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Abstract

Purpose of review We review the pathways, cytokines, and
concepts important to the pathogenesis of bone resorption and
formation in rheumatoid arthritis (RA) and spondyloarthritis
(SpA).

Recent findings Research in bone biology has shed light on
the pathogenesis of the joint destruction that occurs in RA and
in peripheral SpA. However, understanding the mechanisms
behind the bone formation seen in peripheral and axial SpA
has been challenging. Mouse models have been used to gain
an understanding of key signaling pathways, cytokines and
cells regulating inflammation in these diseases. Biologic ther-
apies directed against these targets have been developed to
control both inflammation and effects on bone.

Summary Although biologic therapies improve joint inflam-
mation in both RA and SpA, leading to a decrease in pain and
improving quality of life for patients, the long-term effects of
such therapies must also be evaluated by assessing their
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impact on structural progression. Inhibition of radiographic
progression in both RA and peripheral SpA has been easier
to demonstrate than in axial SpA. Here, we discuss the simi-
larities and differences among biologic therapies as they per-
tain to radiographic progression.
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Introduction

Rheumatoid arthritis (RA) and spondyloarthritis (SpA) are dis-
eases in which inflammation can lead to significant changes in
bone homeostasis, resulting in patient morbidity and loss of
function. SpA is a unifying term that encompasses psoriatic
arthritis (PsA), ankylosing spondylitis (AS), reactive arthritis,
and inflammatory bowel disease-associated arthritis. Features
common to both RA and SpA include peripheral joint involve-
ment, in which inflammation is associated with focal articular
erosions, and systemic bone loss. The term “SpA” also includes
a subset known as “axial SpA (axSpA),” in which axial skeletal
involvement is a major clinical component of the disease.
There are fundamental clinical and pathologic differences
between RA and SpA, especially axSpA, which suggest dif-
ferent local responses of bone to inflammation. Whereas
periarticular osteopenia and bone erosions with destruction
of peripheral joints are typical clinical features of RA and
peripheral SpA, osteoproliferation/bone formation occurs in
axSpA. In addition, in the SpA spectrum of disease, but not
in RA, enthesitis (inflammation at sites of insertion of tendons
and ligaments on bone) and new bone formation are promi-
nent. Features of axSpA that are not seen in RA include
syndesmophytes (new areas of bony growth at intervertebral
sites) and osteophytes (areas of bone formation occurring
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peripherally at periosteal surfaces) [1]. Research aimed at elu-
cidating the pathogenesis of bone changes in RA and SpA has
focused on pathways regulating osteoclast and osteoblast
function, on the interplay between these two cell types, and
on cytokines and factors released by cells within the inflamed
synovium and at entheses.

Drawing upon this research, targeted biologic therapies di-
rected against specific cytokines, pathways and cells of the
immune response have been developed that have revolution-
ized the treatment of both RA and SpA. This review will
provide a synopsis of current knowledge regarding the medi-
ators and effects of inflammation on bone and joints in RA
and SpA, focusing on recent relevant discoveries; summarize
the effects of the various biologic agents on structural progres-
sion in these diseases; and correlate basic mechanisms of bone
biology with clinical outcomes in these diseases.

Rheumatoid Arthritis: Inflammation and Bone Loss
Bone Pathways in RA

Bone homeostasis requires coupled bone formation (mediated by
osteoblasts) and bone resorption (mediated by osteoclasts). Thus,
the development of osteopenia/osteoporosis and bone erosions in
the joints of patients with RA demonstrates that, in this disease,
bone resorption is favored over bone formation. Osteoclast-
driven joint destruction as a consequence of chronically active
inflammation has been widely studied and is well defined in RA
[2¢]. Currently available drug therapy can prevent the develop-
ment and progression of erosions; however, even in patients who
have achieved clinical remission, previously established erosions
persist and rarely heal, suggesting that there is also an inhibition
of bone formation by osteoblasts in this disease.

Osteoblasts are derived from mesenchymal precursor cells
and produce and mineralize bone matrix. These cells produce
two important factors in varying amounts: receptor activator
of NF-kB ligand (RANKL) and osteoprotegerin (OPG).
RANKL binds to the RANK receptor on osteoclast precursor
cells, providing a signal for osteoclastogenesis and bone re-
sorption. OPG, the soluble decoy for RANKL, blocks the
effects of RANKL on osteoclasts, acting as an inhibitor of
its function. Immature osteoblasts produce RANKL, and as
these cells mature, RANKL production decreases and produc-
tion of OPG increases. In RA, additional cellular sources of
RANKL, including synovial fibroblasts, T and B cells, enter
into the bone microenvironment, and the RANKL/OPG bal-
ance is altered, resulting in bone loss [3]. Synovial tissues of
RA patients express a higher ratio of RANKL to OPG mRNA
that results in a microenvironment that is favorable for bone
resorption and erosion [4], and osteoclasts are required for
articular bone erosion in inflammatory arthritis [5, 6].
Furthermore, treatment with DMARDs leads to a reduction
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of the RANKL/OPG ratio in RA synovium, correlating with a
reduction in erosion scores in hand and foot radiographs [7].

