
sential role in the management of rheumatic diseases. Plant-
based diets (fruits, vegetables, and whole grains) have shown
many anti-inflammatory and antioxidant properties and were
shown to be efficacious in RA and OA patients by reducing
pain and disability. These diets are rich in vitamins, minerals
(selenium, zinc, magnesium), and polyphenols that are present
in fruits, vegetables, legumes, and whole grains [14–18].
Obesity is one of the most important modifiable risk factors
to improve outcome in PsA and also OA and there is strong
evidence recommending dietary weight reduction with a
hypocaloric diet in overweight and obese patients with PsA
and OA, but diet may have a role beyond weight control
[19–21]. However, diet modifications are often challenging
to follow as these diets involve a change of lifestyle. In

general, it may be more feasible to simply add anti-
inflammatory nutrients [14, 15, 22].

This review aims to present the anti-inflammatory and anti-
oxidant properties of some of the micronutrients and their effect
in arthritis symptoms and in downstream cytokines and
chemokines from randomized clinical trials (Fig. 1, Tables 1,
2, 3, and 4).Wewill focus on the effects of thesemicronutrients
on clinical scores, as well as the biological effects in patients
and animal models. A summary of the effect on inflammatory
mediators from in vitro studies can be found in Table 5.

Polyphenols

Polyphenols are the biggest group of phytochemicals. They
are bioactive compounds produced by plants, biosynthesized
from the phenyl propanoid pathway for the phenolic acids or
the shikimic acid pathway for gallotannins and analogs. They
represent one of the most prevalent natural products in the
plant kingdom. Former studies showed that plant-derived
polyphenolic compounds were the most potent antioxidant
and anti-inflammatory agents among all-natural compounds
[16]. Different types of polyphenols can be found in fruits,
vegetables, whole grains, legumes, herbs, spices, and plant-
based beverages (tea, wine), contributing to their color, flavor,
and pharmacological activities [18, 70, 71]. There is an in-
creasing interest in research in this field due to their anti-
inflammatory and antioxidant properties and fewer unwanted
effects than common drugs to treat arthritis (Table 1).
According to their chemical composition, they are classified
into two distinctive groups: flavonoids and no flavonoids [70]
(Table 1).

Flavonoids

Flavonoids are the primary polyphenol in various fruits and tea
and can be classified into 6 subclasses: flavan-3-ols, flavonols,
flavones, flavanones, isoflavones, and anthocyanidins [72].

– Flavan-3-ols (catechin, gallocatechin, epicatechin, epi-
gallocatechin, epicatechin 3-gallate, epigallocatechin 3-
gallate (EGCG)) is one of the flavonoids with more evi-
dence of therapeutic effects and more studies performed.
It is found mainly in green tea and several studies support
that the majority of beneficial effects of drinking green tea
(anti-inflammatory, antioxidative, and immune-modulat-
ing) is related to the high content of EGCG, the most
biologically active catechin, among others [73]. The ad-
ministration of EGCG (2–250 mg/kg/day) in aged rats
(above 24 months old, versus young, 3 months old),
and in adjuvant-induced arthritic (AIA) rats, showed an
increase of liver and brain antioxidant enzymes activities

87    Page 2 of 21 Curr Rheumatol Rep (2020) 22: 87



(superoxide dismutase (SOD), catalase (CAT), glutathi-
one peroxidase (GPx), glutathione reductase (GR), and

glucose-6-phosphate dehydrogenase), an augmentation
of the non-enzymatic antioxidants (tocopherol, ascorbic

Table 1 Polyphenols existing in different types of food

Micronutrients Food

Polyphenols Subgroup

Flavonoids Anthocyanidins Cyanidin, delphinidin, malvidin,
peonidin, petunidin

Berry fruits (strawberry, raspberry, blackberry,
cranberry, blueberry, and açaí berry),
black carrot, black soybean, pomegranate,
purple corn, purple sweet potato, red cabbage

Flavan-3-ols Catechin, epicatechin, epigallocatechin,
epigallocatechin 3-gallate (EGCG)

Apple skin, cacao, carob powder, green tea,
other teas, hazelnuts, onions, pecans, plums

Flavanones Hesperidin Amaranth, citric fruits (oranges, lemons,
mandarins, limes, bergamot), grapefruit, quinoa

Flavones Apigenin, luteolin Amaranth, artichoke, celery, chamomile,
kiwi, lettuce, parsley, peppermint, quinoa,
spinach, tea (rooibos, green, black, and oolong)

Flavonols Myricetin, morin, quercetin Amaranth, chia seeds, cocoa, figs, green tea, quinoa

Isoflavones Alfalfa, amaranth, legumes (particularly soybean,
roasted soybean, soy flour, tofu, miso, and
tempeh but also cheakpeas and beans),
quinoa, red clover, white clover

Non-flavonoids Lignans Apricots, broccoli, brussel sprouts, outer
layers of cereal grains, flaxseed, kale,
nuts (cashew nuts), sesame seed

Phenolic acids Cinnamic acids Amaranth, cinnamon, quinoa

Gallic acid (benzoic acid) Amaranth, fruits (as pomegranates,
black raspberries, raspberries, strawberries),
nuts (as walnuts and almonds), quinoa, seeds

Vanillic acid (benzoic acid) Amaranth, berries, Ginkgo biloba leaf extract,
honey, quinoa, vanilla

Polyphenolic amides Avenanthramides Oats

Capsaicin Green and red and chili pepper

Piperine Black pepper

Proteolytic enzymes Bromelain Kiwi, papaya, pineapple

Mangiferin Mango, papaya

Papain Papaya

Others Curcumin Turmeric

Ellagic acid Fruits (pomegranate, guava, berry fruits as
black berries, black raspberries, cloudberries,
strawberries), nuts (pecans, walnuts)

Gingerol Ginger

Rosmarinic acid Rosemary

Ursolic acid Peel of apples and other fruits and vegetables,
as well as in herbs and spices like rosemary,
basil and thyme

Minerals

Magnesium Green leafy vegetables (spinach), some legumes
(beans and peas), nuts, seeds, and whole grains

