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Abstract Stimulant–related disorders (SRD) continue to be
an important public health problem for which there are presently
no approved pharmacotherapies. Although behavioral interven-
tions provide some benefit response varies. The development of
novel and effective pharmacotherapies continues to be a research
priority. Understanding neural mechanisms critical to the action
of stimulants has helped reveal several potential pharmacother-
apies that have already shown promise in controlled clinical
trials. Common to some of these medications is the ability to
reverse neural deficits in individuals with SRD. Results from
thoroughly conducted clinical trials continue to broaden our
knowledge increasing the possibility of soon developing effec-
tive pharmacotherapies for SRD.
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Introduction

Stimulant-related disorders (SRDs) (cocaine; methamphetamine,
METH; and amphetamine, AMPH) remain a significant public

health concern. For example, recent statistics indicate that co-
caine was noted more often than any other illicit drug (METH/
AMPH was 4th) among emergency department visits in the
United States [1]. There are no FDA-approved medications for
SRDs, thus the search for an efficacious pharmacotherapy con-
tinues to be a primary goal. Accumulating preclinical and clinical
evidence has improved our knowledge of the underlying neuro-
biology, genetics and environmental factors associated with stim-
ulant use and relapse. Neural deficits found across drug classes
suggest SRD is a brain disease (Table 1). Understanding the
nature of these neural deficits has helped clarify the rationale
for developing medications that target and possibly reverse
known neurochemical imbalances [2].

Numerous studies have documented cognitive deficits in
chronic stimulant users for example, impaired executive func-
tioning, working memory and response-inhibition. Of prime
research interest presently is the idea that medications that en-
hance cognition by ameliorating deficits in stimulant users may
be crucial to a medication’s efficacy as a pharmacotherapy [3].
Evidence also suggests cognitive enhancers may augment the
beneficial effects of behavioral therapies since either adminis-
tered alone is not as effective as both treatments together [4].

The primary aim of this review is to first provide a brief
description of neural deficits associated with SRDs (Table 1)
and second, review recent clinical trials evaluating medica-
tions (Table 2) as possible treatments for cocaine and METH/
AMPH use disorders. We focus on results from the most
recent human laboratory, outpatient clinical trials and studies
assessing medication combinations for SRDs.

Drug Effects and Neural Deficits Associated with Cocaine
Use

Cocaine targets the dopamine (DAT), norepinephrine (NET)
and serotonin (SERT) transporters blocking reuptake thereby
increasing neurotransmitter levels within mesocorticolimbic
circuits. These circuits include dopaminergic cells in the ventral

This article is part of the Topical Collection on Substance Use and
Related Disorders

C. N. Haile : T. R. Kosten
Menninger Department of Psychiatry and Behavioral Sciences,
Baylor College of Medicine, Houston, TX, USA

C. N. Haile
Michael E. DeBakey VA Medical Center, 2002 Holcombe
Blvd - Bldg 100, Office 6C-263, Houston, TX 77030, USA

T. R. Kosten (*)
Michael E. DeBakey VA Medical Center, 2002 Holcombe
Blvd - Bldg 110, Room 229, Houston, TX 77030, USA
e-mail: Kosten@bcm.edu

Curr Psychiatry Rep (2013) 15:415
DOI 10.1007/s11920-013-0415-y



tegmental area (VTA) that project to the nucleus accumbens
(NAc) and prefrontal/orbitofrontal cortex (PFC). Both the VTA
and NAc receive glutamaterigc inputs from the PFC. Neurons
from the noradrenergic cell body region, locus coeruleus (LC),
also project to the PFC and VTA significantly influencing
cellular activity. The reinforcing effects of cocaine are generally
attributed to increases in dopamine (DA) within limbic circuits.
However, recent evidence indicates norepinephrine (NE) also
plays an important role in the reinforcing effects of stimulants
providing another possible therapeutic target [5].

