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Abstract Late life depression is a complex disease associated
with a number of contributing neurobiological factors, includ-
ing cerebrovascular disease, neurodegeneration, and inflam-
mation, which also contribute to its longitudinal prognosis and
course. These factors create a context in which the brain is
more vulnerable to the impact of stress, and thus, to depres-
sion. At the same time, some individuals are protected from
late life depression and its consequences, even in the face of
neurobiological vulnerability, through benefitting from one or
more attributes associated with resilience, including social
support, engagement in physical and cognitive activities, and
brain reserve. Enhanced understanding of how neurobiologi-
cal and environmental factors interact in predicting vulnera-
bility and resilience is needed to predict onset and course of
depression in late life and develop more effective
interventions.
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Introduction

Late-life depression (LLD; defined as depression occurring in
individuals age 65 or older, and distinct from late onset
depression, which is a subtype of depression with onset after
the age of 65) has been associated with high incidence of
chronic illness, cognitive dysfunction, disability, and poor
prognosis [1–5]. There has been a great deal of interest in
understanding the neurobiological and psychosocial contribu-
tions to onset and maintenance of depression and depressive
symptoms in older adults, in an attempt to identify more
effective treatments and prevention strategies. In this paper
we will begin by describing three plausible neurobiological
avenues to onset and maintenance of LLD that have gained
traction in the literature, including vascular, neurodegenera-
tive, and inflammatory mechanisms. It is important to consid-
er that, while described separately, these pathways likely
interact in a dynamic fashion, and may overlap considerably
in a given individual. Alexopoulos [6] proposes a model in
which factors contributing to LLD be separated into “mediat-
ing mechanisms” (e.g., hypometabolism of dorsal cortical
regions and hypermetabolism of ventral limbic regions), “pre-
disposing brain abnormalities” (e.g., abnormalities in
frontostriatal and limbic circuitry, heredity and psychological
vulnerability), and “etiological contributors” (e.g., age-related
brain changes, disease-related changes, and allostatic response
to adversity). We urge the reader to consider this model in our
discussion of plausible mechanisms of LLD. For example,
vascular changes may be an etiological contributor, occurring
as a result of disease-related changes, such as hypertension or
cardiovascular disease. These vascular changes may then
predispose to disruption and abnormal metabolism in fronto-
striatal regions [7, 8]. Under the umbrella of this model, one or
more of these aforementioned factors creates a context in
which the brain is more vulnerable to the impact of stressors.
In the second section of the manuscript, we discuss factors that
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have been shown to confer resilience to affective and cogni-
tive changes, even in the face of vulnerability, including
psychosocial factors, lifestyle factors, and brain reserve. We
propose a model in which factors contributing to depression in
late life can create an increasingly vulnerable brain, but which
can be buffered by factors associated with resiliency (see
Fig. 1).

Three Plausible Mechanisms of Depression in Late Life

Vascular

It has been recognized for some time [9, 10] that individuals
with vascular risk factors, including hypertension, diabetes,
atherosclerosis, and/or history of transient ischemic attacks or
surgery for vascular disease are at greater risk for depression
than those not experiencing vascular risk factors. Prominent
symptoms of LLD, including cognitive deficits, anhedonia,
psychomotor retardation, poor insight, and functional disabil-
ity are similar to what might be anticipated from lesions to
striato-pallido-thalamo-cortical pathways [11–14]. The vascu-
lar depression hypothesis states that “cerebrovascular disease
may predispose, precipitate, or perpetuate some geriatric de-
pressive syndromes” [15, p. 915]. The evidence supporting
the vascular depression hypothesis is substantial, including
clinical, behavioral, and structural and functional neuroimag-
ing studies. For a more complete review of supporting evi-
dence, we refer the interested reader to Taylor and colleagues
[16••]. Here, we focus on the mechanisms underlying the
relationship between vascular risk factors and depression,
including disconnection and hypoperfusion, as thoroughly
detailed in [16••].