Selenium Amaranth, bread, eggs, fish, grains, meat, poultry,
quinoa, seafood

Zinc Beans, fortified breakfast cereals, dairy products,
whole grains, nuts, oysters, red meat,
seafood (crab and lobster)
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acid, and glutathione), and an amelioration of
malondialdehyde (MDA) levels in all groups. The in-
crease of antioxidant enzyme levels was higher in aged
rats than in young rats [74, 75]. Although there is no
evidence of an antioxidant effect of flavan-3-ols in
humans, randomized clinical trials showed its anti-
inflammatory effect. A randomized clinical trial with 50
patients with knee OA (KOA) compared treatment with
green tea (500mg/8 h) versus diclofenac (50 mg/12 h) for
4 weeks, and showed significant clinical improvements
(visual analogue scale (VAS) pain, Western Ontario and
McMaster Universities Arthritis Index (WOMAC)
scores), with fewer adverse effects in the green tea group
[24]. In another study, 120 RA patients diagnosed at least
10 years prior to the trial, and not taking any RA treat-
ment during the previous 3 months, were assigned to one
of 6 groups accordingly for 6months: infliximab (3mg/kg
at baseline, at 2 and 6 weeks later, and then every
8 weeks), green tea (4–6 cups/day (60 to 125 mg cate-
chins)), exercise (aerobic exercise for 45–60 min three
times per week), infliximab plus green tea, infliximab
plus exercise, or green tea plus exercise. Improvement
of clinical (Disease Activity Score (DAS28-ESR)) and
biochemical parameters (serum C-reactive protein
(CRP), erythrocyte sedimentation rate (ESR), and serum
levels of bone resorption markers (deoxypyridinoline,
amino-terminal telopeptide of type 1 collagen, and bone
alkaline phosphatase)) was observed in all groups. In pa-
tients subjected to combined treatment modalities, pa-
tients treated with green tea plus exercise showed a sig-
nificant improvement in the above disease activity param-
eters compared with patients treated with infliximab plus
exercise or infliximab plus green tea [25].

– Flavonols (kaempferol, myricetin, quercetin) have anti-
inflammatory and anti-nociceptive effects [26–28,
76]. In animal models, quercetin (GCQ) induced sig-
nificant changes in both RA (collagen-induced arthri-
tis (CIA) and complete Freund adjuvant arthritis
(CFA)), and OA (monosodium iodoacetate (MIA)),
highlighting the importance of conducting trials in
patients for validation [47, 49, 51, 77]. Yet, RA stud-
ies in humans are contradictory. A randomized, dou-
ble-blind, placebo-controlled clinical trial with 50
women with RA evaluated the effect of GCQ
(500 mg/day) for 8 weeks. Quercetin significantly re-
duced early morning stiffness, morning and post-
activity pain, DAS-28 and health assessment ques-
tionnaire (HAQ) scores, and plasma TNF concentra-
tion [26]. In contrast, a randomized, placebo-con-
trolled, double-blind clinical trial that was conducted
in 20 RA patients comparing GCQ + vitamin C
(166 mg/133 mg), lipoic acid (300 mg), and placebo
capsules, 3 times a day for 4 weeks, did not find

significant changes in pain or a difference in serum
levels of TNF, CRP, IL-1, and IL-6 [28]. For OA, we
have more evidence of their positive effects. A ran-
domized, double-blind, placebo-controlled study in
40 symptomatic KOA patients assessed the effect of
supplementation with oral glucosamine (1200 mg),
chondroitin sulfate (60 mg), and GCQ (45 mg) every
day for 4 months. All groups showed an amelioration
of symptomatic pain (VAS and Japanese Orthopedic
Association criteria) and changes in levels of cartilage
metabolism biomarkers (urinary CTX-II and serum
CPII), but the effect was greater in the GCQ group
[27]. A glucosamine (1200 mg)-chondroitin (75–
111 mg)-quercetin GCQ (45 mg) supplement was
given daily to 46 OA and 22 RA patients for
3 months. Only OA patients showed a significant im-
provement in pain symptoms, VAS, and daily activi-
ties, and also exhibited changes in synovial fluid
composition (protein concentration, molecular size
of hyaluronic acid, and chondroitin 6-sulfate concen-
tration) [76].

– Flavones (apigenin, luteolin, tangeritin) are present in
different herbs, tea, green leaves, vegetables, fruit, and
cereals. There is a lack of clinical studies with flavones,
but the effects of spinach extract (250 and 500 mg/kg/
day), which contains different flavones and flavonols,
were evaluated in MIA OA rats, which improved histo-
logical and radiological scores, and downregulated the
oxidative serum marker glutathione S-transferase
(GST), and serum cartilage oligomeric matrix protein
(COMP) and urinary C-telopeptide of type II collagen
(CTX-II), which are markers of cartilage turnover [55].
A CIA mouse model was used to assess the effect of
apigenin and showed a decrease of synovial hyperplasia,
angiogenesis, and osteoclastogenesis [78].

– Flavanones (hesperidin, naringenin) are mainly present
on citrus fruits [79]. Hesperidin administration in CIA rats
and mice models improved clinical scores, and decreased
serum and articular TNF, MDA, glutathione, SOD, CAT,
NO, and elastase activity [52, 54, 80]. In rheumatic pa-
tients, a randomized, double-blind, placebo-controlled tri-
al studied the effect of hesperidin (3 g/day) for 12 weeks
in 19 RA patients, and found clinical improvement
(ACR20, VAS) and a decrease of serum CRP [80]. In
addition, there is evidence of anti-inflammatory activity
of flavanones in other diseases such as diabetes or nonal-
coholic fatty disease (NAFD). In a randomized, double-
blind, controlled clinical study with 64 diabetic patients,
hesperidin (500 mg/day) for 6 weeks significantly de-
creased systolic blood pressure, mean arterial blood pres-
sure, serum TNF, IL-6, and high sensitivity (hs)-CRP,
whereas serum total antioxidant capacity increased in
comparison to the baseline values [81]. In another
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randomized, double-blind, controlled clinical trial, 50
NAFD patients were given either hesperidin 1 g/day or
placebo for 3 months. Hesperidin resulted in a significant
reduction in serum levels of hs-CRP, TNF, and NF-κB
[82].

– Isoflavones are part of the phytoestrogen group and are
mostly found in legumes, such as soybeans [83].
Although isoflavones are common components of
Western diets, there are no randomized clinical trials
studying the effect of isoflavones on human arthritis.
Genistein, an isoflavone extracted from soybeans,
inhibited IL-1β, IL-6, and TNF in the CIA mouse model
[84]. The main benefit of soy is attributed to its

polyphenols, but isoflavone-free soy protein isolate
(SPI) has demonstrated antirheumatic effect, with a de-
crease of anti-CCP, TNF, MMP3, and MDA in rats with
antigen-induced arthritis (AIA) [85].