Studies have revealed significant biochemical and structural
neural abnormalities in cocaine users (Table 1). These pre-
sumed neuroadaptive changes may result from chronic drug
use although many are not reversed by abstinence suggesting
these changes may have been present before initiation of drug
use [6]. For example, although a number of abnormalities have
been identified [7–14], studies continually show individuals

with cocaine use disorder (CUD) have low DA levels at base-
line and blunted pre-synaptic DA release [15–18]. Blunted DA
responsiveness is associated with increases in cocaine self-
administration [17]. Low striatal D2/D3 receptor availability
is a consistent finding in cocaine users [18, 19]. Cognitive
deficits, impulse control and enhanced salience of drug-
associated cues are linked to decreased D2/D3 receptor levels
[20, 21]. Deficits in DA signaling are also associated with poor
response to behavioral interventions and relapse to drug taking
[17, 22]. In theory, medications that either directly or indirectly
modulate DA to reverse deficits associated with chronic co-
caine use may prove beneficial as treatments (Table 2).

Drug Effects and Neural Deficits Associated
with METH/AMPH

The reinforcing effects of METH/AMPH are attributed to
increases in central NE and DA neurotransmission through a
variety of mechanisms. Generally, METH/AMPH acts as a
substrate for the NET and DAT, and vesicular monoamine
transporter (VMAT) reversing their action, in turn, increasing
transmitter levels. METH/AMPH also induce presynaptic
transmitter release independent of neuronal depolarization
[23]. METH/AMPH are more potent at increasing NE than
DA however increases in DAwithinmesolimbic circuits relate
to METH/AMPH’s positive subjective effects [24]. About
20 % of METH is metabolically converted into pharmacolog-
ically active AMPH and both are detected in urine [25].
METH’s duration of action (plasma half-life approximately
11-12 hrs) allows exposure to continuously high levels of DA
that are neurotoxic and associated with significant pathology
[26, 27]. The neurotoxic effects of METH use is thought to
contribute to overall neuropsychological impairment seen in
chronic users [28–33].

Table 1 Neural abnormalities in humans associated with cocaine and
METH/AMPH use

Cocaine METH/ AMPH Selected reference

Baseline DA ↓ ↓ [11, 35]

DA release ↓ ↓ [17, 22]

DAT ↑ ↓ [14, 32]

D1 receptors ND ↑ [11, 33]

D2(D3) receptors ↓ ↓ [18, 36]

D3(D2) receptors ↑ ↑ [13, 37]

VMAT-2 ↓ ↓ [10, 29]

NET ↑ — [7]

SERT ↑ ↓ [8, 31]

Glutamate ↓ — [9]

DA-dopamine, DAT-dopamine transporter, NET-norepinephrine trans-
porter, SERT-serotonin transporter, VMAT-2-vasicular monoamine trans-
porter, ND-no difference from controls, —unknown

Table 2 Medications assessed
for cocaine and METH/AMPH
use disorders

AMPA-α-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid
receptor, ACE-angiotensin
converting enzyme, DA-dopa-
mine, NE-norepinephrine,
GABA-γ aminobutyric acid,
DAT-dopamine transporter, NET-
norepinephrine transporter, SR-
METH-sustained release meth-
amphetamine, SR-AMPH-
sustained release amphetamine

Substance Medication Target Action

Cocaine Disulfiram Dopamine β-hydroxylase ↓NE, ↑DA

Doxazosin α1 receptors ↓ cocaine-induced DA

Modafinil DAT, α receptors ↑DA, Glutamate, Orexin,↓GABA

Topiramate AMPA/Kainate, GABA ↓ Glutamate, ↑GABA

Methylphenidate NET, DAT ↑NE,↑DA

SR-METH/AMPH NET, DAT ↑NE,↑DA

METH/AMPH Bupropion DAT, NET ↑DA, ↑NE

Naltrexone μ opioid receptors ↓ μ receptor activation

Rivastigmine Acetylcholinesterase ↑ acetylcholine

Topiramate AMPA/Kainate, GABA ↓ Glutamate, ↑GABA

Perindopril ACE ↑DA,↓NE

Modafinil DAT, α receptors ↑DA, Glutamate, Orexin,↓ GABA

Methylphenidate NET, DAT ↑NE↑DA
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Chronic METH/AMPH users exhibit many of the same
molecular and structural neural deficits as cocaine users
(Table 1). Evidence suggests these neural deficits may con-
tribute to unrelenting drug use and relapse in individuals with
SRDs. For example, orbitofrontal cortex hypoactivity is asso-
ciated with failure to adapt behavior based on prior experience
[34]. Similar to cocaine, METH/AMPH users also exhibit low
baseline DA levels [35] decreased D2/D3 receptor availability
that is associated with impulsivity [36]. Finally, low D2/D3
levels in METH/AMPH users have been found to be associ-
ated with drug use severity [37] and individuals with low
levels of striatal pre-synaptic DA release are more likely to
relapse after a period of abstinence [22]. Overall, these find-
ings provide further evidence some neurochemical and cog-
nitive deficits found in chronic cocaine users are also present,
in general, in chronic METH/AMPH users.