Disconnection When vasculature that serves cerebral areas
important for cognition and affective functioning is compro-
mised, it can disrupt neural connections in and between these
regions and impact behavior. There is evidence that cognitive
performance and affective functioning are negatively impact-
ed when specific fiber tracts and neural circuits are damaged,
[12]. For example, a recent study by Lamar and colleagues
[17•] found that lower fractional anisotropy (FA) in the unci-
nate fasciculus predicted poorer performance on a measure of
executive functioning among 26 patients with LLD. Also, in a
study of 145 healthy and cognitively impaired older adults,
Smith and colleagues [18] measured global and focal white
matter hyperintensity (WMH} volume, and found that WMH
in bilateral temporal-occipital, right parietal periventricular,
and left anterior limb of the internal capsule were associated
with episodic memory performance, while WMH in bilateral
inferior frontal, bilateral temporal-occipital, right parietal
periventricular, and bilateral anterior limb of the internal cap-
sule were predictive of executive function performance, inde-
pendent of total white matter volume. Finally, Dalby and

colleagues [19] demonstrated a positive relationship between
depression severity and fiber tracts intersected by white matter
lesions in the left superior longitudinal fasciculus and the right
uncinate fasciculus among 22 patients with LLD.

Hypoperfusion Another potential mechanism to account for
the relationship between cerebral vascular pathology and de-
pression is reduced perfusion of blood to key brain regions
integral to affective and cognitive processing. One such mea-
sure of cerebral hemodynamics is that of carotid intima-media
thickness (IMT), which encompasses the innermost two layers
of the arterial wall, is a reflection of atherosclerosis and
vascular disease risk [20], and correlates strongly with athero-
sclerosis itself [21]. Studies have shown IMT to be higher
among older adults with LLD (relative to comparisons), and to
correlate with WMH among patients with LLD [22]. IMT is
also associated with later age of depression onset [23], and is
positively associated with non-response to antidepressants
[24].

Arterial endothelial function is another way to assess vas-
cular function and pathology. Vascular endothelium are the
thin layer of cells that line the inner surface of blood vessels
and form an interface between blood and the rest of the vessel
wall. They are involved in a number of important functions,
including the inflammatory response and control of blood
pressure [25]. While it is not possible to directly assess the
functioning of endothelia within the brain, it is often reflected
in gluteal fat [26]. A study of older patients with LLD found
that endothelial function was poorer in depressed relative to
(NDC) comparisons, independent of response to antidepres-
sant therapy [24]. Another study of LLD patients found re-
duction in the dilation response to acetylcholine (a vasodila-
tor) in preconstricted small arteries [27, 28]. Given that this
did not correlate with the severity or volume of WMH [28],
Taylor and colleagues [16••] suggested that WMH may actu-
ally be an endpoint to perfusion deficits, which do not need to
cause ischemia to impact brain functioning.

Blood flow velocity using cerebral transcranial Doppler ul-
trasound is also capable of reflecting vascular function. Among
a large sample of NDC older people, lower peak-systolic, end-
diastolic, and average blood flow velocities at baseline were
associated with higher depression symptom severity at the
follow-up visit approximately 3-6 years later. Moreover, mean
blood flow velocity and decreased baseline vasomotor reactiv-
ity, which compensates for maintaining cerebral blood flow
during mental activity, predicted incident depressive symptoms
during the span of the follow-up period [29•].