In normal bone homeostasis, osteoblast differentiation and
function are dependent, in part, on the canonical Wnt
(Wingless) signaling pathway. Wnt ligands induce down-
stream signaling, leading to activation of gene transcription
that enhances osteoblast differentiation and bone formation.
Countering this are endogenous inhibitors of Wnt signaling,
including secreted frizzled-related proteins (sFRPs), Dickkopf
(DKK) family members and sclerostin [8]. We have demon-
strated increased expression of the Wnt signaling antagonists
sFRP-1 and -2 in inflamed synovial tissues in an animal model
of RA and shown that there is an abundance of immature
rather than mature osteoblasts at sites of inflammation and
erosion, suggesting that inflammation impairs osteoblast mat-
uration, at least in part, through the inhibition of Wnt signaling
[9]. In a follow-up study, complete resolution of inflammation
was noted to lead to repair of articular bone erosions, accom-
panied by downregulation of Wnt antagonist expression and
the induction of the Wnt agonist Wnt 10b [10]. These results
imply a role for persistent subclinical inflammation in
uncoupling of bone formation and bone resorption in RA
and may explain, at least in part, the lack of significant repair
of bone erosions in RA patients.

In an important related study in the TNF-transgenic
(TNFtg) murine model of arthritis, an antibody to an inhibitor
of the Wnt signaling pathway, DKK 1, was administered from
the time of disease onset. Blockade of DKK1 prevented the
development of bone erosions [11] and also resulted in peri-
osteal bone formation at sites where bone erosion would have
occurred. This suggested that the Wnt signaling pathway, and
in particular DKK1, may be a critical “switch,” regulating
whether bone is lost or formed in inflammatory arthritis.
DKKI1 blockade has also been shown to reduce the TNF-
mediated expression of the Wnt pathway inhibitor sclerostin
in mature osteoblasts in vitro and in vivo [12]. Furthermore,
DKK1 levels are elevated in the serum of rheumatoid arthritis
patients [13], and TNF induces DKK1 in synovial fibroblasts
[11, 14].

While the Wnt signaling pathway appears to play an im-
portant role in the pathogenesis of bone changes in inflamma-
tory arthritis, other local factors may also influence osteoblast
function. In the RA joint, synovial tissue is infiltrated by many
cell types including macrophages and leukocytes that produce
cytokines including TNF, IL-1, IL-6, IL-17, and a growth
factor, M-CSF, which all have the potential to regulate remod-
eling of bone [15].

Selected Cytokines that Regulate Bone in RA
TNF is an important cytokine that promotes osteoclast differ-

entiation and function [6]. TNF has also been shown in vitro to
suppress osteoblast-lineage commitment by inhibiting
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expression of the transcription factor RUNX2 [16], a factor
essential for osteoblast differentiation, leading to a decrease in
mineralized bone. The TNFtg mouse model has been used to
investigate effects of TNF in inflammatory arthritis. Blocking
TNF in this mouse model decreases osteoclastogenesis and
bone erosions [17]. TNF is also upstream of interleukin-1
(IL-1), and IL-1, in turn, provides a positive feedback loop
for TNF expression. The effects of TNF on bone remodeling
have been reviewed previously [1, 18, 19].

IL-6 is another cytokine that is expressed by many cell
types (including macrophages, chondrocytes, and fibroblast-
like synoviocytes) that are present in the inflamed joint. Its
expression is elevated both in serum and synovium of RA
patients [20]. IL-6 is a pleiotropic cytokine that plays a role
in B cell differentiation and antibody production and in T cell
development, as well as in pannus proliferation via VEGF
stimulation [21]. Some controversy still exists regarding the
direct effects of IL-6 on osteoclastogenesis. However, it has
been shown that in the bone microenvironment, IL-6 interacts
with its receptor sIL-6R complex present on osteoblast lineage
cells, leading to upregulation of PGE2 synthesis and to an
increased RANKL/OPG ratio, enhancing osteoclastogenesis
[22]. Inhibiting IL-6 in mouse models of inflammatory arthri-
tis attenuates the development of arthritis [23-25].