Medications for Cocaine Use Disorder (CUD)

Disulfiram

Disulfiram (Antabuse®) is indicated for the treatment of alco-
hol use disorder however several randomized clinical trials
have shown disulfiram decreases cocaine use [38]. Disulfiram
and its metabolite diethyldithiocarbamate bind copper.
Decreased copper levels inactivates copper-dependent en-
zymes such as dopamine-β hydroxylase (DβH) (Table 2),
which converts DA to NE. DβH inhibition increases DA
and decreases the synthesis of NE [39]. Disulfiram also in-
hibits carboxylesterase and cholinesterase enzymes that me-
tabolize cocaine thereby increasing plasma levels of cocaine
[40]. Inhibition of DβH by disulfiram and subsequent de-
crease in central NE levels is likely responsible for its ability
to decrease cocaine use [38].

Interestingly, a large clinical trial suggested that low doses
of disulfiram (62.5 mg and 124 mg/day) increased whereas a
higher dose decreased (250 mg) cocaine use over time [41•].
Results from a recent study from our group may help explain
the divergent effects of disulfiram found on cocaine use. In a
double-blind, placebo-controlled, laboratory-based within-
subjects study (N =17) using a choice procedure between
cocaine (20 mg) and escalating amounts of money [42•], we
found that low doses of disulfiram increased , whereas high
doses decreased , choices for cocaine. In that study, disulfiram
dose was calculated on a mg/kg basis which indicated that
approximately 4 mg/kg or 280 mg/day for a 70 kg individual
was needed to block the reinforcing effects of cocaine.
Cardiovascular effects produced by cocaine were also in-
creased by low doses of disulfiram [42•].

Pharmacogenetics is the field of study focused on how
genetic variation affects responses to medications [43]. Gene
variants may result in altered protein amounts and/or function.

Identifying a particular sub-population in advance with gene
variants that are associated with altered responses to a given
medication has the potential to increase treatment efficacy. For
example, the gene variant 1021C/T (rs1611115) (CT/TT)
encoding DβH leads to reduced enzyme activity that may
impact response to disulfiram for CUD. Recently, Kosten
et al. conducted a pharmacogenetic study that included partic-
ipants with both CUD and opioid use disorder treated with
either disulfiram (N =34, 250 mg/day, 10 weeks) or placebo
(N =40) [44••]. Results showed that disulfiram treatment was
associated with a decrease in cocaine positive urines in partic-
ipants with normal DβH genotype whereas disulfiram had no
effect in participants with the genotype coding for low DβH
activity [44••]. Taken together, evidence continues to support
disulfiram as a potential pharmacotherapy for select individ-
uals. Dose on amg/kg basis and genotype should be considered
to maximize the therapeutic efficacy of disulfiram for CUD.

Doxazosin

Studies testing medications that target specific NE receptor
sub-types show promise as possible treatments for SRDs.
Doxazosin is a selective α1-adrenergic receptor (α1R) antago-
nist indicated for the treatment of hypertension. Prazosin is also
anα1R receptor antagonist but with a much shorter half-life (4-
5 hrs) compared to doxazosin (11 hrs). α1R receptors are
located within mesocorticolimbic structures such as the NAc
where they modulate cocaine-induced increases in DA [45].
Centrally or peripherally administered prazosin and doxazosin
block cocaine’s behavioral effects in rodents [46, 47].

