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Abstract Macrophage activation syndrome (MAS), typically
presenting beyond the first year of life, is an often lethal cousin
of familial hemophagocytic lymphohistiocytosis (fHLH).
Defects in natural killer (NK) cell and CD8 Tcell cytotoxicity
result in a pro-inflammatory cytokine storm, cytopenia, coag-
ulopathy, and multi-organ system dysfunction. MAS can oc-
cur in association with infections (herpes viruses), cancer
(leukemia), immune deficient states (post-transplantation),
and in autoimmune (systemic lupus erythematosus) and
autoinflammatory conditions (systemic juvenile idiopathic
arthritis). The distinction between fHLH, the result of homo-
zygous defects in cytolytic pathway genes, and MAS is

becoming blurred with the identification of single or multiple
mutations in the same cytolytic pathway genes in patients with
later onset MAS. Here, we review the literature and present
novel cytolytic pathway gene mutations identified in children
with MAS. We study the inhibitory effect of one these novel
mutations on NK cell function to suggest a direct link between
fHLH and MAS.
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Introduction

Macrophage activation syndrome (MAS) is quickly becoming
a more recognized entity in both pediatric and adult hospital
settings [1]. MAS is not a diagnosis of exclusion but can
accompany infectious, oncologic, immunodeficiency, and rheu-
matic disorders [2•]. Among rheumatic diseases, MAS is most
commonly seen in pediatrics in children with systemic juvenile
idiopathic arthritis (sJIA), where it is believed by some to be
inherent to the disease process in 40–50 % of cases, with
approximately 10 % presenting clinically overtly [3, 4]. MAS
is also seen in the related disorder, adult onset Still disease [5],
but in adults it is more frequently seen in systemic lupus
erythematosus (SLE) which is much more common [6•].
MAS also occurs in pediatric SLE [7•, 8] and in Kawasaki
disease (KD) [9], along with a variety of other vaculitides and
rheumatic disorders in children and adults [10•].

MAS is the terminology used by rheumatologists to refer to
hemophagocytic lymphohistiocytosis (HLH) occurring in
children and adults with rheumatic diseases. MAS, sometimes
called reactive or secondary HLH, is likely similar to, if not
the same disease process as, primary or familial HLH (fHLH),
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which typically occurs in the first year of life as a result of
homozygous defects in cytolytic pathway genes [1, 2•]. As
such, the diagnosis of fHLH can be made if there is a molecular
diagnosis of homozygous or compound heterozygous mutations
in the known associated HLH genes (Table 1), but usually the
diagnosis is made bymeeting 5 of 8 established criteria [11]. The
HLH criteria reflect the clinical manifestations and associated
laboratory abnormalities and include the following: fever, spleno-
megaly, peripheral cytopenia (2 or more lineages), hypertriglyc-
eridemia or hypofibrinoginemia, hemophagocytosis on biopsy or
in cerebrospinal fluid, low or absent natural killer (NK) cell
activity, hyperferritinemia, and elevated soluble CD25
(interleukin-2 receptor alpha chain) [11]. In part, because MAS
may not be initially as severe as fHLH in presentation, and since
measurement of NK cell activity and soluble CD25 is frequently
not readily available, criteria have been proposed to diagnosis
MAS for rheumatic disorders.

For rheumatic diseases, preliminary diagnostic criteria have
been put forth for establishing the diagnosis of MAS in the
setting of sJIA [12]. These criteria overlap some of the HLH
criteria (cytopenias and hypofibrinoginemia) but also include an
elevated liver enzyme and 3 sets of clinical criteria (central
nervous system dysfunction, hemorrhages, and hepatomegaly).
Recently, an international effort is in the process of generating
new MAS criteria for children with sJIA using a rigorous statis-
tical modeling approach, including testing the criteria on large
sets of real patient data [13•]. Related criteria efforts have also
been attempted for pediatric lupus [14]. Whether or not a single
scoring system for all forms of MAS/reactive HLH will be
sensitive and specific enough is yet to be determined [15•].