– Anthocyanidins (cyanidin, delphinidin, malvidin) are the
main polyphenol of berry fruits and pomegranate. Each
fruit has a different combination of polyphenolic com-
pounds, and a different antioxidant capacity [86].
Animal studies in CIA mice, AIA rats, and MIA OA rats
showed a protective effect of anthocyanins [50, 69,
87–89]. Two hundred juvenile idiopathic arthritis (JIA)
patients were exposed to a combination therapy of
etanercept (ETA) and blueberry. They were randomly

Table 3 Cytokines, chemokines, and pathways affected by nutrients in animal models of chronic arthritis

Physiopathology

Cytokine (pathway) Compound Model Action References

IL-1β Quercetin (5–25–50 mg/day) CIA mice Decreases [47, 48]

IL-4 Quercetin (50 mg/kg/day) CFA rats Decreases [49]

IL-6 Pomegranate (13.6–34 mg/kg/day) Arthritis mice Decreases [50]

IL-17 Quercetin (5–25–50 mg/day) CIA rats Decreases [47, 48]

COX-2 Isorhamnetin (10–20 mg/kg/day) MIA rats Decreases [51]

TNF-α Quercetin (5–25–50 mg/day) CIA rats Decreases [47, 48]

Hesperidin (50 mg/kg) RA rats Decreases [52]

Cinnamon (1–2–4 mg/kg/day) Arthritis rats Decreases [53]

NF-κB Pomegranate (13.6–34 mg/kg/day) Arthritis mice Decreases [50]

iNOS Isorhamnetin (10–20 mg/kg/day) MIA rats Decreases [51]

NO Hesperidin (160 mg/kg) RA rats Decreases [54]

Pomegranate (13.6–34 mg/kg/day) Arthritis mice Decreases [50]

Isorhamnetin (10–20 mg/kg/day) MIA rats Decreases [51]

IFN-γ Quercetin (50 mg/kg/day) CFA rats Decreases [49]

PGE2 Isorhamnetin (10–20 mg/kg/day) MIA rats Decreases [51]

MPO Quercetin (50 mg/kg/day) CFA rats Decreases [49]

MAPK Pomegranate (13.6–34 mg/kg/day) CIA mice Decreases [50]

CTX-II Spinach (250–500 mg/kg/day) OA rat Decreases [55]

Isorhamnetin (10–20 mg/kg/day) MIA rats Decreases [51]

COMP Spinach (250–500 mg/kg/day) OA rat Decreases [55]

Isorhamnetin (10–20 mg/kg/day) MIA rats Decreases [51]

Elastase activity Hesperidin (50 mg/kg) RA rats Decreases [52]

Hesperidin (160 mg/kg) RA rats Decreases [54]

MDA Hesperidin (50 mg/kg) RA rats Decreases [52]

SOD Hesperidin (160 mg/kg) RA rats Increases [54]

Catalase Hesperidin (160 mg/kg) RA rats Increases [54]

GR Hesperidin (160 mg/kg) RA rats Increases [54]

GST Spinach (250–500 mg/kg/day) OA rat Decreases [55]

IL, interleukin; CIA, collagen-induced arthritis; CFA, complete Freund’s adjuvant; COX-2, cyclooxygenase 2;MIA, monoiodoacetate-induced arthritis;
TNF-α, tumor necrosis factor alpha; RA, rheumatoid arthritis; NF-κB, nuclear factor-kappa beta; iNOS, inducible nitric oxide synthase;NO, nitric oxide;
IFN-γ, interferon gamma; PGE2, prostaglandin E2;MPO, myeloperoxidase;MAPK, mitogen-activated protein kinase; CTX-II, C-telopeptide of type II
collagen; COMP, cartilage oligomeric matrix protein; OA, osteoarthritis; SOD, superoxide dismutase; GR, glutathione reductase; GST, glutathione S-
transferase
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assigned to 3 different treatment groups for 6 months:
ETA (50 mg of etanercept twice weekly), ETABJ
(matched etanercept and 50 ml blueberry juice daily),
and ETAPJ (matched etanercept and placebo juice). The
ETABJ group showed a decrease in disease severity,
symptoms, and side effects and reduced serum levels of
IL-1 compared to the other two groups [23]. In a random-
ized, double-blind, cross-over trial with 17 obese patients
with radiographic KOA, a strawberry beverage (50 g/day)
for 12 weeks significantly decreased serum IL-6, IL-1β,
and MMP-3 levels, and reduced constant, intermittent,
and total pain in these patients [29]. A randomized,
placebo-controlled clinical trial with 55 RA patients
showed that the group taking daily pomegranate extract
(500mg/day) for 8 weeks had lower levels of serum ESR,
higher levels of glutathione peroxidase (GPx), and a de-
crease in swollen and tender joints, pain intensity, morn-
ing stiffness, and HAQ score, being all statistically sig-
nificant [44].

Non-flavonoids

Non-flavonoid polyphenols can be divided in 6 sub-
groups: phenolic acids (benzoic and cinnamic), polyphe-
nolic amides (avenanthramides (AVA), capsaicinoids,
and piperine), stilbenoids (resveratrol (RSV), piceatannol,
and pterostilbene), l ignans, proteolytic enzymes
(mangiferin, papain, and bromelain), among others
(Table 1).

– Gallic acid (GA) and vanillic acid (VA) are the main
benzoic acids. GA is present in fruits, nuts, and seeds
[90]. VA is characteristic of vanilla, Ginkgo biloba,
berries, and honey [72]. Animal models of inflammatory
pain (CFA) showed a significant improvement after VA
treatment (suppression of paw skin inflammatory media-
tors as IL-1β, TNF, IL-33, and NF-κB), and improve-
ment of paw oxidative markers measured using the anti-
oxidant power (FRAP assay), free radical scavenging
ability (ABTS assay), GSH levels, and lipid peroxidation
(TBARS assay) [91].

– Cinnamic acids are the major active ingredient of cinna-
mon [31]. Cinnamon inhibited TNF, IL-2, IL-4, and
IFNγ in acute (carrageenan-induced rat paw edema),
subacute (cotton pellet–induced granuloma), and sub-
chron ic (AIA, ad juvan t - induced es tab l i shed
polyarthritis) models of inflammation in rats [53, 92].
In a randomized, double-blind, placebo-controlled clin-
ical trial with 32womenwithRA, 18 received cinnamon
capsules (2 g/day) for 8 weeks. Those in the cinnamon
group had a significant decrease in serum levels of CRP
and TNF, along with improvements in clinical symp-
toms (DAS-28, VAS, tender, and swollen joints
counts) [31]. In another 16-week double-blind, random-
ized control trial, cinnamon (3 g/day) was studied in 116
metabolic syndrome patients. Subjects in the cinnamon
group had improvements in a number of clinical (waist
circumference, bodymass index (BMI), blood pressure)
and laboratory parameters (fasting blood glucose, gly-
cosylated hemoglobin, cholesterol, and triglycerides),
including a decrease in hs-CRP [93].