In summary, there is wide support for the suggestion that
for at least a subset of individuals with LLD, vascular changes,
including hypoperfusion of and disrupted connection between
regions relevant to cognition and affective regulation are one
mechanism of depression in late life and its associated
symptoms.
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Neurodegenerative

Epidemiology There have been many studies investigating
depression as a prodromal symptom and risk factor of neuro-
degenerative diseases, such as Alzheimer’s disease (AD; for
review, [30]), withmixed findings. A systematic review, meta-
analysis, and metaregression analysis of prospective studies of
risk of developing dementia among individuals with and
without depression concluded a pooled odds ratio (OR) of
2.03, with 1.73 for case-control and 1.90 for cohort studies.
Interestingly, the longer the interval between the diagnosis of
depression and development of dementia, the higher was the
risk of developing AD, suggesting that AD is a risk factor, as
opposed to a prodromal state of AD. Similarly, a more recent
systematic review and meta-analysis in 23 prospective
population-based studies found that LLD was associated with
significantly increased risk for all-cause dementia (1.85 OR),
and clinical diagnoses of Alzheimer’s disease (1.65 OR), and
vascular dementia [31••].

Structural Neuroimaging Supporting a neurodegenerative
path to AD, there have been a multitude of studies demon-
strating cerebral atrophy in LLD patients, in regions that play a
critical role in memory, executive functioning, and other cog-
nitive processes known to decline in early AD [32, 33, 34••,
35]. Interestingly, among 334 participants with mild cognitive
impairment (MCI) enrolled in the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) study, depression symptom se-
verity was associated with reduced entorhinal cortex thickness
at baseline, as well as accelerated atrophy over an average of
30.5-month follow-up [36•]. It is important to note that neu-
rodegenerative and vascular changes, while both present in
those with LLD, may be independent processes. A study by
Kumar and colleagues [33] found smaller frontal lobe vol-
umes and larger whole brain lesion volumes among those with
LLD, relative to NDCs. After controlling for medical comor-
bidities, however, the relationship between whole brain lesion

volume and LLD was reduced to non-significance, while
lower frontal lobe volume continued to be associated with
LLD. Moreover, frontal lobe volume and brain lesion volume
were not correlated. Together these findings suggest that vas-
cular and neurodegenerative processes may be autonomous
pathways contributing to LLD, independent of one another in
the context of LLD.

Neuropathology Given structural imaging findings and re-
sults from epidemiological community studies suggesting an
increased risk of AD among those with depression, there has
been work investigating the presence of neuropathological
features of neurodegenerative disease in post-mortem-brain
tissue, although these studies are limited in number and sam-
ple sizes are small. In the first study to characterize neuro-
pathologic diagnoses in a group of LLD patients (n=10),
Sweet and colleagues [37] found that of the seven patients
with dementia at death, six met neuropathologic criteria for
AD, which was similar to the rate of AD in patients with
dementia without a history of mood disorder. Among the six
LLD patients with dementia, all had comorbid Dementia with
Lewy Bodies (DLB) or cerebrovascular disease. Other studies
of post-mortem brain in LLD have failed to show an associ-
ation between the presence of depression prior to death and
Alzheimer’s pathology [38, 39], although these studies ex-
cluded individuals with dementia, eliminating the group most
likely to show such neuropathological changes. Interestingly,
in one of these studies, individuals with history of depression
were more likely than never-depressed comparisons to show
neuropathology associated with DLB [38], while in the other
study, those with history of depression hadmore atheromatous
disease [39]. Taking a different approach, Rapp and col-
leagues [40] found that AD patients with a history of depres-
sion had higher levels of plaque and tangle formation than did
AD patients with no history of depression. While studies of
neuropathology in LLD have begun to provide some support
for findings of increased risk of dementia in larger,

Fig. 1 Factors contributing to
depression in late life, including
cerebrovascular disease,
neurodegeneration, and chronic
inflammation can create an
increasingly vulnerable brain, that
is prone to depression, especially
in the face of stress. Factors
associated with resilience,
including social support and
participation, physical and
cognitive engagement, and brain
reserve, can buffer even
vulnerable brains from the
development of depression
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community-based, epidemiological studies, methodological
limitations preclude drawing any conclusions at the current
time regarding the actual prevalence of neuropathological
features in the brains of patients with LLD or history of
depression.