Clinical studies in humans assessing doxazosin as a treat-
ment for CUD appear promising. In an inpatient laboratory
study employing non-treatment seeking cocaine users,
doxazosin (4 mg/day for 9 days) decreased cocaine’s (20 and
40 mg) positive subjective effects, including “desire” for co-
caine [48••]. A small pilot outpatient clinical trial showed that
doxazosin (8 mg/day) treatment was associated with signifi-
cantly fewer cocaine positive urines in treatment-seeking co-
caine users compared to placebo [49••]. Doxazosin possesses a
number of desirable pharmacological characteristics as a pos-
sible pharmacotherapy for CUD. For example, doxazosin is
presently indicated for the treatment of hypertension, is cardio-
protective and has few known drug interactions. Importantly,
doxazosin blocks the hypertensive and positive subjective
effects of cocaine in humans [48••]. Together, these prelimi-
nary studies suggest that α1 receptor antagonists may be
beneficial for CUD. Larger outpatient clinical trials are needed
to confirm these promising results.

Modafinil

Modafinil is indicated for narcolepsy but also used to treat
shift work sleep disorder and attention deficit hyperactivity
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disorder. Modafinil binds to the DAT inhibiting DA re-uptake
but also acts on other neurotransmitter systems [50–53].
Imaging studies in humans confirmed that modafinil binds to
the DAT within mesolimbic circuits [54]. Studies show
modafinil administration decreases neural reactivity provoked
by cocaine-associated cues, attenuates cocaine craving and
improves cognitive function in individuals with CUD [55, 56•].

Although initial clinical trials appeared very positive for
modafinil as a treatment for CUD, data from more recent
studies have not been as promising [57, 58•]. The studies do
suggest however that gender and alcohol consumption may
influence the ability of modafinil to decrease cocaine use [57,
58•]. For example, although an 8 week randomized, double-
blind, placebo-controlled clinical trial found no significant
effect overall of modafinil (400 mg/day vs. placebo) com-
bined with CBT (once/week) on cocaine abstinence (mea-
sured by urine drug screens), the study did show that males
treated with modafinil tended to be more abstinent than fe-
males [58•]. A 12 week randomized, double-blind, placebo-
controlled out-patient study compared the effects of modafinil
(200 mg/day, N =69; and 400 mg/day, N =69) and placebo
(N =72) on percentage of weekly non-use cocaine days (pri-
mary outcome) [57]. All participants received CBT (once/
week) and drug screens were performed three-times per week.
There were no significant differences overall between
modafinil and placebo on the primary outcome yet sub-
group analysis showed modafinil treatment was superior to
placebo in individuals that were not comorbid for alcohol-use
disorder. The number of consecutive cocaine non-use days
was also greater in participants who received 200 mg/day
modafinil [57]. A preliminary double-blind, placebo-
controlled study tested the impact of modafinil (N =20,
400 mg) and d-AMPH (N =22, 60 mg) alone, and modafinil
combined with d-AMPH (N =15, 60 mg) on cocaine use [59].
Results indicated that this drug combination increased co-
caine positive urines over time whereas placebo combined
with d-AMPH decreased cocaine positive urines [59].
Overall, it appears that modafinil may improve cognitive
deficits associated with chronic cocaine and decrease use in
a select population.

Methylphenidate

Methylphenidate is a potent NE and DA reuptake inhibitor
primarily used to treat attention-deficit hyperactivity disorder
(ADHD) [60]. Imaging studies indicate that methylphenidate
reverses a number of neural deficits in mesocorticolimbic re-
gions [61, 62] and decreases reactivity to cocaine-associated
cues in cocaine users [63, 64].

In general, studies assessing the potential of methylpheni-
date as a treatment for CUD have been inconsistent. Initial
positive laboratory interaction studies showed sustained-
release (SR) methylphenidate attenuated cocaine’s positive

subjective effects and decreased choices for cocaine over
money in participants with CUD [65] and in cocaine users
comorbid for ADHD [66]. A recent 12 week randomized
controlled trial compared placebo with (N =17) and without
(N =15) cognitive behavioral group therapy (CBGT) to im-
mediately releasable (IR) methylphenidate 30 mg twice daily
with (N =15) and without CBGT (N =15). Participants were
comorbid for cocaine and opioid use disorder [67]. Results
revealed no difference between treatment groups as measured
by cocaine positive urines over time. Further, the addition of
CBGT with methylphenidate provided no added benefit over
placebo [67]. These negative results may in part be due to low
numbers of participants and the formulation of methylpheni-
date used [68, 69]. Well-designed studies employing larger
numbers of participants are needed to better assess methyl-
phenidate as a possible treatment for CUD.