IL-6 also promotes the differentiation of Th17 cells to pro-
duce IL-17 and IL-17 indirectly increases IL-6 levels in oste-
oblasts [26]. IL-17 is a potent activator of osteoclastogenesis
by increasing RANKL expression in osteoblast-lineage cells
and in synovial fibroblasts in RA [27]. Similar to IL-6, IL-17
promotes PGE2 secretion from osteoblasts [28]. IL-17 levels
are elevated both in serum and in synovial fluid from RA
patients [29]. In animal models of inflammatory arthritis, both
joint inflammation and bone erosions are reduced by IL-17
blockade [30ee].

IL-23 is a cytokine that is functionally linked to IL-17. IL-
23 levels are elevated in patients with early RA [31]. IL-23
deficiency [32] and 1L-23 targeting prior to disease onset [33,
34] prevented the development of collagen-induced arthritis in
mice. These data suggest a potential role for IL-23 in early
RA. In vitro studies have described both inhibition and stim-
ulation of osteoclastogenesis by IL-23, leaving the role of IL-
23 in bone homeostasis unclear [35, 36]. IL-23 also induces
expression of IL-22, which in turn can promote osteoblast
differentiation [37, 38e¢]. The IL-23/IL-17 (Th17) axis is con-
sidered to be important in mouse models of inflammatory
arthritis, and these cytokines may exert different effects in
various stages of RA development. It has been proposed that
blockade of IL-23 or IL-17 might be more effective treatment
for patients with early, rather than established RA or when
administered in combination with drugs targeting other cyto-
kines (such as TNF) [30e¢]. This might merit further investi-
gation, although a clinical trial of an oral IL-12/IL-23 inhibitor
in RA patients did not demonstrate significant efficacy [39].

Spondyloarthritis: Inflammation and Bone
Remodeling

The prominent new bone formation that is a feature of axSpA
suggests that different mechanisms are involved in bone remod-
eling at periosteal sites than at articular sites of inflammation in
diseases within the SpA spectrum. Some pathways may be
shared at both sites, including the Wnt signaling pathway, the
IL-23/IL-17/IL-22 axis, and other cytokine pathways, as
outlined below and summarized in Table 1. The enthesis and
the synovio-enthesial complex (SEC) have been considered as
a site of initiation of the disease in animal models of SpA, with
inflammation first affecting the enthesis and subsequently in-
volving the synovium, rather than vice versa [40, 41].

The Wnt Signaling Pathway in SpA

It is important to note that several mouse models of inflam-
matory arthritis used to investigate RA pathogenesis and ef-
fects on bone have also been used to study effects on bone in
SpA. This is because many of these models develop both
articular erosions and enthesial bone formation; such models
include the K/BxN serum transfer model, collagen-induced
arthritis (CIA), and the SKG mouse model. TNF transgenic
(TNFtg) mice (overexpressing TNF) also develop an RA-like
peripheral arthritis and concomitantly develop bilateral
sacroiliitis. However, no syndesmophytes are formed in these
mice. This model of inflammatory arthritis, nevertheless, has
shed some light on the pathogenesis of bone formation in
SpA; particularly, it has highlighted the importance of the
Wnt signaling pathway [11], the activation of which leads to
bone formation on periosteal surfaces. This is contrary to what
is observed in RA, where inhibitors of Wnt signaling may
promote bone erosion, by inhibition of osteoblast function,
and inhibit erosion healing. In associated translational studies,
lower serum levels of functional DKK1 were found in anky-
losing spondylitis (AS) patients who had greater numbers of
syndesmophytes than those patients with higher levels of
DKKI1, again implicating DKK1 (and the Wnt signaling path-
way) as a regulator of outcomes for bone [42].

The Wnt pathway inhibitor sclerostin (gene name SOST)
has also been implicated in AS pathogenesis. Decreased
sclerostin levels (and presumably increased Wnt signaling
and osteoblast differentiation) in AS patients are associated
with an increased number of syndesmophytes [43].
Treatment of TNFtg mice with anti-sclerostin antibody was
shown to inhibit periarticular and systemic bone loss and to
repair erosions when combined with a TNF inhibitor (TNFi)
[44+], suggesting that this antibody may have clinical utility in
inflammatory arthritis. However, a recent study by Wehmeyer
et al. found significant worsening of inflammation in arthritic
mice treated with anti-sclerostin antibody [45¢¢]. In fact, the
administration of anti-sclerostin antibody augmented synovial
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Proinflammatory cytokines regulating bone cells: key effects