Positron Emission Tomography (PET) Newer imaging tech-
niques, such as PET scanning, have allowed investigators to
study, in-vivo, the presence of neuropathological features of
Alzheimer’s disease in living humans. The first study, by
Butters and colleagues [41] used Pittsburgh Compound-B
([11C]PiB) to visualize β-amyloid plaque accumulation in
the brains of eight individuals with remitted major depressive
disorder (MDD; six with comorbid MCI) compared to eight
never-depressed elders (none with MCI). Results demonstrat-
ed that one-half of subjects with comorbid MCI and depres-
sion history had [11C]PiB retention in the range of what is
typically seen in AD, while the other half had values that were
intermediate to those typically observed in healthy compari-
son and AD subjects. The two non-MCI patients demonstrated
values that were similar to healthy comparisons. A second
study by Kumar and colleagues [42] used [18F]FDDNP to
image amyloid and tau in the brains of 20 LLD patients (one
with comorbid MCI) and 19 never-depressed comparisons.
They found greater [18F]FDDNP binding in the posterior
cingulate and lateral temporal regions in the LLD group.
Similarly, Wu and colleagues [43] studied 25 LLD and 11
comparison subjects (none with comorbid MCI), and found
increased 18F-Florbetapir (AV-45/Amyvid) binding (to amy-
loid plaques) among LLD patients. In contrast, another group
found no association between previous depressive episodes
and increased [11C]PiB binding [44•]. It is notable that indi-
viduals in this latter study could not have had depression for at
least six years prior to enrollment in the study, and thus may
represent a group of LLD individuals who are at less risk of
going on to develop cognitive decline and/or dementia.

Plasma Studies The aforementioned PET studies provide
some evidence that neuropathological features of AD are
more prevalent in the brains of individuals with LLD
relative to NDC individuals, though are limited by small
sample sizes and heterogeneous methodologies, with
some studies including patients with MCI, others includ-
ing a few with MCI, and still others excluding those with
MCI altogether. Some groups have chosen to use plasma
and/or CSF to quantify β-amyloid. Changes in plasma
Aβ40, Aβ42, and Aβ42/40 ratios may be linked to in-
creased risk for incident AD [45, 46], while reduced
levels of CSF Aβ42 are associated with Aβ deposition
in brain senile plaques [47]. In a study of 48 LLD patients
relative to 35 NDC, elevated levels of plasma Aβ42 and
Aβ42/40 ratios were found in the LLD group, and this
was associated with greater severity of white matter

hyperintensity burden, but not age of onset of first de-
pressive episode [48]. A review by Osorio and colleagues
[49] concluded, however, that the relationship of LLD
with plasma Aβ levels is equivocal, with some studies
demonstrating higher levels of Aβ in the LLD group,
relative to the NDC group (or positive associations be-
tween Aβ and depressive symptoms), some finding the
opposite relationship, and others finding no differences.
At the same time, baseline Aβ42 [50] and Aβ42/40 ratios
[51] have been shown to be predictive of new onset of
future depressive symptoms, although this may be specific
to ApoE4 carriers [51]. The authors cite between-study
methodological differences, heterogeneity of LLD, in ad-
dition to disease-stage dependent differences in the trajec-
tory of Aβ changes as possible explanations for disparate
findings. [49].

Cerebrospinal Fluid Studies CSF markers of Alzheimer’s
disease are more reliable indicators than plasma studies of
CNS amyloid deposition [48]. In one study, Pomara and
colleagues [52•] detected significantly lower levels of
Aβ42 in a group of 27 cognitively-intact women and
men with LLD, relative to the NDC group. In contrast,
Gudmundsson and colleagues [53] found higher levels of
CSF Aβ42 among a small group of women with depres-
sion (n=14), relative to those without LLD. Importantly,
the former study included individuals with more chronic
forms of depression, whereas the latter study were com-
munity volunteers who may have had more acute forms of
depression [52•]. Importantly, none of the three studies of
CSF markers in MDD to date have detected significant
between group differences in Aβ40, total tau, or phos-
phorylated tau, which are also markers of Alzheimer’s
disease [53, 54], suggesting that the absence of these
markers may distinguish LLD without AD from the co-
morbid condition. However, tau pathology may be a
downstream effect of amyloid beta deposition [55], so
may not be particularly useful as a biomarker of early AD.