Sustained-Release (SR) METH/AMPH

The NE/DA releasers SR-METH/AMPH are indicated for the
treatment of ADHD, narcolepsy and obesity. METH/AMPH
have been shown to decrease cocaine’s reinforcing effects in
rodents [70] and primates [71], attenuate the positive subjec-
tive effects of cocaine [72, 73] and decrease cocaine use in
humans [74]. Case study reports also describe the ability of
METH to abolish cocaine use [75]. Abuse liability is an
obvious concern with using these medications; however, stud-
ies confirm SR formulations have reduced abuse liability
compared to IR formulations and should be considered as
possible treatments [76].

A recent 14 week, randomized, double-blind, parallel-
group study compared the effects of SR-AMPH (60 mg/day)
in combination with the antiepileptic topiramate (N =39,
150 mg/twice daily) to placebo (N =42) [77•]. The primary
outcome was three consecutive weeks of abstinence as mea-
sured by urine toxicology. Results revealed a higher propor-
tion treated with the combination achieved the primary out-
come. Baseline cocaine use influenced treatment response
suggesting that SR-AMPH/topiramate may be more effective
in heavy users [77•]. Together, evidence to date supports the
use of METH/AMPH SR-formulations for the treatment of
CUD however abuse liability remains a concern.

Topiramate

Topiramate (TOPAMAX®) is an antiepileptic indicated for
seizure disorder and migraine prophylaxis. Topiramate’s ther-
apeutic action for seizures appears to be through glutamate
and GABA modulation (Table 2) yet it acts on multiple
neurotransmitter systems [78, 79]. An initial clinical trial
showed topiramate decreased heavy alcohol use and a pilot
study indicated this effect extended to cocaine [80, 81]. Based
on these positive results a current report tested the impact of
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topiramate (N =83, 300 mg/day, 13 weeks) compared to pla-
cebo (N =87) on cocaine use in individuals with CUD and
alcohol use disorder [82•]. All participants received CBT.
Primary outcome measures were self-reported alcohol and
cocaine use and urine drug screens three times per week.
Secondary measures included cocaine and alcohol craving
measures. Overall, treatment with topiramate was no better
than placebo on any outcome. Yet study retention favored
topiramate and individuals with more severe cocaine with-
drawal symptoms on entering the study responded better to
topiramate [82•]. A randomized, double-blind, within-
subjects cross-over designed laboratory study by Johnson
et al. assessed the effects of topiramate (100 mg twice daily
for 5 days; N =24) compared to placebo in combination with
low (0.325 mg/kg, iv) and high (0.65 mg/kg) doses of cocaine
[83]. Interestingly, topiramate treatment reduced cocaine crav-
ing and monetary value of the high dose of cocaine but
increased the subjective effects (e.g., euphoria) and monetary
value of the low dose of cocaine [83]. Overall, evidence is not
entirely convincing for the use of topiramate as a treatment for
CUD. That topiramate increased the positive subjective effects
of cocaine is concerning.

Medications for Amphetamine-Type Substance Use
Disorder

Bupropion

Bupropion is a unique medication indicated for the treatment
of major depressive disorder and smoking cessation.
Bupropion binds to DAT and NET blocking reuptake and
increasing synaptic levels of DA and NE (Table 2). In vitro
experiments indicate bupropion prevents METH-induced DA
release and self-administration studies in primates confirm the
ability of bupropion to decrease the reinforcing effects of
METH [84, 85]. Consistent with this finding, human labora-
tory studies have demonstrated bupropion treatment attenu-
ates METH’s positive subjective effects [86, 87]. Outpatient
clinical trials comparing the impact of SR-bupropion (300mg/
day; N’s=36-79) treatment to placebo (N’s=37-72) onMETH
use however found no significant differences between treat-
ments [88, 89]. Sub-group analysis did show however that
SR-bupropion significantly reduced METH use in light or
moderate METH users (defined as ≤17 days during the past
month). Evidence that bupropion treatment did not robustly
decrease METH use in two clinical trials after initial promis-
ing human laboratory studies prompted retrospective reanaly-
sis of the outpatient clinical trial data. McCann et al. calculated
the degree of success based on urine toxicologies and found a
significant effect of bupropion to facilitate abstinence from
METH [90•]. Brensilver et al. also found that individuals
treated with bupropion unable to provide at least three

negative urines for METH in the first two weeks had a greater
than 90 % likelihood of treatment failure [91]. Available data
suggests that bupropion may be useful as a treatment for
METH use disorder in light to moderate users. Further, phar-
macotherapy should be modified if METH use has not de-
creased within two week following bupropion treatment.

