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Abstract Impairment of cortical circuit function is increas-
ingly believed to be central to the pathophysiology of schizo-
phrenia (Sz). Such impairments are suggested to result in
abnormal gamma band oscillatory activity observed in Sz
patients, and likely underlie the psychosis and cognitive def-
icits linked to this disease. Development of improved thera-
peutic strategies to enhance functional outcome of Sz patients
is contingent upon a detailed understanding of the mecha-
nisms behind cortical circuit development and maintenance.
Convergent evidence from both Sz clinical and preclinical
studies suggests impaired activity of a particular subclass of
interneuron which expresses the calcium binding protein par-
valbumin is central to the cortical circuit impairment ob-
served. Here we review our current understanding of the Sz
related cortical circuit dysfunction with a particular focus on
the role of fast spiking parvalbumin interneurons in both
normal cortical circuit activity and in NMDA receptor hypo-
function models of the Sz disease state.
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Introduction

Schizophrenia (Sz) is identified clinically by the appearance
of positive symptoms (psychosis, hallucinations, paranoia)
and negative symptoms (flat affect, impaired attention and
motivation). However, deficits in fundamental cognitive
processes (working memory, executive function) are cur-
rently believed to serve as the core feature of this disease.
Cognitive deficits appear to be present for years prior to
clinical diagnosis and are observed throughout the lifespan
of Sz patients [1]. Due to the strong relationship between
cognitive performance and functional outcome, these
impairments represent the major determinant of the long-
term disability associated with Sz [2]. Current Sz therapeu-
tics, including both first and second generation antipsy-
chotics, do not provide a cure for the disease, and fail to
alleviate many of the symptoms [3]. Thus, improved thera-
pies which better address all Sz symptoms are urgently
required. Development of such novel treatments is contin-
gent upon a detailed understanding of the cortical circuit
abnormalities underlying the pathophysiology of this dis-
ease. Numerous genetic, developmental, and environmental
factors are associated with this complex disorder [4, 5].
These factors can affect many aspects of cortical circuit
development and function, as assessed by different neuro-
physiological paradigms. Here we focus specifically on
gamma band oscillation (GBO) abnormalities observed clin-
ically in Sz. We propose that GBO abnormalities serve as
useful markers of cortical circuit dysfunction which can be
used to derive novel treatments for executive function def-
icits in Sz. We discuss the convergent evidence from pre-
clinical and clinical experiments which suggests that
impaired inhibition mediated by fast spiking parvalbumin-
positive interneurons is central to these abnormalities. GBO
abnormalities can be modeled in animal studies using
NMDA receptor blockade, allowing a translational model
for the development of therapeutic agents targeting this
aspect of the disease.
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Gamma Band Oscillation Abnormalities are Associated
With Sz Symptoms

Sz has been proposed to arise from a failure of the brain to
properly integrate the activity of local and distributed neu-
ronal circuits [6]. Neuronal oscillations, particularly those in
the gamma frequency range (30—80 Hz) have been sug-
gested to support the integration of such activity [7, 8].
Further, GBO activity has been suggested to be critical for
a number of cognitive tasks, including selective attention,
working memory, long term memory, and motor control
[9-11]. Interestingly, clinical studies from our group
[12-14] and others [10] have revealed impairments in
GBO activity in Sz patients. Thus, these abnormalities have
been suggested to underlie both the psychosis and impair-
ments in higher cognitive function associated with this
disease [9]. In fact, deficits in cognitive control observed
in Sz patients are correlated with deficits in GBO activity [1,
15]. Sz patients display aberrant recruitment of cortical
circuits and diminished GBO activity in response to cogni-
tive and sensory tasks [16]. Higher demand for cognitive
control is normally associated with increased induced GBO
activity in the prefrontal cortex [15]. However, such
demand-related modulation of GBO is absent in Sz-patients.

Convergent research suggests that the Sz-related GBO
abnormalities arise from impairments of the cortical circuit-
ry responsible for their generation and maintenance. As
GBO activity is crucial for cognition, it is important to
understand the mechanisms behind the generation and main-
tenance of this activity. As such, GBO activity offers an
increasingly intriguing target for Sz research, representing a
central aspect of the underlying pathophysiology of this
disease, and may provide a sensitive biomarker for assessing
the integrity of local circuit function [17].