Table 1
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[38]
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osteoblast mesenchymal
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inducing DKK1

progenitor cells in a mouse
model of bone fracture

repair [58]

inflammation in several murine arthritis models driven by
TNF. It was further demonstrated that sclerostin inhibits sig-
naling pathways downstream from TNF. Thus, inhibition of
sclerostin in patients with inflammatory arthritis could en-
hance inflammation. Furthermore, it has been accepted that
sclerostin is expressed only by osteocytes within the bone
matrix; however, this study demonstrated sclerostin expres-
sion in fibroblast-like synoviocytes derived from synovial tis-
sues of RA patients [45¢¢]. Clarification of the potential role of
sclerostin in the pathogenesis of both SpA and RA thus re-
quires further study.

Selected Cytokines That Regulate Inflammation and Bone
in SpA

The IL-23/IL-17/IL-22 axis has emerged as an important path-
way in the pathogenesis of SpA and is the target of biological
therapies approved for treatment of patients with diseases
within the SpA spectrum. The enthesis (and interestingly the
aortic root) is an anatomic site where a unique subset of
ROR-yt"CD4 CD8 T cells expressing the IL-23 receptor re-
sides. These cells were first described by Sherlock et al. in
mice in which overexpression of IL-23 was introduced
[38e¢]. These mice developed enthesitis before progressing
to overt peripheral arthritis. In addition, expansion of perios-
teal osteoblasts was observed, with subsequent entheseal and
periosteal bone formation. IL-23 induced expression of IL-
17A, IL-17F, IL-6, and IL-22, as well as other cytokines/fac-
tors. Administration of IL-23p19 antibody at the time of dis-
ease induction reduced clinical disease scores, as well as his-
tological evidence of entheseal inflammation. However, inhi-
bition of TNF or IL-6 did not result in improvement of clinical
disease. Depletion of Th17 cells also did not have an effect on
clinical disease or histological enthesitis scores. Further,
supporting an important role for IL-23 in SpA is the elevation
of serum IL-23 levels observed in patients with AS [46] and
the clinical efficacy of anti-IL-12/IL-23p40 in psoriatic arthri-
tis and AS [47-49]. IL-23R polymorphisms have been iden-
tified in patients with diseases in the SpA spectrum, including
inflammatory bowel disease and psoriatic arthritis [50, 51].
The exact source of IL-23 in SpA has not been established.
However, IL-23 production could occur in the intestine, as a
result of HLA-B27 misfolding [52] or in response to endo-
plasmic reticulum stress triggered by Chlamydia trachomatis
(a pathogen implicated in reactive arthritis) [53], suggesting
additional mechanisms that may contribute to bone formation
in SpA.

IL-23 signaling promotes Th17 cell differentiation,
resulting in increased IL-17A production [54]. IL-17A is a
member of the IL-17 cytokine family, which also includes
IL-17B-F. Of these, IL-17A and IL-17F have been implicated
in the pathogenesis of inflammation [55]. The number of cir-
culating memory Th17 cells is increased in patients with SpA
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[56]. IL-1f3 and IL-23p19 activate yd T cells to produce IL-
17A, and expression of both IL-13 and IL-23p19 is upregu-
lated in repair tissue in the early stages of bone regeneration
[57, 58¢]. IL-17A has been shown to promote osteoclastogen-
esis and bone resorption; however, the effects of IL-17A on
osteoblast function are likely complex (see “Biologics™).
Further evidence for a role of IL-17A in SpA includes the
increase in systemic bone mass and improved osteoblast func-
tion after IL-17A inhibition in a mouse model of psoriasis, as
well as increased IL-17A serum levels in psoriasis patients
[59¢]. Finally, IL-17A inhibition has proven efficacious in
SpA clinical trials [60—62].