Table 4 Cytokines, chemokines, and pathways affected by nutrients in randomized clinical trials with chronic arthritis

Physiopathology

Cytokine (pathway) Compound Model Action References

hs-CRP Green tea (4–6 cups/day) RCT (120 RA, 6 months) Decreases [25]

Cinnamon (2 g/day) RCT (32 RA, 8 weeks) Decreases [31]

ESR Green tea (4–6 cups/day) RCT (120 RA, 6 months) Decreases [25]

Pomegranate (500 mg/day) RCT (55 RA, 8 weeks) Decreases [44]

IL1-α Blueberries (50 mL/day) RCT (200 JIA, 6 months) Decreases [23]

IL-1β Blueberries (50 mL/day) RCT (200 JIA, 6 months) Decreases [23]

IL-1 RA Blueberries (50 mL/day) RCT (200 JIA, 6 months) Increases [23]

TNF-α Cinnamon (2 g/day) RCT (32 RA, 8 weeks) Decreases [31]

DPD Green tea (4–6 cups/day) RCT (120 RA, 6 months) Decreases [25]

NTX Green tea (4–6 cups/day) RCT (120 RA, 6 months) Decreases [25]

BAP Green tea (4–6 cups/day) RCT (120 RA, 6 months) Decreases [25]

GPx Pomegranate (500 mg/day) RCT (55 RA, 8 weeks) Increases [44]

hs-CRP, high-sensitivity C-reactive protein; RCT, randomized clinical trial; RA, rheumatoid arthritis; ESR, erythrocyte sedimentation rate; IL, interleu-
kin; JIA, juvenile idiopathic arthritis; IL-1 RA, interleukin-1 receptor antagonist; TNF-α, tumor necrosis factor alpha; DPD, deoxypyridinoline; NTX,
amino-terminal telopeptide of type 1 collagen; BAP, bone alkaline phosphatase; GPx, glutathione peroxidase.
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Table 5 Cytokines, chemokines, and pathways affected by nutrients in vitro

Physiopathology

Cytokine (pathway) Compound Cell type Action References

IL1-α Phytoestrogens
(coumestrol + biochanin A)

Chondrocytes Rat Decreases [56, 57]

IL-1β Cyanidin Chondrocytes Human Decreases [58]

Genistein OA Chondrocytes Human Decreases [59]

Green tea RA synovium tissue Human Inhibits [60]

Hesperidin Chondrocytes Rat Decreases [61]

Kaempferitrin Fibroblast-like synoviocytes Human Inhibits [48]

Phytoestrogens
(coumestrol + biochanin A)

Chondrocytes Rat Decreases [56, 57]

Vanillic acid OA Chondrocyte Rat Decreases [62]

IL-2 Phytoestrogens (coumestrol + biochanin A) Chondrocytes Rat Decreases [56, 57]

IL-6 Cinnamon Colonic tissues Rat Decreases [63]

Cyanidin OA chondrocytes Human Decreases [58]

Green tea RA synovium tissue Human Decreases [60]

Green tea OA chondrocytes Human Decreases [64]

Kaempferitrin Fibroblast-like synoviocytes Human Decreases [48]

Phytoestrogens
(coumestrol + biochanin A)

Chondrocytes Rat Decreases [56, 57]

Spinach Vascular endothelial cells Human Decreases [65]

IL-8 Green tea RA synovium tissue Human Decreases [60]

IL-17 Curcumin CD4(+) T cells Human Decreases [66]

MCP-1 Spinach Vascular endothelial cells Decreases [65]

MMPs Genistein OA chondrocytes Human Decreases [59]

Vanillic acid OA chondrocyte Rat Decreases [62]

MMP-1 Kaempferitrin Fibroblast-like synoviocytes Human Decreases [48]

Phytoestrogens
(coumestrol + biochanin A)

Chondrocytes Rat Decreases [56, 57]

Green tea RA synovium tissue Human Decreases [48]

MMP-2 Hesperidin RA fibroblast-like synovial cells Mice Decreases [67]

MMP-3 Hesperidin RA fibroblast-like synovial cells Mice Decreases [67]

Kaempferitrin Fibroblast-like synoviocytes Human Decreases [48]

Phytoestrogens
(coumestrol + biochanin A)

Chondrocytes Rat Decreases [56, 57]

MMP-9 Green tea OA chondrocytes Human Decreases [64]

MMP-13 Cyanidin OA chondrocytes Human Decreases [58]

Hesperidin OA chondrocytes Rat Decreases [61]

Hesperidin RA fibroblast-like synovial cells Mice Decreases [67]

Phytoestrogens
(coumestrol + biochanin A)

Chondrocytes Rat Decreases [56, 57]

Phytoestrogens
(coumestrol + biochanin A)

Chondrocytes Rat Decreases [56, 57]

ADAMTS5 Cyanidin OA chondrocytes Human Decreases [58]

Green tea RA synovium tissue Human Decreases [60]

Vanillic acid OA chondrocyte Rat Decreases [62]

COX-2 Genistein OA chondrocytes Human Decreases [59]

Kaempferitrin Fibroblast-like synoviocytes Human Decreases [48]

Phytoestrogens
(coumestrol + biochanin A)

Chondrocytes Rat Decreases [56, 57]

Vanillic acid OA chondrocyte Rat Decreases [62]

TNF-α Cyanidin OA chondrocytes Human Decreases [58]
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Table 5 (continued)

Physiopathology

Cytokine (pathway) Compound Cell type Action References

Green tea RA synovium tissue Human Decreases [60]

Hesperidin OA chondrocytes Rat Decreases [61]

Myricetin (chia seed) Osteoblastic cell Human Inhibits [68]

Phytoestrogens
(coumestrol + biochanin A)

Chondrocytes Rat Decreases [56, 57]

NF-κB Anthocyanidin Collagen-induced arthritis
murine model and human PBMC

Mice-human Decreases [69]

Cyanidin OA chondrocytes Human Decreases [58]

Hesperidin RA fibroblast-like synovial cells Mice Decreases [67]

Phytoestrogens
(coumestrol + biochanin A)

Chondrocytes Rat Decreases [56, 57]

Spinach Vascular endothelial cells Decreases [65]

Vanillic acid OA chondrocyte Rat Decreases [62]

CD206 Spinach Vascular endothelial cells Human Decreases [65]

iNOS Cyanidin OA chondrocytes Human Decreases [58]

Genistein OA chondrocytes Human Decreases [59]

Hesperidin OA chondrocytes Rat Decreases [61]

Hesperidin RA fibroblast-like synovial cells Mice Decreases [67]

Phytoestrogens
(coumestrol + biochanin A)

Chondrocytes Rat Decreases [56, 57]

Spinach Vascular endothelial cells Human Increases [65]

Vanillic acid OA chondrocyte Rat Decreases [62]

eNOS Spinach Vascular endothelial cells Human Increases [65]

NO Cyanidin OA chondrocytes Human Decreases [58]

Phytoestrogens
(coumestrol + biochanin A)

Chondrocytes Rat Decreases [56, 57]

IFN-γ Curcumin CD4(+), CD8(+) T cells,
natural killer (NK) and NKT cells

Human Decreases [66]

Hesperidin RA fibroblast-like synovial cells Mice Decreases [67]

F4/80 Hesperidin OA chondrocytes Rat Decreases [61]

Caspase-3 Cyanidin OA chondrocytes Human Decreases [58]

PGE2 Phytoestrogens
(coumestrol + biochanin A)

Chondrocytes Rat Decreases [56, 57]

Vanillic acid OA chondrocyte Rat Decreases [62]