Until recently, the restrictive nature of the HLH criteria for
diagnosing non-fHLH forms of MAS has hindered the recog-
nition and timely diagnosis of MAS in the hospital setting.
While fHLH is rare occurring in approximately 1 in 50,000
live births [2•], MAS/reactive HLH is muchmore common as it
can arise in the setting of infectious, oncologic, rheumatic, and
immune deficient states [16, 17]. In fact, MAS is still likely
vastly under-recognized, particularly in the intensive care unit
(ICU) setting, where it may be labeled multiple organ dysfunc-
tion syndrome (MODS), systemic inflammatory response syn-
drome (SIRS), or culture negative sepsis [18]. The recognition
of MAS in the ICU is particularly important, as treatment for
MAS is often radically different (immunosuppression or che-
motherapy) than broad spectrum antibiotic coverage, and mor-
tality for these ICU syndromes is high [19]. Similarly, children
with KD who share many features of MAS, have been labeled
“shock syndrome” [20]. Again, it is important to realize that
MAS in the setting of KD may require specific treatment such
as interleukin-1 (IL-1) blockade [21•]. Until a more global set of
diagnostic criteria for all forms of MAS are validated, in the
setting of a febrile, ill-appearing patient, a very sensitive, inex-
pensive, and simple screening tool remains an elevated serum
ferritin level [22, 23].

As MAS is more frequently being recognized and diag-
nosed, the question arises as to why some individuals with
certain infections, malignancies, immunodeficiencies, and
rheumatic disorders are prone to develop MAS and others
are not. This selectivity implies that not only is the particular
condition (e.g., H1N1 influenza) [24, 25] a risk factor for
MAS but the individual’s genetically susceptible host immune
response may also play an important role in the development
of MAS. Most of the understanding of the pathophysiology of
MAS has come from the study of animals spontaneously or
genetically engineered to be deficient in the same cytolytic
pathway genes as found in fHLH (Table 1) [2•, 26••, 27••, 28].
Although there are most likely multiple pathophysiologic
pathways capable of leading to the end common pathway of
MAS that do not require defects in lymphocyte cytolysis
[29••], there are emerging data that subsets of MAS patients
have partial defects in the same genes which are homozygous
deficient in fHLH infants [27••]. An exploration of genetic
defects in cytolytic pathway proteins in patients with MAS/
secondary HLH is the focus of this review [30].

Cytolysis and MAS Pathophysiology

A current hypothesis as to the pathophysiology of HLH pro-
poses that the inability of NK or CD8 T cells to lyse infected
antigen-presenting cells (APC) leads to ongoing infection as
well as an amplifying crosstalk of pro-inflammatory cytokines
elicited by the APC and the lymphocyte ineffective in cytol-
ysis [2•, 26••, 27••, 31]. The resultant “cytokine storm” con-
tributes to hemophagocytosis by activated macrophages/
histiocytes, multi-organ dysfunction, pancytopenia, coagulop-
athy, and eventual host demise. This has perhaps been best
explored experimentally in an animal model of perforin defi-
ciency [32]. These mice deficient in perforin-dependent target
cell cytotoxicity are perfectly healthy until exposed to a par-
ticular virus, LCMV, and then they develop a rapidly fatal
condition similar to HLH. Elimination of CD8 T cells prior to
infection rescues the mice from death, as does blockade of the
pro-inflammatory cytokine, interferon-gamma (IFN-γ) [32].
Interestingly, as little as 20 % wild-type (WT) perforin-
expressing CD8 T cell chimerism is also able to ameliorate
the HLH picture in these animals [33•]. As APCs are also
critically important to the process of HLH [34], elimination of
antigen-presenting dendritic cells (DC) can also protect
against the HLH picture in perforin-deficient mice [35••]. It
has recently been proposed that the severity of the lymphocyte
killing defect in different mouse strains positively correlates
with the severity of the HLH phenotype [26••]; it is therefore
intriguing to speculate that a subset of humanMAS presenting
later in life than fHLH (infancy) may result from more subtle
genetic defects in lymphocyte cytolysis.
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Cytolysis and Genetics of MAS in sJIA

In humans, non-familial MAS has beenmost rigorously studied
in children with sJIA. It has been known for some time that
children with HLH and their first degree relatives have defects
in NK cell function [36], but not long after it was also recog-
nized that children with sJIA and MAS had similar NK cell
dysfunction [37]. This is in part why it has been proposed that
MAS not be considered a complication but rather an inherent
aspect of disease in a substantial proportion of children with
sJIA [3]. In studying one of the known HLH-associated genes,
Grom and colleagues identified a haplotype of polymorphisms
across theUNC13D gene (Table 1) which encodes forMunc13-
4, a protein critical for getting the cytolytic perforin-containing
vesicles to the NK cell immunologic synapse. This particular
haplotype was notably over-represented in sJIA patients with
MAS compared to controls, implying a genetic link of an
established lymphocyte cytolytic pathway gene and MAS
[38]. Moreover, a known fHLH causative mutation in
UNC13D was identified in a patient with sJIA, suggesting a
particular risk for MAS development [39].