Modafinil

The wake-promoting medication modafinil improves cognitive
deficits and withdrawal symptoms associated with chronic
METH/AMPH use [92–94]. Initial pilot studies appeared pos-
itive for modafinil as a possible treatment for METH use
disorder [95, 96]. Based on these findings, the possibility that
modafinil may decrease the reinforcing effects of METH was
assessed in a randomized, placebo-controlled within-subjects
(N =13) laboratory-based interaction study [97]. Results re-
vealed that modafinil (200 mg/day) tended to attenuate
METH’s subjective effects and decrease choices to self-
administer METH but the effects were not robust [97].
Further, a double-blind, placebo-controlled, trial described by
Shearer et al. assessed whether modafinil (200 mg/day;
10 weeks, follow-up at 22 weeks) treatment would decrease
METH use [98]. Approximately half of all participants re-
ceived some sort of self-selected counseling. Overall, modafinil
was no different from placebo as indicated by urinalysis.
Results may have been influenced by less than optimal study
retention (placebo: 15/42, 36 %; modafinil: 11/38, 29 %) and
medication compliance (intention to treat basis, placebo: 49 %;
modafinil: 44 %). Medication compliant participants however
tended (p =0.07) to provide clean urines and those who re-
ceived any form of counseling had better outcomes [98].

Anderson et al. conducted a 12-week, randomized, double-
blind, placebo-controlled (N =68) study with a 4-week follow-
up period testing the impact of two doses of modafinil (N =72,
200 mg; N =70, 400 mg) on METH use in treatment-seeking
participants with METH use disorder [99]. Results revealed
no differences between placebo and either dose of modafinil
on primary or secondary outcomes likely because of medica-
tion non-compliance [99]. The top quartile of participants
(compared to the bottom three quartiles) that did take
modafinil however significantly decreased their METH use
as confirmed by urinalysis. Results from the Anderson et al.
study in general, parallel Shearer et al. indicating non-
compliance for modafinil may have compromised any likely
positive outcomes. Evidence to date appears to provide tenta-
tive support for the further development of modafinil as a
possible treatment for METH-use disorder.

Naltrexone

The μ-opioid receptor antagonist naltrexone (ReVia®) is ap-
proved for the treatment of opioid and alcohol use disorders.
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An intramuscular depot injection formulation was made avail-
able in 2006 (Vivitrol®). There is an implantable naltrexone
formulation surgically placed subcutaneously for consistent
medication delivery but is not presently approved in the
United States [100]. Experiments in rodents implicate the μ-
opioid receptor in the behavioral effects of METH/AMPH
[101, 102]. Accordingly, pretreatment with naltrexone blocks
the development of METH locomotor sensitization, cue-
induced METH-seeking in rodents and AMPH self-
administration in primates [103–105].

Results from human studies appear to be generally consis-
tent with preclinical data regarding the effectiveness of naltrex-
one to attenuate METH/AMPH’s reinforcing effects. For ex-
ample, human laboratory experiments have shown that pretreat-
ment with naltrexone (50 mg) attenuates the subjective effects
of oral d-AMPH (30 mg, PO) in healthy volunteers and in
participants with AMPH use disorder [106, 107]. A 12 week,
open label, clinical trial (N =20) tested medication compliance
for naltrexone (50 mg) treatment and whether naltrexone with
relapse prevention therapy (RPT) would reduce AMPH use
[108]. Results showed that naltrexone was well tolerated with
acceptable rates of compliance as indicated by the presence of
naltrexone’s metabolite (6-β naltrexol) in urine. Naltrexone
plus RPT was also associated with significant decreases in
frequency and amount of AMPH consumed compared to base-
line [108]. This study was followed by a 12 week, randomized,
placebo-controlled out-patient clinical trial comparing naltrex-
one (50 mg/day; N =29) to placebo (N =26). Results revealed
that participants treated with naltrexone presented significantly
lower numbers of AMPH-positive urines and reported less
craving for AMPH compared to placebo [109].