VEGFA Green tea RA synovium tissue Human Decreases [60]

TAK-1 Vanillic acid OA chondrocyte Rat Decreases [62]

MAPK Hesperidin RA fibroblast-like synovial cells Mice Inhibits [67]

PI3K/AKT Anthocyanidin Collagen-induced arthritis murine
model and human PBMC

Human-mice Decreases [69]

Vanillic acid OA chondrocyte Rat Inhibits [62]

Th17 cells Hesperidin OA chondrocytes Rat Increases [61]

Collagen 2a1 Cyanidin OA chondrocytes Human Increases [58]

Hesperidin OA chondrocytes Rat Increases [61]

Aggrecan Cyanidin OA chondrocytes Human Increases [58]

Hesperidin OA chondrocytes Rat Increases [61]

SOX 9 gene Green tea OA chondrocytes Human Decreases [64]

BMP-2 Green tea OA chondrocytes Human Decreases [64]

STC-1 Hesperidin OA chondrocytes Rat Decreases [61]

MDA Hesperidin OA chondrocytes Rat Decreases [61]

ROS Spinach Vascular endothelial cells Human Decreases [65]

87    Page 10 of 21 Curr Rheumatol Rep (2020) 22: 87



– Polyphenolic amides: There is minimal evidence of posi-
tive effects of polyphenolic amides (avenanthramides
(AVA), capsaicinoids, and piperine) in rheumatic diseases
due to the lack of clinical trials or animal studies in arthritis,
although some data suggest they also have anti-
inflammatory and antioxidant properties. AVA, found in
oats, showed the antioxidant effect of oats AVA (3.12 mg/

day) in a randomized, placebo-controlled study in 120
healthy individuals. It increased significantly plasma levels
of reduced glutathione, decreased plasma lipid peroxide, and
had higher total plasma antioxidant capacity and erythrocyte
SOD activity [94, 95]. Capsaicin is the main polyphenol of
red and green chili pepper, responsible for its spicy flavor
and it is known for its topical properties in improving OA

Fig. 1 Modulation of pro-inflammatory markers in serum in randomized clinical trials with patients with chronic arthritis

Table 5 (continued)

Physiopathology

Cytokine (pathway) Compound Cell type Action References

VCAM1 Spinach Vascular endothelial cells Human Decreases [65]

ICAM1 Phytoestrogens (coumestrol + biochanin A) Chondrocytes Rat Decreases [56, 57]

IL, interleukin; RA, rheumatoid arthritis; OA, osteoarthritis; MCP1, monocyte chemoattractant protein-1; MMP, matrix metallopeptidases; ADAMTS5,
ADAMmetallopeptidase with thrombospondin type 1 motif 5; COX-2, cyclooxygenase 2; TNF-α, tumor necrosis factor alpha; NF-κB, nuclear factor-
kappa beta; PBMC, peripheral blood mononuclear cell;CD 206, mannose receptor; iNOS, inducible nitric oxide synthase; eNOS, endothelial nitric oxide
synthase; NO, nitric oxide; IFN-γ, interferon gamma; PGE2, prostaglandin E2; VEGFA, vascular endothelial growth factor A; TAK-1, transforming
growth factor beta-activated kinase 1;MAPK, mitogen-activated protein kinase; PI3K/AKT, phosphatidylinositol-3-kinase; BMP-2, bonemorphogenetic
protein-2; STC-1, stanniocalcin; MDA, malondialdehyde; ROS, reactive oxygen species; VCAM 1, vascular cell adhesion molecule 1; ICAM 1, inter-
cellular adhesion molecule 1
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pain [96]. And piperine, found in black pepper and respon-
sible for its pungent taste, has a similar chemical structure as
capsaicin and ginger [97]. In vivo animal models and
in vitro studies have shown anti-inflammatory, analgesic,
and anti-arthritic effects of piperine [98–100]. It improved
nociceptive and arthritic symptoms in rat models of
carrageenan-induced acute paw pain and arthritis, and
inhibited the expression of IL-6, COX-2, PGE2, and
MMPs significantly in FLS and human OA chondrocytes
[98, 100]. To our knowledge, there are no humans’ studies
in arthritis patients with piperine as a unique treatment, but
there are trials in combination with other nutrients since
piperine increases the oral bioavailability of other polyphe-
nols, like curcuminoids [101].

– Stilbenoids are anti-inflammatory compounds found in
berries, grapes, red wines, soy, and nuts. Resveratrol
(RSV) is the stilbenoid that has received the most atten-
tion [102, 103]. A randomized, controlled, clinical trial
studied the effect of adding RSV (1 g/day) for 3 months to
standard of care (SOC) treatment in 100 patients with RA.
The study showed a decrease of serum levels of inflam-
matory markers (CRP, ESR, undercarboxylated
osteocalcin, MMP-3, TNF, and IL-6) in the RSV group,
being statistically significant [45]. A double-blind, place-
bo-controlled, randomized multi-center study involving
110 patients with KOA assessed the effects of meloxicam
(15 mg/day) with and without the addition of RSV. RSV
500 mg/day for 3 months significantly improved
WOMAC scores compared to placebo [104]. Freund’s
AIA and MIA OA in rats also showed the benefits of
RSV by decreasing clinical scores (paw thickness mea-
sured with caliper and swelling scores), histological
scores (synovial hyperplasia, inflammatory cell infiltra-
tion, and cartilage degradation), and lowering serum
levels of antioxidant enzymes (ROS) and pro-
inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-18,
iNOS, and NF-κB) [105–107]. Synovial fluid mononu-
clear cells from 14 patients with RA and spondyloarthritis
were cultured and divided in several groups: no treatment
(control group), treatment with RSV alone (25 μM),
methotrexate (MTX) (0.5 μg/ml), adalimumab (ADA)
(5 μg/ml), RSV + MTX, or RSV + ADA. Compared to
the untreated control group, the RSV group reduced
MCP-1 production by synovial fluid mononuclear cells
significantly, and the reduction was greater when RSV
was combined with methotrexate. The effect of resvera-
trol was greatest in patients with low disease activity
(DAS28CRP ≤ 3.2) and in cultures with high lympho-
cytes count [103].

– Lignans are mainly found in sesamin (a bioactive com-
ponent extracted from sesame) and flaxseeds. In a ran-
domized, triple-blind, placebo-controlled clinical trial in
44 RA patients, with no change in treatment in the last

2 months, sesamin 200 mg/day was compared to placebo
for 6 weeks. After the intervention, a significant reduction
in the number of tender joints and the severity of pain was
observed in the group with sesamin supplementation.
Serum levels of hyaluronidase, MMP-3, hs-CRP, TNF,
COX-2, and malondialdehyde (MDA) decreased signifi-
cantly, and total antioxidant capacity (TAC) increased in
the sesamin group [108, 109]. Vitex negundo is a medic-
inal plant used in Chinese medicine that is also rich in
lignans. After administration in CIA rats, paw edema and
arthritis score decreased. Vitex negundo (10, 20,
40 mg/kg/day) also reduced the infiltration of inflamma-
tory cells and synovial hyperplasia, and attenuated carti-
lage damage in a dose-dependent manner, and reduced
inflammatory cytokines (decreased serum levels of IL-
1β, IL-6, IL-8, IL-17A, TNF, MMPs; increased serum
level of IL-10; and reduced COX-2, iNOS, and NF-kB
in synovial tissues) [110].