Another HLH gene critical to lymphocyte cytolytic activ-
ity, PRF1, encoding the perforin protein (Table 1), was found
to be mutated resulting in an amino acid change (A91V) in
20 % of a European population of sJIA patients with MAS; it
was also present in 10% of sJIA patients without knownMAS
versus approximately 3 % of the general population [40].
Because this mutation is so common in the overall population,
some have suggested it is strictly a polymorphism [41]; how-
ever, more recent functional analyses of this mutation have
shown perforin A91V to impair NK cell lytic activity (Cron
et al., in preparation) [42•, 43–45]. Interestingly, at Children’s
of Alabama (CoA), we have identified this same perforin A91V
mutation in one of our MAS patients of unknown etiology
(Table 2, patient #4) and in 2 of our immunodeficiency patients
(Table 2, patients #9 and #10), both of whom had decreasedNK
cell function. Most recently, we identified the common perforin

A91V mutation (Cron et al., in preparation) among the first 4
sequenced of a small cohort of fatal H1N1 influenza-infected
adults with hemophagocytosis on autopsy [25]. Thus, single
copy HLH gene mutations for both PRF1 and UNC13D are
associated with, and may be capable of contributing to, MAS
development in children with sJIA and children and adults with
other unrelated disorders or infections.

HLH Gene Mutations in a Pediatric MAS Cohort

From February 2008 to February 2012, 28 individuals with
MAS, plus 2 children with immunodeficiency and decreased
NK cell function, were identified at CoA. Ten of these chil-
dren were tested for NK cell dysfunction, and 8 of them
(Table 2, patients #1, 3, 5, 6, 9, 10, 11, 12) had decreased
cytolytic activity (patients #4, 7, 8 were not studied).
Seventeen of these patients were screened at the discretion
of the treating physician at the time of hospitalization forMAS
(or in clinic for the 2 immunodeficiency patients) for 5 of the
HLH associated genes (PRF1, UNC13D, STX11, STXBP2,
RAB27A) (Table 1). A rather surprisingly high percentage
(13/17 or 76 %) of these children was found to have at least
one mutation among these 5 selected genes (Table 2). Among
the 11 kids with MAS, 9 met ≥5 or more HLH criteria, one
met 4 criteria (Table 2, patient #13), and one had mildMAS as
part of sJIA (Table 2, patient #8). Of the entire cohort of 28
MAS patients (not including 2 immunodeficiency patients
with HLH gene mutations, but including 15 who were not
sequenced for HLH genes), 39 % had at least on HLH gene
mutation. It is possible that this percentage would be higher if
the entire cohort (15 more of the 28) were sequenced, but it is
likely that the sickest kids were sequenced as 4 of those with
HLH gene mutations died from MAS, whereas 24 others,
including all those not sequenced, all survived (Table 2).
Thus, confounding by indication may have identified the bulk
of those with HLH gene mutations. Nevertheless, comparable

Table 1 HLH genes involved in the lymphocyte cytolytic pathway

Familial HLH Gene Location Protein Function Reference

FHL1 Unknown 9q21.3-q22 Unknown Unknown [57]

FHL2 PRF1 10q21-22 Perforin Pore-forming [58]

FHL3 UNC13D 17q25 Munc13-4 Vesicle priming [59]

FHL4 STX11 6q24 Syntaxin11 Vesicle docking [60]

FHL5 STXBP2 19p13.2-3 Munc18-2 Vesicle membrane fusing [50]

Immunodeficiency Gene Location Protein Function Reference

Chédiak-Higashi LYST 14q.1-q42.2 Lyst Vesicle sorting [61]

Hermansky-Pudlak-2 AP3B1 5q14.1 AP3B1 Vesicle trafficking [62]

Griscelli-2 RAB27A 15q21 Rab27a Vesicle fusing [48]

XLP-1 SH2D1A Xq25 SAP SLAM signaling [63]

XLP-2 BIRC4 Xq25 XIAP Caspase inhibition [64]
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numbers have recently been observed in Cincinnati (Grom
et al., submitted) implying that many children with MAS may
care a risk allele with a mutation of at least one of the classic
HLH genes (Table 1). Similar reports of HLH gene mutations
in 14 % of 175 adults with MAS/secondary HLH have also
been reported, with almost half having the perforin A91V
mutation [46••]. Thus, the distinction between primary/
fHLH and secondary or reactive HLH/MAS is becoming
genetically blurred.