A recent randomized controlled trial in opioid and AMPH
users assessing the impact of implantable naltrexone com-
pared to placebo showed that naltrexone significantly in-
creased study retention rate (naltrexone: 58 %; placebo:
28 %) and proportion of drug free urine samples (naltrexone:
38 %; placebo: 16 %) [110•]. Equally impressive results have
come from a study of implantable naltrexone for the treatment
of AMPH use disorder indicating blood levels of naltrexone
above 2-5 ng/ml were associated with high rates of self-
reported periods of abstinence (90.9-100 %) [111]. Although
positive, the study may have been biased since blood and
urine samples were not systematically collected from all par-
ticipants and there was no comparison group. Overall, evi-
dence supports naltrexone for the treatment of AMPH use
disorder. Whether naltrexone may benefit METH users re-
mains to be determined by properly controlled clinical trials.

Methylphenidate

Preliminary case reports and one pilot study suggested treat-
ment with methylphenidate may reduce AMPH use [112,
113]. A larger parallel-groups, double-blind, randomized,

placebo-controlled, follow up study assessed the impact of
SR-methylphenidate (titrated over 2 weeks, maximum dose
54 mg/day for 20 weeks) on METH/AMPH use. Results
showed that although participant retention was significantly
higher in the methylphenidate treatment arm, methylphenidate
did not significantly reduce METH/AMPH use [114]. At pres-
ent, in contrast to CUD, evidence does not appear to support
methylphenidate as a treatment for METH use disorder.

Topiramate

Promising results from clinical trials showing topiramate de-
creased alcohol and cocaine use prompted a series of studies
that evaluated topiramate as a possible treatment for METH
use disorder. Contrary to what was generally expected, initial
human laboratory studies found acute administration of
topiramate (200 mg) enhanced the positive subjective effects
of METH (15 mg and 30 mg)[115]. A follow up pharmacoki-
netic study suggested that topiramate (N =10, 200 mg/day,
9 days) tended to increase plasma METH levels which may
have contributed to enhancement ofMETH’s subjective effects
[116]. Interestingly, in that same cohort, topiramate (100 mg
and 200 mg) treatment was associated with improvement in
certain cognitive domains when administered alone, and in
combination with METH (15 mg and 30 mg) [117]. A recent
13 week, double-blind, placebo-controlled, outpatient (N =
140) multi-center trial determined whether topiramate
200 mg/day or maximum tolerated dose would facilitate absti-
nence as measured by urine toxicology [118•]. Although
groups did not significantly differ on abstinence, topiramate
treatment was associated with reduced weekly median urine
METH levels and dependency severity scores (quantified by
the Clinical Global Impression Scale-Observer). A key finding
in this study was that participants before randomization that
were negative for METH achieved greater levels of abstinence
while treated with topiramate compared to placebo [118•]. A
number of factors could have contributed to the negative
outcome for topiramate in this study: retention rate was poor
for both groups (55% by week 12), not all participants reached
the target dose of 200 mg/day of topiramate, and medication
compliance (<70 %) was not optimal [119]. Generally, al-
though more studies are needed, the data presently do not fully
support topiramate as a treatment for METH use disorder.

Rivastigmine

The cognitive enhancer rivastigmine is an acetylcholinesterase/
butyrylcholinesterase inhibitor indicated for the treatment of
Alzheimer and Parkinson-associated dementia. Human clinical
trials have shown rivastigmine may attenuate METH’s subjec-
tive effects. For example, an initial double-blind within-
subjects placebo-controlled study (N =23) found that treatment
with rivastigmine (3 mg/day) blocked METH’s (30 mg, IV)
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effects on diastolic blood pressure and decreased subjective
ratings for “desire” for METH in non-treatment seeking
METH users [120]. The effects of rivastigmine in combination
with METH were further assessed using a laboratory-based,
double-blind, placebo-controlled paradigm (N’s=6-9) evaluat-
ing three different doses of rivastigmine (0 mg, 1.5 mg, 3.0 mg/
day). Results showed that treatment with the highest dose of
rivastigmine (3 mg) attenuated the positive subjective effects
(e.g., “any drug effect”, “high”, “desire”, “stimulated”) of self-
administered METH [121]. Consistent with previous results, a
recent follow-up study also found a higher dose of rivastigmine
(6 mg, PO for 6 days) attenuated the subjective effects of
METH dose (15 mg, IV) but did not alter the number of
choices to self-administer METH [122•]. Neurocognitive as-
sessments in this same participant cohort however found no
effects of rivastigmine (0 mg, 3 mg, 6 mg/day for 6 days) on a
wide range of measures [123]. Outpatient clinical trials
assessing rivastigmine as a possible treatment for METH use
disorder are warranted.