– Proteolytic enzymes (mangiferin, papain, and bromelain)
break down proteins and facilitate gastric and ileal diges-
tion [111]. Mangiferin is the main polyphenol found in
mango and papaya. Mango fruit also has other polyphe-
nols, like gallic acid and gallotannins [112]. A random-
ized study with 20 patients with active RA evaluated the
therapeutic effects and the safety of Mangifera indica
extract (MIE; 900 mg/day) combined with methotrexate
(MTX; 12.5 mg/week) for 6 months on reducing disease
activity. Combined treatment significantly improved
DAS28, decreased non-steroidal anti-inflammatory drugs
(NSAIDs) intake in 100% of the patients, and decreased
gastrointestinal side effects in 70% of the patients [43]. In
CFA and CIA rat models, a decrease of serum levels of
IFN-γ, IL-4, NF-κB, IL-1β, IL-6, and TNF, and tissue
MDA, and an increase of serum IL-10 and SOD were
observed after mangiferin treatment. The effect of meth-
otrexate was less marked as compared to mangiferin
[113, 114]. Carica papaya leaves have papain and abun-
dant ascorbic acid. There is no evidence of its effects in
arthritis in humans, but ingesting carica leaves (or how-
ever given and in what dose/exposure) led to a significant
reduction in paw edema and granulation in animal models
of carrageenan-induced paw edema, cotton pellet granu-
loma, and formaldehyde-induced arthritis rats [115].
Finally, bromelain is a natural mixture of proteolytic en-
zymes found in pineapple and kiwis that decreases the
production of pro-inflammatory cytokines [116].
Bromelain (500 mg/day for 16 weeks) was compared
with diclofenac (100 mg/day for 4 weeks) in a random-
ized clinical trial with 40 patients with mild-moderate
KOA. At week 4, the bromelain group had a significant
improvement inWOMAC scores, as well as a decrease of
serum PGE2 with no increase in side effects. In addition,
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a significant decrease in serumMDAwas observed in the
treatment group at 16 weeks [30].

– Curcumin, another non-flavonoid polyphenol, is the active
component of turmeric, which provides the yellow color
and its anti-inflammatory and antioxidant properties [117].
A randomized three-arm, parallel-group, randomized, dou-
ble-blinded, placebo-controlled clinical trial in 201 OA
patients compared curcumin (333 mg curcuminoids, or
350 mg curcuminoids and 150 mg boswellic acid, present
in resin of boswellic plant, also rich in polyphenols) taken
orally three times a day for 12 weeks versus placebo.
Physical performance tests and the WOMAC pain index
were better in both curcumin groups than in the placebo
group [32]. Another randomized, double-blind, placebo-
controlled, three-arm, parallel-group study was conducted
to evaluate the efficacy of curcumin (250 mg or 500 mg/
12 h) with placebo in 36 RA patients with active disease
for 90 days. RA patients who received either dose of
curcumin reported statistically significant changes in their
clinical symptoms (VAS, DAS28) and in serum ESR,
CPR, and RF values, compared to baseline and placebo
[35]. Yet, another randomized, double-blind, controlled
trial with 65 RA patients did not find any difference in
DAS-28, tender joint count (TJC), swollen joint count
(SJC) decrease, and serum ESR, between curcumin
(120 mg/day) and placebo for 12 weeks [36]. A random-
ized, double-blind trial compared curcumin plus piperine
(500 mg–15 mg/day) versus placebo for 6 weeks in 40
mild-moderate KOA patients, and showed an increase of
serum SOD and GSH and a decrease of MDA, but no
clinical outcomes were included in that trial [38].
Another randomized, double-blind, placebo-control clini-
cal trial with 40 patients with mild-moderate KOA showed
non-significant changes in clinical symptoms (WOMAC
score, Lequesne’s pain functional index (LPFI) and visual
analogue scale) after treatment with curcumin 1500 mg/
day [39]. Some trials compared curcumin effect with
NSAIDs. A randomized clinical trial with 367 patients
with knee OA with a pain score of 5 or higher had
curcumin 1500 mg/day or ibuprofen 1200 mg/day for
1 month. The mean difference of WOMAC total,
WOMAC pain, and WOMAC function scores at week 4
of curcumin was noninferior to those for the ibuprofen
group, except for the WOMAC stiffness subscale, which
showed a trend toward significance, and the number of
events of abdominal pain/discomfort was significantly
higher in the ibuprofen group [33]. In another randomized,
open-label, parallel, clinical study, 139 knee OA patients
received either curcumin capsule (500mg, 3 times per day)
or diclofenac (50 mg, twice per day) for 1 month. At days
14 and 28, there was no statistically significant difference
between the improvement in pain and KOOS scale be-
tween subjects treated with curcumin and those treated

with diclofenac. Adverse effects were significantly less in
the curcumin group [34]. Another prospective, randomized
open, blinded end-point (PROBE design study) compared
curcumin (90 mg/day) with diclofenac (75 mg/day) in 80
patients with KOA for 4 weeks. This study showed a de-
crease of COX-2 secretion by SF monocytes in both
groups [37]. In vitro studies showed an anti-inflammatory
and immunosuppressive role of curcumin in 34 patients
with psoriatic disease (22 with psoriasis and 12 with
PsA). Peripheral blood mononuclear cells were pretreated
(2 h prior to activation) with curcumin at pharmacological
concentrations of 5–10 g/mL. In vitro results showed an
inhibition of pro-inflammatory IFN-γ by CD4+, CD8+ T
cells, natural killer (NK) and NKT cells, and IL-17 produc-
tion by CD4+T cells [66].