While inhibitors of IL-17A and IL-23 are the newer
biologic agents used to treat the SpA spectrum of disease,
TNFi have been the mainstay of biologic therapy to con-
trol inflammation for more than a decade. TNFi have
proven successful in reducing inflammation in SpA
[63—71]. Treatment of AS patients with TNFi is also as-
sociated with improvement in lumbar spine and total hip
bone mineral density [72]. However, TNF induces DKK1
and thus could provide a brake to Wnt signaling, osteo-
blast differentiation, and bone formation [11]. Due to the
potential effects of TNF on the Wnt signaling pathway, it
has been hypothesized that TNF inhibition may promote
bone formation in patients with SpA, a concept known as
the “TNF brake hypothesis.” This hypothesis arose when
syndesmophytes were noted more likely to form after
resolution rather than persistence of MRI inflammation
of vertebral lesions in AS patients treated with TNFi
[73, 74]. Details of the specific sequence of MRI features
(inflammation vs fatty degeneration at vertebral edges)
that predict syndesmophyte formation have been debated
and have raised questions as to the validity of the “TNF
brake hypothesis” [75]. Nevertheless, the component of
time is proposed to be important in relation to radio-
graphic progression in AS with TNF blockade.
Alternating periods of inflammation (high TNF, high
DKK1) and its resolution (low TNF, low DKK1) could
alter the cytokine milieu and bone microenvironment in
favor of bone formation [76¢]. If inflammation were to be
prevented entirely, early in disease, subsequent bone for-
mation might be unlikely to occur. In support of this
concept, initiating TNFi therapy 10 years after the onset
of AS is associated with faster radiographic progression
than when TNFi treatment is initiated earlier [77].

IL-6 is another pro-inflammatory cytokine that may regu-
late inflammation in SpA. IL-6 levels are increased in psoriatic
skin lesions [78] and in synovial fluid of PsA patients, at levels
similar to those in RA [79, 80]. IL-6 serum levels correlate
with disease activity, specifically with the number of joints
affected, and with ESR and CRP [81]. However, except as
mentioned above, the available data do not support a signifi-
cant, specific role for IL-6 in bone remodeling in SpA.

Biologics in Spondyloarthritis and Rheumatoid
Arthritis

Study of the pathogenic mechanisms of bone resorption and
formation in inflammatory arthritis, as outlined above, has
suggested therapeutic approaches in SpA, some of which have
been adopted after they demonstrated success in treating RA.
Prior reviews have discussed the effects of therapeutic inter-
ventions on bone erosion and osteopenia/osteoporosis in RA
[1, 2+, 82]. Here, we will focus on therapeutic responses in
peripheral and axial SpA with an emphasis on outcomes for
bone, as summarized in Table 2.

Assessment of Radiographic Progression in Axial
and Peripheral SpA

Structural damage in AS is associated with a decline in phys-
ical function [86]. A goal of clinical trials of targeted biologic
agents in SpA is to slow or halt structural progression, both in
peripheral joints and in the spine. Ideally, therapeutic

Table 2 Inhibition of structural damage progression on imaging by

biologics in SpA and RA

Drug Target RA PsA*  AS**

Currently in clinical use
etanercept TNF + + ND
infliximab TNF + + ND
adalimumab TNF + + ND
certolizumab pegol ~ TNF + + + [83]
golimumab TNF + + ND
abatacept T cell activation ~ + + ND
tocilizumab IL-6R° + ND  ND
rituximab B cell + ND ND
ustekinumab IL-12/1L-23 ND + +
secukinumab IL-17A ND + + [84]

Currently under investigation
sirukumab IL-6 +[85] ND ND
sarilumab IL-6 + ND ND
ixekizumab IL-17A ND + ND
brodalumab IL-17R® ND ND ND

+ indicates inhibition of structural damage progression either by MRI or
plain radiographs

- indicates no effect on inhibition of strutural damage progression on
imaging

ND no imaging data available

*Peripheral arthritis in PSA

**Axial arthritis in AS

© R denotes “Receptor”
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intervention would prevent both erosion and ankylosis of joints,
thereby reducing disability and improving quality of life.

To assess structural progression in patients with SpA in clin-
ical trials, both plain radiographs and MRI have been used.
Scoring methods used to quantitate structural change on plain
radiographs of the spine include the Bath Ankylosing
Spondylitis Radiology Index (BASRI), the Stoke Ankylosing
Spondylitis Spine Score (SASSS), and the modified Stoke
Ankylosing Spondylitis Spine Score (mSASSS). Of these three
scoring systems, the mSASSS has been shown to be the most
sensitive to structural change [87]. This system scores the pres-
ence of syndesmophytes; vertebral body erosion, sclerosis, or
squaring; and bridging at the anterior vertebral corners on plain
radiographs of the cervical and lumbar spine on a scale of 0 to
72 [88]. Interestingly, structural changes in the sacroiliac joints
(SI) would contribute minimally to the overall mSASSS score
and thus have been excluded from this scoring system [87].