Given the association between depression and risk for
dementia, in addition to mixed evidence of increased
amyloid burden in older adults with history of depression,
there has been interest in the mechanisms underlying
these relationships. One theory that has been proposed is
HPA-axis dysfunction, known to be associated with de-
pression [56] and hippocampal volume loss [57]. This
theory is supported by studies of animal models. In a
mouse model, stress-level glucorticoid administration
was associated with increased amyloid-β and tau-
pathology [58]. Further, acute stress (i.e., three months
of isolation) has been shown to increase levels of amyloid
in the brain [59, 60]. Follow-up study suggested that the
relationship between stress and amyloid deposition may
be mediated by increased corticosterone levels [59].
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In summary, large-scale studies suggest that depression is
associated with increased risk of dementia, and some studies
have demonstrated neuropathological changes associated with
neurodegenerative diseases in LLD in autopsied human brain,
in-vivo imaging, and studies of CSF and plasma. Animal
studies suggest that HPA-axis dysfunction may be one mech-
anism by which LLD is associated with neurodegenerative
changes.

Inflammatory Processes

Plasma Studies Inflammatory explanations for depression
across the lifespan have gained a great deal of traction in
recent years. In a seminal review, Alexopoulos and
Morimoto [61] suggest that inflammatory processes relat-
ed to aging and disease may provoke neural and/or met-
abolic changes that predispose to the development of
depression in late life. A multitude of studies have dem-
onstrated an association between levels of peripheral pro-
inflammatory cytokines and depressive symptoms in older
people [62•, 63–71]. While a variety of pro-inflammatory
markers have been studied, interleukin-6 (IL -6) has been
most reliably associated with depressive symptoms after
possible confounding variables, such as age chronic dis-
ease, cognitive functioning, and anti-depressants have
been covaried. There may be an interaction of inflamma-
tory and vascular processes predisposing to LLD, as
higher levels of IL-6 and C-reactive protein have been
associated with greater white matter pathology [72, 73•,
74, 75]. IL-6 levels have also been negatively associated
with memory performance in depressed and NDC older
adults [76•]. Pro-inflammatory cytokines also impact
monoamine neurotransmitter pathways [77–79], resulting
in reduced tryptophan and serotonin synthesis [77, 80]. In
addition, they disrupt function of glucocorticoid receptors
and decrease hippocampal neurotrophic support [81].
Alexopoulos and Morimoto [61] propose that dramatic
and prolonged CNS immune response can impact emo-
tional and cognitive network functions that are relevant to
depression, and can contribute to the etiology of at least
some LLD syndromes.

Interestingly, chronic inflammation has also been asso-
ciated with increased risk of vascular dementia and AD,
with an increased incidence of vascular events and smaller
hippocampal volume. Leonard [82] hypothesized that the
progression of depression to dementia may be mediated
by the activation of macrophages and microglia in the
brain, linked to chronic inflammation. In their review of
the literature, Hermida and colleagues [83] propose that
individuals with LLD and activation of the inflammatory
pathway may be most vulnerable to vascular events, the
amyloid cascade, or both processes.

Resilience

The three neurobiological processes reviewed (vascular, neu-
rodegenerative, and inflammatory), likely increase the vulner-
ability of the brain to the adverse impact of stressors, both
psychosocial and physiological. Yet, there are individuals
who, even with the accumulation of apparent neurobiological
predisposition, do not develop depression or cognitive de-
cline. For example, in one study, 40 % of non-depressed,
cognitively normal older adults displayed the presence of at
least one AD-sensitive biomarker (i.e., hippocampal volume,
gray matter thickness, and glucose tolerance) [84••]. Findings
such as these suggest moderating variables that might increase
or decrease the likelihood of cognitive decline and depression,
even in the face of neurobiological vulnerability.