– Other polyphenols such as gingerol, rosmarinic acid
(RosA), ellagic acid, and ursolic acid (UA) also have
anti-inflammatory properties. Gingerol is the primary
polyphenol in ginger, responsible for its pungent taste,
and along with shogaol, its analog, has diverse biological
activities [118]. A non-randomized study in KOA pa-
tients showed improvement in Lysholm Knees score,
SF-36, and knee circumference after the intake of
25 mg of ginger and 5 mg of Echinacea for 30 days
[40]. In a randomized, double-blind, placebo-controlled
3-month clinical trial, 120 patients with KOA were ran-
domly assigned to the ginger (500 mg/day) or placebo
group. A decrease in serum TNF and IL-1βwas observed
in the ginger group but no clinical outcomes were includ-
ed in that trial [41]. Animal models of RA and OA (CIA,
CFA, and IL-1β-induced OA models in rats) showed a
significantly decrease of paw edema and serum levels of
IL-1, IL-6, IL-8, MMPs, MCPs, and TNF-α after its ad-
ministration of ginger and larger effects when compared
to ibuprofen, betamethasone, or indomethacin [119–124].
RosA is found in rosemary. A randomized, double-blind
study that included 46 participants with KOA treated with
RosA for 4 months showed a significant decrease in pain
score from baseline compared to placebo [46]. Ellagic
acid is present in several fruits and nuts. A double-blind,
parallel pilot clinical study was conducted in subjects
with knee pain without any history of pain treatment.
Participants were randomly assigned to two different
groups: 1 g/day of guava leaf extract or placebo for
3 months. Knee pain and stiffness in the guava group
were significantly lower measured by VAS and
Japanese Knee Osteoarthritis Measure scores [42]. UA
is present on the peel of apples and other fruits and veg-
etables, as well as in herbs and spices [125]. No studies of
UR have been carried out in humans. However, US in-
duced an improvement in pain and swelling scores, and a
decrease of serum TNF, and IL-1 in Freund’s adjuvant
(CFA)–induced arthritic rats [126].
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Other Micronutrients

Selenium (Se), zinc (Zn), and magnesium (Mg) are three trace
elements for which low levels have been associated with in-
flammatory and autoimmune diseases [127–136]. Selenium is
an essential part of the enzyme glutathione peroxidase (GSH-
Px), which protects cells from oxidative damage, and has been
shown to have anti-proliferative, anti-inflammatory, and
immune-altering effects in diseases like cancer, sepsis, or
RA [127]. Zinc is required for controlling essential biological
processes that affect normal growth, development, repair, me-
tabolism, and maintenance of cell integrity and functionality,
and it is crucial for maintaining homeostasis of immune sys-
tem, and its deficiency is seen in RA, multiple sclerosis or type
1 diabetes (T1D) [131]. Magnesium is also associated with
inflammatory and immune responses in diseases like cancer
or T1D [137].

In animal models, a comparison between selenium and
celecoxib was conducted in CFA-induced RA rats and seleni-
um supplementation significantly decreased levels of inflam-
matory cytokines (TNF, IL-1β, IL-6, and MCP-1) and anti-
oxidant activity (CAT, GPx1, and COX-2) in joint tissue
[138]. In pristane-induced arthritis rats, magnesium deficiency
(low-magnesium diet, 0.06 g/kg) correlated with higher levels
of arthritis severity score, and synovial tissue expression of IL-
6, and, in post-traumatic osteoarthritis rabbits, treatment with
magnesium sulfate decreased synovial tissue expression of IL-
1β, TNF, and MMP-3 [139, 140].

There is a lack of clinical trials assessing trace element
effects on inflammation, clinical outcomes, and cytokine
modulation in arthritis patients. However, there are some
studies with healthy subjects or other inflammatory dis-
eases that evaluate anti-inflammatory and antioxidant ef-
fects. For instance, low Se levels are associated with se-
vere sepsis, trauma, and burn injuries and its administra-
tion led to significantly reduced mortality and improve-
ment of clinical outcomes (multiorgan failure, acute renal
failure, respiratory distress syndrome, and infection)
[135]. In randomized, double-blind, placebo-controlled
studies, selenium supplementation (200 μg) in women
with polycystic ovary syndrome (PCOS) was associated
with a decrease in serum hs-CRP and plasma MDA levels
[141], and an increase in plasma TAC and GSH levels
compared with placebo [142]. Zinc supplementation in
hemodialysis patients decreased serum CRP levels [143],
and, in elderly people, decreased serum CRP and inflam-
matory cytokines [130]. A randomized, double-blinded,
placebo trial of zinc supplementation (45 mg/day) was
performed in 50 healthy elderly subjects for 6 months.
Plasma zinc concentrations increased and hs-CRP, IL-6,
MCP-1, VCAM-1, and decreased MDA, compared to pla-
cebo [130]. Mg deficiency is associated with chronic low-
grade inflammation, and/or with pathological conditions

for which inflammatory stress is considered a risk factor
(metabolic syndrome, obesity, hypertension, diabetes,
stroke, coronary heart disease) [144]. A systematic review
of 8 randomized controlled trials suggested that serum
magnesium levels and magnesium intake from food are
inversely correlated with serum CRP levels [145]. In OA
and fibromyalgia patients, low magnesium intake and se-
rum levels have also be associated with higher serum CRP
levels [137, 146]. Highly dietary daily intake of Mg is
associated with better knee cartilage architecture (increase
in mean cartilage thickness, cartilage volume at medial
tibia, cartilage volume and mean cartilage thickness at
central medial femur, and cartilage volume and mean car-
tilage thickness in the central medial tibiofemoral com-
partment), lower radiographic KOA and joint space nar-
row, and lower risk of fracture in patients with knee OA
[133, 147–149]. However, in a second, much larger co-
hort of 5000 people, magnesium intake had no impact on
clinical knee OA incidence despite once again being in-
versely associated with hs-CRP levels [150]. A random-
ized, placebo-controlled clinical trial with 100 adults with
poor sleep quality assessed the effect of 320 mg
magnesium/day for 7 weeks. Based on food intake, 58%
of the participants were consuming less than the estimated
average requirement (EAR) for magnesium. The lower
intake of magnesium was associated with a significantly
higher BMI and plasma CRP levels. Magnesium supple-
mentation decreased plasma CRP in participants with
baseline values > 3.0 mg/L [151].