In the cohort reported here (Table 2), as might be predicted,
3 of the 13 patients (23 %) possessed the relatively common
(3 % of the North American general population) perforin
A91V mutation (Table 2, patients # 4, 9, 10). However, the
HLH genes most commonly mutated in this cohort were
UNC13D and STXBP2 with 5 patients each (Table 2).
Several of these mutations had not been previously described
in the medical literature, including one Munc13-4 mutation
(R966W) that was identified in two of the children, one with
leukemia-associated MAS and the other with sJIA-associated
MAS (Table 2, patients #1 and #6, respectively). Another
mutation, Munc13-4 I283V (Table 2, patient #2), has previ-
ously been considered a benign polymorphism as it is present
in 4 % of African-Americans, but it was recently reported as a
cause of late onset fHLH in another cohort [47•]. The patient
with the Munc13-4 I283V amino acid change in our cohort
developed uveitis and spondyloarthritis after the MAS was
clinically controlled. Intriguingly, a previously well 18-year-
old female in our cohort (Table 2, patient #3) with a Rab27a
A87P mutation also developed uveitis and spondyloarthritis
after MAS resolution. This particular RAB27A mutation is a
known cause of Griscelli-2 fHLH when present on both

chromosomes [48]. We have recently found that over-
expression of this RAB27A mutation in the NK-92 NK cell
line [49] delays cytotoxic granule polarization to the immu-
nologic synapse and dramatically lowers NK cell cytotoxicity
(Zhang et al., in preparation). Thus, single copy variants of
HLH genes (Table 1) likely contribute to late onset HLH/
MAS via partial dominant negative or hypomorphic effects
[46••] resulting in decreased lymphocyte cytolytic activity.

A Novel STXBP2 Mutation Decreases NK Cell Lytic
Function

Intriguingly, 5 of the 13 patients in this cohort (Table 2) had
mutations in STXBP2, the cause of fHLH5 (Table 1) [50]. A
similar relative abundance of STXBP2 andUNC13Dmutations
was also recently noted in a group of 14 sJIA patients with
MAS (Grom et al., submitted). In the current cohort (Table 2),
many of the STXBP2 mutations were novel or had rarely been
reported in association with HLH. Several of these mutations
were present in non-coding regions, including 5’ and 3’ un-
translated regions and RNA splice sites. It is possible that these
non-coding mutations may alter Munc18-2 levels and thus
diminish lymphocyte cytolytic function, as recent reports have
demonstrated that mutations in intronic and transcriptional
regulatory regions of HLH genes can contribute to HLH and
immunodeficiency [51••, 52•]. Furthermore, a sizeable cohort
of fHLH5 patients was reported with splice-site mutations in
STXBP2 resulting in later onset HLH [53•]. Thus, it is believ-
able that the STXBP2 splice-site mutations in the cohort re-
ported here likely contributed to MAS, in particular for two of

Table 2 HLH mutations in pediatric MAS and immunodeficiency patients

Pt Age Sex Diagnosis Trig-ger Gene Mutation Amino acid change Prior Association Outcome

1 15 M Leukemia ? UNC13D 2896 C>T R966W Pt. 6 only Died

2 1.5 M Uveitis ? UNC13D 847 A>G I283V 4 % AA Alive

3 18 F Uveitis ? RAB27A 259 G>C A87P Griscelli-2 Alive

4 9 F ? ? PRF1 272 C>T A91V 3 % USA Alive

5 16 F Gastroparesis CMV STXBP2 1298 C>T A433V None Died

6 12 M Systemic JIA HSV1 UNC13D 2896 C>T R966W Pt. 1 only Alive

7 7 M Polyarteritis ? STXBP2 1782 G>A 3’ UTR 6 others Alive

8 1.5 F Systemic JIA ? UNC13D 2368 C>T Splice site None Alive

9 3 M ? Immune
deficiency

? UNC13D
PRF1

869 C>T
272 C>T

S290L
A91V

One prior
3 % USA

Alive

10 1 F Chronic HepB HepB PRF1 272 C>T A91V 3 % USA Alive

11 17 M ? EBV STXPB2 822 G>A A274A None Died

12 8 M ? HHV6 STXBP2
STXBP2
STXBP2
STXBP2

1782 G>A
1782 G>A
1026 C>G
1357 G>A

3’ UTR
3’ UTR
Non-coding
Non-coding

None
None
None
None

Died

13 14 F Sjogren ? STXBP2
STXBP2

1590 G>A
−37 delete

Splice site
5’ UTR

3 others
linked

Alive
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the patients with multiple STXBP2 mutations, one associated
with the death of the child (Table 2, patients #12 and #13).