Perindopril

Perindopril is an angiontensin-converting enzyme (ACE) in-
hibitor indicated for the treatment of hypertension. Inhibiting
ACE prevents the conversion of angiotensin I to angiotensin
II, a potent vasoconstrictor. Preclinical evidence suggests that
ACE inhibitors enhance learning and memory, increase
striatal DA levels and are neuroprotective in animal models
of Parkinson disease [124]. In a preliminary clinical trial,
treatment with perindopril augmented L-dopa’s effects in
Parkinson patients consistent with the notion that ACE inhi-
bition may increase central DA levels [125]. ACE inhibitors
also decrease NE levels an effect consistent with their indica-
tion as treatments for hypertension [126]. Whether ACE inhi-
bition blocks METH-induced increases in NE is unknown.

Administration of ACE inhibitors decreases alcohol rein-
forcement in rodents suggesting these medications may de-
crease use of other substances [127]. Indeed, using a double-
blind, placebo-controlled study design, Newton et al. found
perindopril (4 mg/day) decreased subjective ratings for “any
drug effect” following METH (30 mg, IV) in non-treatment
seeking METH users [128•]. Follow-up studies are needed to
further assess the possibility of using ACE inhibitors to treat
METH use disorder.

Conclusions

Despite decades of research there are currently no FDA-
approved medications for SRDs. Recent advances in under-
standing of the neurobiology involved in the etiology and
development of SRDs have helped guide investigators toward
identifying potential pharmacotherapies (Table 1). Indeed,

individuals with SRD have low baseline DA levels and de-
creased tone that relates to cognitive deficits, drug craving and
relapse. Based on this, some of the medications reviewed here
in particular, those that target both DA and NE in combination
with counseling appear promising as possible treatments (di-
sulfiram, modafinil, bupropion) (Table 2). Preliminary human
clinical trials seem positive for using cardiovascular medica-
tions (doxazosin, perindopril) and cognitive enhancers
(rivastigmine). Studies also indicate that some medications
may be more efficacious in subgroups of individuals with
SRD. For example, bupropion may be useful for light to
moderate METH users whereas SR-AMPH in combination
with topiramate may be better for heavy METH users and
topiramate alone for maintaining abstinence once achieved.
Modafinil might prove beneficial in reducing METH use for
males that are not comorbid for alcohol use disorder. Dose
(4 mg/kg) and genotype (DβH) appear critical to the efficacy
of disulfiram as a treatment for CUD. Evidence supports
naltrexone as a treatment for AMPH use disorder. Whether
naltrexone will prove an effective treatment for METH use
disorder remains to be determined through testing in well-
controlled outpatient clinical trials. Although not entirely con-
sistent, many studies reveal benefits of some form of counsel-
ing either alone or in combination with the study medication.
Medication noncompliance (modafinil, topiramate) continues
to adversely affect any likelihood of achieving positive study
outcomes. Positive preliminary human studies support
assessing doxazosin for CUD and rivastigmine and
perindopril for METH/AMPH use disorder in large outpatient
clinical trials. In contrast to some of the medications reviewed
here, these medications (doxazosin, rivastigmine, perindopril)
are historically well tolerated, have no known abuse liability
and may provide other benefits in addition to being treatments
for SRD. D2 receptors are decreased whereas D3 receptors are
increased in individuals with CUD and METH/AMPH use
disorder. Whether medications that increase D2 receptor
levels and block upregulated D3 receptors may be beneficial
treatments remains to be ascertained. Future studies should
also continue to explore neural substrates that mediate the
reinforcing effects of stimulants. Knowledge gained may pro-
vide insight into developing better treatment strategies.
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