Nutrients and Microbiome

Diet adjusts the human gut microbiota [14, 152], and several
studies demonstrate the shift of microbiome after consuming
different foods [153–156]. Bacteria in the gut are not only
important in the absorption of certain vitamins and in the
synthesis of bile acids, but also have the potential to modify
circulating pro- or anti-inflammatory mediators as they are
involved in the metabolism of some food-derived metabolites
[157, 158]. Of interest, some studies have shown microbiome
shifts after the administration of the above micronutrients.
Polyphenols present in vegetables, fruits (berries, grape,
pomegranate), red wine, green tea, and cocoa were shown to
have an effect in gut microbiota shaping, increasing the abun-
dance of beneficial gut microbiome like Bifidobacterium,
Lactobacillus, Akkermansia, Faecalibacterium, Prevotella,
Pseudoflavonifractor, Oscillibacter, Roseburia, Eubacterium
rectale, Bacteroides uniformis, Blautia coccoides, and
Eggerthella lenta [reviewed in 159]. In a randomized
placebo-controlled study, 29 healthy adults had daily capsules
of mixed spices (cinnamon 1 g, oregano 1.5 g, ginger 1.5 g,
black pepper 0.85 g, and cayenne pepper 0.15 g) for 14 days.
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After the intervention, 26 operational taxonomic units of gut
bacteria were different between groups. The spice consump-
tion group showed a trend of enrichment in Bacteroidetes, a
significant reduction in Firmicutes and an increase of fecal
short-chain fatty acid propionate concentration, which is con-
sidered an anti-inflammatory metabolite [153]. Another con-
trolled, randomized, five-period, cross-over study with wash-
outs between diet periods was conducted in 18 healthy sub-
jects with 5 different treatments for 3-week diet period: 0
servings/day of almonds (control); 1.5 servings (42 g)/day of
whole almonds; 1.5 servings/day of whole, roasted almonds;
1.5 servings/day of roasted, chopped almonds; and 1.5
servings/day of almond butter. Almond consumption induced
changes in the microbial composition of gastrointestinal mi-
crobiota (increased the relative abundances of Lachnospira,
Roseburia, andDialister). On the other hand, almond process-
ing impacted the relative abundances of bacterial genera
(chopped almonds increased Lachnospira, Roseburia, and
Oscillospira compared to control, while whole almonds in-
creased Dialister compared to control, and there were no dif-
ferences between almond butter and control) [154]. Walnut
consumption (43 g/day) was evaluated in a randomized, con-
trolled, prospective, cross-over study with 194 healthy adults
for 8 weeks. Walnut consumption significantly affected
microbiome composition and diversity in this trial.
Ruminococcaceae and Bifidobacteria, two normal inhabitants
of a healthy human gut, increased significantly while
Clostridium sp. decreased significantly during walnut con-
sumption [155]. A single group-design trial in 26 healthy sub-
jects evaluated the effect of consuming 15 mg of inulin-type
fructans (ITFs), a type of fermentable dietary fiber, daily for
2 weeks. They had an increased proportion of the
Bifidobacterium genus, a decreased level of Clostridiales,
and a tendency to decreaseOxalobacteraceae [156]. In animal
models, mice were fed with either control or magnesium-
deficient diet for 4 days. The group fed with magnesium-
deficient diet had a lower gut Bifidobacteria content, and a
higher liver and/or intestine TNF and IL-6 levels [160].
Chronic zinc deficiency in a chick model triggered a decrease
of gene expression of pro-inflammatory cytokines (IL-1β, IL-
6, TNF), a significantly lower phylogenetic diversity, and a
significant expansion of β-diversity (what was found in vari-
ous pathological states such as inflammatory bowel disease,
DM, and obesity). Zn deficiency group also had significantly
lower levels of Peptostreptococcaceae, and Clostridiales,
found in healthy individuals, and higher levels of
Enterococcaceae and Enterobacteriaceae, increased in dis-
eases as septic arthritis, irritable bowel syndrome, hepatic en-
cephalopathy, depression, and anorexia [161–163]. Although
some species, including Lactobacillus and Bifidobacterium
spp., are considered potentially beneficial, more research is
needed to explore the complex interaction between nutrients
and gut microbiome.

Why Are Dietary Interventions Still Not
Mainstream?

While there is greater knowledge of the effects of pharmaceutical
therapies for arthritis, there is less knowledge of the effects of
many nutrients. And even though there is evidence that physician
discussions of diet make a positive influence on patient dietary
selections, these conversations are not common in clinical prac-
tice. There is a global deficiency of nutrition education in physi-
cian training, including the use of nutrients to manage chronic
diseases and methods for providing advice to their patients [164,
165]. A recent review highlighted the lack of nutrition knowl-
edge and confidence in counseling among medical students
worldwide. Most schools perform less than 25 h of nutrition
education over 5 or 6 years of medical training. Trainees often
learn about nutrition in biochemistry lectures that are not neces-
sarily relevant to everyday practice [166]. The interest in nutrition
among medical students is high. However, it decreases by the
time they graduate, since they do not see nutrition substantively
incorporated into their curriculum and do not observe clinical
mentors incorporating nutritional interventions into their care
plans [167]. In fact, a recent study showed that only 36.0% of
general practitioners had positive attitudes toward nutrition and
nutrition care [168].

This, as well as the data gaps, lack of regulated nutritional
supplements with standardized quantities, insufficient or com-
plete lack of insurance coverage for nutritionist or dietician
consultations, and lack of dietary programs directed toward
arthritis patients result in a lack of confidence in nutrition as a
treatment among clinicians. Without adequate nutrition edu-
cation, it is reasonable to assume that doctors are not able to
provide the highest quality care to patients [167].

Conclusions

This review summarizes the current evidence of the effects of
polyphenols (second metabolites produced by plants) and oth-
er micronutrients present in fruits and vegetables (selenium,
zinc, and magnesium) on inflammatory and oxidative re-
sponse. Although underlying mechanisms of their intracellu-
lar effects are now better understood, bioavailability of poly-
phenols and other micronutrients and their biofunctionality
are still unclear. Interpretation of the available data is compli-
cated by the fact that some trials use micronutrient-enriched
foods instead of specific micronutrients, as well as the fact that
gut microbiota participate in dietary polyphenols metabolism
and affect the bioavailability of both polyphenols and their
metabolites [169]. Nutrients in turn, can modulate gastrointes-
tinal microbiota and potentially decrease systemic inflamma-
tion [170]. Thus, the consequences of observed changes in
microbiomes as a result of exposure to micronutrients remain
unclear. Since diverse polyphenols have multiple intracellular
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targets, additional data is required to understand whether or
not there are synergistic effects between polyphenols and
commonly used medications in patients with rheumatic dis-
eases. Many clinical questions remain unanswered and more
longitudinal and randomized trials are needed to understand
both short-term and longer-term effects.

Yet, in terms of recommendations for rheumatic patients,
polyphenols and micronutrients could be easily added to our
patients’ diet for better management of the disease. Although
some observational studies suggest micronutrient deficiency
in RA patients [128, 129, 134, 171], like selenium, zinc, mag-
nesium, and vitamin D, more studies are needed to verify the
deficient nutritional status in those patients and whether pa-
tients with deficiencies would benefit more from nutrient sup-
plementation. Some foods rich in several of the anti-
inflammatory nutrients (Table 1) would be easy to introduce
in their current diet, like fruits, vegetables, spices, and com-
plex food like quinoa, amaranth or chia seeds, which are rich
inmany different polyphenols.We could also recommend that
our patients add a daily cup of green tea, and include different
spices like curcumin, ginger, pepper, or cinnamon in their
daily cooking. We could also suggest an easy way to have
fruits and vegetables in a green morning smoothie with spin-
ach, berries, or enzymatic fruits like papaya, mango, and pine-
apple. In our experience, smoothies are a good and easy way
for the patients to eat more vegetables and fruits.

In conclusion, the most significant studies included in this
review support that polyphenols and micronutrients have anti-
inflammatory and antioxidant properties that could help to
improve patients with chronic inflammatory arthritis.
However, clinical trials and subsequent implementation strat-
egies are needed to define how to best integrate dietary inter-
ventions into the care of patients with inflammatory arthritis.
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