One of the novel STXBP2 mutations identified led to an
amino acid change, Munc18-2 A433V, and was associated
with decreased NK cell activity and the death of a child with
MAS/secondary HLH (Table 2, patient #5). To test the plau-
sibility that this single copy mutation contributed to MAS
development, we first cloned the wild-type (WT) STXBP2
mutation into a lentiviral expression vector [54] that co-
expressed a green fluorescent protein (GFP) for tracking
transduced cells. Using site directed mutagenesis [54], we
further generated a lentiviral construct expressing the novel
Munc18-2 A433V patient mutation. The STXBP2 WT, mu-
tant, or an empty lentiviral expression vector were indepen-
dently transduced into the human NK cell line, NK-92 [49],
and cells were sorted for GFP expression. These cells were co-
cultured with fluorochrome-labeled K562 target cells [55] at
increasing effector (NK-92) to target (K562) cell ratios, and
cell lysis was determined using 7AAD staining by flow cy-
tometry [56]. We repeatedly found that over-expression of
WT Munc18-2 augmented NK cell lysis of K562 target cells
compared to empty vector control, but over-expression of the
Munc18-2 A433V mutant consistently and statistically signif-
icantly reduced NK cell lytic function (Fig. 1). These results
confirmed the concept that a single copy HLH mutation may
contribute to decreased NK cell function and serve as a risk for
development of later age onset HLH or MAS.

Conclusions

MAS belongs on the spectrum of fHLH and secondary or
reactive HLH sharing many clinical, laboratory, and patho-
logic features. MAS is a consequence of a pro-inflammatory
cytokine storm that results from a dysregulated immune re-
sponse which can occur associatedwith a variety of infectious,
oncologic, rheumatic, and immune deficient conditions. The
frequently fatal condition of MAS/secondary HLH is still
widely under-recognized and therefore undertreated in chil-
dren and adults, particularly in the setting of the hospital ICU
in patients with MODS. It is important to understand that
MAS is an end common pathway from many disease states
and not a diagnosis of exclusion. Until improved and timely
diagnostic aids are developed, it is likely worth screening for
MAS by serum ferritin levels in febrile acutely ill individuals.

In both children and adults, there is mounting evidence that
genes associated with fHLH (Table 1) are found to be mutated
in late onset HLH andMAS. Even single copymutations have
been shown to decrease NK cell cytolytic activity and thus
likely directly contribute to the pathophysiology of MAS/
secondary HLH. From the data presented in this present
pediatric MAS cohort (Table 2), both the large number and
varied HLH genes and individual mutations identified suggest

causality rather than a simple association with MAS and
decreased NK cell function. Moreover, the demonstration that
over-expression of one of the novel STXBP2mutations found
in this MAS cohort experimentally decreased NK cell cyto-
lytic function (Fig. 1) further strengthens this argument.

It is somewhat sobering to consider the fact that some of the
identifiedMAS patient mutations are relatively frequent in the
general population (up to 3–4 %) and likely contribute to
MAS in a large variety of settings (intracellular infections,
rheumatic conditions, leukemia, immune deficiency states).
The association of the perforin A91V mutation with H1N1
influenza is a prime example of this discomforting concept. A
large percentage of the general public is exposed to various
infections, H1N1 influenza, for example. Many in the popu-
lation will contract the infection, but only a subset of individ-
uals will require hospitalization or die from the infection. In
these cases, it is not only the infection that is a trigger, but it is
the individual’s genetically determined immune response to
the infection that can be lethal as a result of developing MAS.
It is therefore not all that surprising that fHLH genes are found
mutated in a substantial percentage of individuals identified
withMAS and secondary HLH. In addition to the genetic risk,
there may also be a second “hit” contributed by the infection,
or, in the case of rheumatic diseases, a hyper-inflammatory
state that results in MAS. Increased awareness of MAS, and
knowledge of the genetic susceptibility for the development of

Fig. 1 Decreased cytolysis in NK cells overexpressing a novel
MUNC18-2 mutation. NK-92 human NK cells (49) were transduced with
a green fluorescent protein-expressing (GFP) lentiviral vector (z-
368-ΔNP) co-expressing wild-type MUNC18-2 (squares), mutant
MUNC18-2 (A433V) (triangles), or GFP alone (circles) under the control
of the immediate–early cytomegalovirus transcriptional promoter. GFP+
flow cytometry (FCM) sorted NK-92 cells were cultured with eFluor450-
labeled K562 target cells at graded effector to target (E:T) cell ratios, and
cell death was measured by 7AAD staining at 4 h post-incubation using
FCM. Summary data (n=3) are presented as means±SEM percent cell
lysis (cytotoxicity) along the Y-axis and increasing E:T ratio on theX-axis.
All 3 conditions were statistically significantly different from one another
(2-way ANOVA, p=0.0005)
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MAS, are both likely to help combat the fatal nature of this
more common than previously considered hyper-
inflammatory disorder.
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