Psychosocial Factors There is a large literature on the protec-
tive effect of psychosocial variables to cognitive and emotion-
al health in aging. In one study of 234 older people residing in
two independent living facilities, scores on a depression
symptom severity rating scale were significantly predicted
by three psychosocial-oriented variables, including fewer
neighbor visitors, less participation in organized social activ-
ities, and less church attendance [85]. A second study of 889
community-dwelling individuals found that lack of contact
with friends was a significant risk factor for the development
of depression over one year, and maintenance of depressive
symptoms was predicted by low levels of social support and
social participation [86]. Social support has also been demon-
strated to buffer against the effects of disability on depression
in late life [86, 87].

Lifestyle Factors Physical and cognitive engagement have
been associated with reduced risk for AD and cognitive de-
cline in a multitude of studies, and are now widely cited as
potentially modifiable risk factors of dementia [88]. In a study
of 92 cognitively normal older adults, those with higher
lifetime cognitive activity and higher current physical activity
had fewer white matter lesions (WML). In turn, WML were
associated with a composite measure of neural integrity and
better cognitive functioning. Additionally, less Aβ burden
buffered against the negative impact of poor neural integrity
on cognitive functioning. The authors concluded that cogni-
tive and physical activities may protect against cerebrovascu-
lar and Aβ pathology, and potentially the development of
dementia, in late life [89•]. Depressive symptoms were not
measured in this study, though volunteers reported no current
psychiatric symptoms.

Physical activity has been demonstrated as an effective
intervention for depression in older adults in at least nine
studies [90], although it is not yet clear from the literature
whether lifetime physical activity prevents the onset of de-
pressive symptoms. Conceptually, however, given the
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relationship of depression with cerebrovascular pathology and
overall neural integrity, one would expect that lifetime phys-
ical activity would also be protective of depression onset in
late life.

Brain Reserve Brain reserve theory [91] hypothesizes that
individuals with high brain reserve, typically defined by edu-
cation, which is associated with greater synaptic density, are
less likely to exhibit behavior associated with dementia when
faced with neurological insult. There has been a great deal
of study on the effect of brain reserve on delaying
clinically relevant cognitive deficits in dementia [92••,
93, 94]. There has been little study, on the other hand, as
to the impact of cognitive reserve on the expression of
depressive symptomatology. An interesting study using
the Health and Retirement Survey, that includes 1355
stroke-free women greater than 80 years of age studied
over six years found that level of education (i.e., brain
reserve), and the interaction of cerebrovascular burden (by
self-report and smoking history) interacted with level of
education in negatively predicting depressive symptoms at
baseline. While the protective effect of brain reserve di-
minished over the study period, these results suggest that
brain reserve may buffer against the effects of cerebro-
vascular burden on depressive symptoms, and should be
replicated in other studies that include men [95•].

Conclusions

LLD is a complex, heterogeneous disease with a multi-
tude of dynamic and likely overlapping etiologies. Vascu-
lar, neurodegenerative, and inflammatory factors have
gained the most traction in the literature as to possible
mechanisms by which depression in late life develops and
persists. However, this is certainly not an exhaustive list,
and there are likely other less studied or never studied
factors that also contribute. Psychosocial factors, such as
social support, as well as lifestyle choices (e.g., physical
activity), and cognitive reserve may protect against the
effects of adverse neurobiological events in what would
otherwise be a brain vulnerable to depression and cogni-
tive decline. Future research would benefit from measur-
ing multimodal neurobiological and environmental factors
to better understand how they interact in predicting onset
and course of depression in late life.
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