MRI of the SI joints and spine is assessed using the Berlin
scoring system that evaluates changes in vertebral units,
which include facet joints and spinous processes [89].
Such changes include erosion and bone proliferation
(syndesmophytes with and without bridging) reflecting progres-
sion of structural damage, as well as fatty bone marrow deposition
and osteitis (bone marrow inflammation) that can be the earliest
signs of inflammation. MRI may be the better imaging modality
to assess structural damage in relatively brief trials of biologics in
axial SpA, since it detects osteitis in early bone lesions as in-
creased T2-weighted signal on STIR images. Furthermore,
MRI can assess SI joint inflammation with greater sensitivity
than plain radiographs, which demonstrate only structural chang-
es that have developed as a result of chronic inflammation.

Progression of structural damage in peripheral joints of
patients with SpA is evaluated using methods that were devel-
oped to assess structural progression in RA. Plain radiographs
of the hands and feet are assessed using the van der Heijde
modification of the total Sharp score (SvH), which quantitates
erosions and joint space narrowing on a scale of 0 to 448 [90].
MRI of the wrists and MCP joints is assessed for synovitis,
bone erosion, and bone edema and is graded using the
Rheumatoid Arthritis MRI scoring system (RAMRIS) [91].

TNF Inhibitors

The effects of TNF inhibitors (TNFi) in suppressing joint in-
flammation and preventing structural progression of articular
disease in RA and of peripheral arthritis in PSA are well
known [92-102]. However, it has been difficult to demon-
strate the effects of TNFi on the progression of spinal involve-
ment in axSpA. Each of the five commercially available TNFi
has demonstrated efficacy in controlling inflammation in ran-
domized, placebo-controlled, double-blind, phase 3 clinical
trials in patients with axSpA [63-67] and, other than
infliximab, also in patients with non-radiographic axSpA
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[68—71]. In these prospective studies, MRI evidence of osteitis
improved with TNFi treatment. Inhibition of syndesmophyte
formation was demonstrated in a retrospective study that com-
pared AS patients treated continuously with infliximab over
8 years to a historical cohort of AS patients who had not received
a TNFi. Patients treated with infliximab developed significantly
fewer new syndemophytes compared to the historical cohort.
However, overall progression of structural change, as assessed
by the mSASSS, was similar in both groups [103].

In a prospective study that included patients with early
disease, plain radiographs of the spine were performed every
2 years in 334 patients with AS who were receiving both an
NSAID and a TNFi. Over longer than 4 years, TNFi treatment
was associated with a 50 % reduction in the likelihood of
structural progression (defined as an increase of >1 mSASSS
unit/year). Patients who delayed initiating TNFi treatment for
>10 years were more likely to exhibit structural progression
than those who began treatment earlier [77]. This study dif-
fered from previous trials in that it followed patients on treat-
ment over a longer period of time, which might account for its
ability to demonstrate inhibition of structural progression.

IL-6 Inhibitors

IL-6 inhibition has demonstrated clinical efficacy in patients
with RA [104]. In patients with early RA, circulating IL-6
levels correlate with synovitis, as evaluated by musculoskele-
tal ultrasound, and with progression of structural damage, as
assessed on plain radiographs using the SvH score [105].
Treatment with tocilizumab has resulted in inhibition of pro-
gression of structural joint damage, both in patients with
established RA [106] and in those with early RA [107].
Similarly, treatment with sarilumab, another monoclonal anti-
body to the IL-6R, inhibited structural progression in patients
with established RA who had been inadequately responsive to
methotrexate [108].

The reduction in signs and symptoms and prevention of
structural progression by IL-6 inhibition in patients with RA
confirms the role of IL-6 in the pathogenesis of this disease.
However, in randomized, placebo-controlled clinical trials in
patients with AS, neither tocilizumab nor sarilumab demon-
strated clinical efficacy for treating signs or symptoms of axial
disease [109, 110]. Both studies were of relatively brief dura-
tion (12 weeks) and neither evaluated the effect of treatment
on progression of joint erosion. These negative studies suggest
that, despite elevated levels of circulating IL-6 in patients with
AS, this cytokine does not appear to be an important thera-
peutic target in AS. Nonetheless, clazakizumab, a monoclonal
anti-IL-6 antibody, has demonstrated efficacy in treating joint
inflammation, enthesitis, and dactylitis in patients with psori-
atic arthritis, but studies have not yet been conducted to assess
the effect of IL-6 inhibition on structural progression in pa-
tients with psoriatic arthritis [111].
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IL-17 Inhibitors

IL-17 inhibition has shown variable clinical efficacy when
studied in patients with RA. In a randomized, placebo-
controlled phase 2 clinical trial of secukinumab monotherapy,
this monoclonal antibody directed against IL-17A failed to
achieve the primary endpoint of ACR20 response at week
16, a result that may have been due in part to the mix of
patients that included TNFi non-responders [112, 113]. In a
subsequent randomized, placebo-controlled phase 2 clinical
trial conducted in RA patients inadequately responsive to
methotrexate and naive to TNFi, the proportion of ACR20
responders to secukinumab plus methotrexate also was not
statistically significantly greater than that to methotrexate
alone [114¢]. In these studies, however, significantly more
patients treated with secukinumb achieved secondary end-
points, including reduction in DAS28 and of CRP, than did
patients treated with placebo.

In contrast, treatment with ixekizumab, another monoclo-
nal anti-IL-17A antibody, yielded a significantly greater pro-
portion of ACR20 responders than did placebo in RA patients
who either were naive or had been inadequately responsive to
TNFi [115¢]. However, a randomized, controlled phase 2 clin-
ical trial in which RA patients inadequately responsive to
methotrexate and naive to TNFi received either monotherapy
with brodalumab, a monoclonal antibody directed against the
IL-17 receptor (IL-17R), or placebo also did not achieve sta-
tistically significant improvement in its primary endpoint of
ACRS0 response or in the secondary endpoint of ACR20
response, each at week 12 [116].

Additional studies may be warranted before concluding that
IL-17 inhibition is ineffective treatment for RA. IL-17 inhibi-
tion may be more effective in early RA than in established
disease, and combined inhibition of IL-17 and other cytokines
may be more effective in treating inflammatory arthritis than
inhibition of IL-17 alone [30¢¢]. In support of this hypothesis is
the inverse relationship between Th17 levels at baseline and the
response of RA patients to TNFi [117]. Additionally, the inhi-
bition of both IL-17 and TNF using a bispecific anti-TNF/IL-17
antibody more effectively reduced inflammation and bone de-
struction in a mouse model of inflammatory arthritis than did
inhibition of either cytokine alone [118].

Two prospective randomized, placebo-controlled clinical
trials have demonstrated efficacy of secukinumab in PsA
[60, 61]. However, in only one of these studies were radio-
graphic data obtained to assess progression of structural dam-
age in peripheral joints [61, 119]. Among secukinumab-
treated patients, 72 % of whom were TNF-naive and 59 %
of whom were receiving concomitant methotrexate, inhibition
of structural damage progression was sustained over 52 weeks,
as assessed with the SvH score. Notably, progression of struc-
tural damage was reduced, irrespective of prior TNFi or con-
comitant methotrexate use. Ixekizumab and brodalumab each

has also shown clinical efficacy in PsA [120, 121], but only
the clinical trial of ixekizumab acquired radiographic data to
assess structural progression. Ixekizumab treatment signifi-
cantly reduced the change in the SvH score, compared to that
observed with placebo. Although inhibition of structural dam-
age progression in peripheral joints has been established with
IL-17A inhibitors in SpA, no imaging data regarding progres-
sion of axial skeletal structural damage in AS have been pub-
lished to date for secukinumab in manuscript form. However,
one abstract [84] reports initial data that suggest inhibition of
radiographic progression in AS (see Table 2). Additional stud-
ies are needed to address this subject.

It is difficult to predict the response to IL-17A blockade on
bone formation, as there have been conflicting results regarding
the effects of IL-17A on osteoblast function. Several studies
have demonstrated that IL-17A inhibits the differentiation of
calvarial osteoblasts [59¢, 122] and there is a growing body of
evidence that IL-17A suppresses osteoblast differentiation by
inhibiting Wnt signaling in osteoblasts and osteocytes in the
setting of inflammatory conditions associated with arthritis,
such as psoriasis [59¢]. Thus, IL-17A blockade could promote
periosteal bone formation by osteoblasts. However, it has also
been shown that IL-17A promotes bone formation by stimulat-
ing the differentiation of osteoblast mesenchymal progenitor
cells [58¢]. This has been demonstrated in a mouse model of
bone fracture repair and in human mesenchymal cell differen-
tiation studies [123]. It is likely that IL-17A has differential
effects on osteoblasts, depending on their stage of cellular dif-
ferentiation at the time when they encounter the cytokine. It
also may be that injury-associated bone repair differs from the
mechanical type of bone formation that occurs at periosteal/
enthesial sites. In any case, if inflammation (and not just me-
chanical stress) is promoting periosteal/enthesial bone forma-
tion and IL-17A blockade reduces inflammation, the direct
effects of this cytokine on osteoblasts may be far less relevant.

IL-12/23 Inhibitors

Ustekinumab is a monoclonal antibody directed against the p40
subunit present in both the IL-23 and IL-12 heterodimers.
Hence, this antibody binds to and inhibits the action of both
cytokines. The efficacy of ustekinumab in psoriatic arthritis has
been demonstrated in two phase 3 randomized, placebo-
controlled clinical trials: PSUMMIT-1 [48] and PSUMMIT-2
[47]. Ustekinumab was effective even in patients previously
treated with TNFi, among whom the proportion of ACR20
responders was 35.6 % in ustekinumab-treated patients and
14.5 % in placebo-treated patients. In both PSUMMIT-1 and
PSUMMIT-2, structural damage observed in radiographs of the
hands and feet, assessed using the SvH score modified for PsA,
progressed significantly less over 24 weeks among patients
treated with ustekinumab than among those who received pla-
cebo [124]. This inhibition of structural damage progression
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was maintained through 52 weeks in both studies and for up to
2 years in the PSUMMIT-1 extension study [125].

Ustekinumab has also demonstrated efficacy in AS [49]. In
a prospective, open-label, single-arm, proof-of-concept trial
that excluded TNFi non-responders, 20 patients with active
AS received ustekinumab 90 mg at baseline, week 4 and week
16: MRI of the sacroiliac joints and spine was performed
at baseline and week 24. The primary endpoint of an ASAS40
response at week 24 was achieved by 65 % of patients.
Clinical responses were observed more often in younger pa-
tients who had a shorter duration of symptoms, less functional
limitation, higher CRP levels, and more evidence of sacroiliac
joint and spine inflammation on MRI at baseline. Evidence of
active inflammation (osteitis and bone marrow edema) on
MRI, scored according to the Berlin scoring system, de-
creased significantly by 31 % in the spine and 41 % in the
sacroiliac joints. Although the data from this study are encour-
aging, additional studies of longer duration that acquire con-
ventional radiographs are needed to assess the potential inhib-
itory effect of ustekinumab on bone proliferation and ankylo-
sis in axial SpA.

Targeting B and T Cells

Rituximab, a chimeric monoclonal antibody that targets
CD20+ B cells, effectively reduces signs and symptoms and
inhibits progression of structural joint damage in RA. A mul-
ticenter, randomized, double-blind, placebo-controlled phase
3 clinical trial of rituximab demonstrated significant reduction
of disease activity and a modest effect on slowing of structural
progression over 24 weeks [126]. In another phase 3 study in
which RA patients who had been inadequately responsive to
TNFi were treated with the combination of rituximab and
methotrexate, progression of structural joint damage was
slowed over 56 weeks; the mean change from baseline in the
total Genant-modified Sharp score was significantly lower for
the combination of rituximab plus methotrexate than for meth-
otrexate alone [127]. This inhibition of structural damage pro-
gression was sustained through 2 years after the initial rituxi-
mab treatment, with re-treatment administered every 6 months
if needed [128]. Similar results were observed in patients with
early RA treated with the combination of rituximab plus meth-
otrexate in the randomized, double-blind, placebo-controlled
IMAGE trial [129]. However, data on the efficacy of rituxi-
mab in SpA are limited. Preliminary studies in patients with
SpA suggest that rituximab may have only a modest effect on
inflammation and no effect on progression of structural dam-
age in axial disease [130, 131].

Abatacept is a recombinant Fc fusion protein containing the
extracellular domain of human CTLA4, which interferes with
T cell co-stimulation by inhibiting the interaction between T
cells and antigen presenting cells. In an open label, 24-week
pilot study [132] abatacept was administered to patients with
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active AS who either had responded inadequately or were naive
to TNFi. Only 13 % of TNFi-naive patients and none of the
TNFi inadequate responders achieved the primary endpoint of
an ASAS40 response. Thus, abatacept appears to have limited
efficacy in AS, and there are no data regarding its effect on
progression of structural damage in the axial skeleton.

Conclusion

Inflammation in RA and SpA disrupts normal bone homeo-
stasis leading to an imbalance of bone resorption and forma-
tion that favors resorption in peripheral joints in both RA and
SpA and formation at periosteal/enthesial sites in SpA.
Research conducted in animal models of inflammatory arthri-
tis and observation of the responses of human disease to ther-
apeutic interventions have contributed to a greater understand-
ing of the pathways and cytokines involved in the response of
bone to inflammation in RA and SpA, including the IL-23/IL-
17 axis. As more data emerge regarding both the clinical and
radiographic outcomes of targeted biological treatment in RA
and SpA, the role of these pathways in disease pathogenesis
will be elucidated.
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