A Cortical Circuit Consisting of Excitatory Pyramidal
Neurons and Inhibitory Fast-Spiking Interneurons
Underlies GBO Activity

Cortical GBO activity is primarily governed by the interac-
tion between excitatory pyramidal cells (PYR), and inhibi-
tory GABAergic interneurons (INT) (see Fig. 1). Synaptic
inhibition mediated by various inhibitory GABAergic INT
is crucially important for the regulation of PYR activity, and
is central to the generation and maintenance of neural oscil-
lations [18, 19]. As described by Whittington and colleagues
[20], inhibitory output from INT onto PYR defines a win-
dow of time in which the excitatory neurons are capable of
firing, allowing entrainment/synchronization of their activi-
ty. Further, phasic recurrent excitatory output from PYR
onto INT is believed to be necessary for the generation of
GBO [21]. The rate of this synchronous activity is in large

@ Springer

A
Pyramidal
Neurons
91 e
(=
GABAergic ©
Neurons

Fig. 1 Simplified model of cortical circuitry involved in generation of
GBO and Sz. a The cortical circuit consists principally of excitatory PYR
(brown) and inhibitory GABAergic INT (green). Inhibitory drive gener-
ated by INT plays an important role in the generation of oscillatory
output. Fast spiking PV-Pos INT (P}+) form an interconnected network
which generates GBO activity through synchronized inhibition of PYR.
Recurrent excitatory glutamatergic synapses onto GABAergic INT are
also important for synchronous neuronal activity. b Compared to healthy
controls (B1), inhibitory synaptic connections between FS/PV INT and
PYR are impaired in Sz patients (B2). These impairments include reduced
expression of GAD67, leading to reduced GABA release, as well as
altered GABA(A) «1 receptor expression. ¢ Glutamatergic inputs onto
FS/PV INT are also impaired in Sz. Compared to healthy controls (C7),
these synaptic connections show reduced NMDAR mediated input in Sz
patients (C2)
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part determined by the time constants of the synaptic cur-
rents which mediate both the inhibitory (GABA) and excit-
atory (NMDA, AMPA) synaptic currents generated between
the PYR and INT in this circuit [19, 22].

Increasingly, Sz research has implicated impaired GABAer-
gic neurotransmission as a central component of the pathophys-
iology of this disease [23]. Numerous subtypes of GABAergic
INT have been characterized throughout the brain, based upon
their anatomical, physiological, and molecular features [24,
25]. Such heterogeneity has made it difficult to explicitly define
the role of these INT in cortical circuit activity. However,
numerous studies have shown that a particular INT subtype,
which have fast action potential firing (fast spiking; FS) and
express the calcium binding protein parvalbumin (PV), are of
critical importance for the generation and maintenance of GBO
[26e,27¢,28¢,29, 30, 31¢]. FS/PV-INT display remarkably fast
synaptic activation [32], enabling them to fire at a rate capable
of entraining GBO activity. Further, these INT synapse periso-
matically onto PYR, providing an increased ability of these
INT to control PYR output [33]. In contrast, non-FS varieties of
INT generally form synaptic connections on the distal dendrites
of PYR, and are suggested to regulate dendritic integration
and synaptic plasticity of excitatory inputs. Additionally,
FS/PV INT are interconnected via chemical and electrical
synapses allowing them to entrain rhythmic firing across a
large network of INT [34, 35]. Together these characteristics
seemingly endow FS/PV INT with an innate ability to gener-
ate and maintain GBO activity in the cortical circuit.

Several recent studies have taken advantage of newly
developed optogenetic techniques to directly assess the role
of FS/PV INT in the generation of GBO activity. Through
selective expression of channelrhodopsin-2 (ChR2) in either
FS/PV INT or PYR in the somatosensory cortex, Cardin et
al. [27¢], showed that direct rhythmic stimulation of FS/PV
INT increased in vivo LFP power at the frequency of stim-
ulation, but only at frequencies in the gamma frequency
range (20-60 Hz), while gamma frequency stimulation of
PYR did not increase LFP power. Additional work by Sohal
et al. [31¢] showed that in vivo optogenetic inhibition of PV
INT suppressed evoked GBO activity in the prefrontal cor-
tex (PFC). Together these findings directly demonstrate that
FS/PV-INT can powerfully drive GBO activity in vivo.

Further complexity in defining the role of FS/PV INT in
the cortical circuit is derived from the fact that they are
divided into two distinct subtypes: basket cells, which pro-
vide perisomatic inhibitory input to PYR, and chandelier
cells, which synapse at the axon initial segment of PYR [25,
36]. Intriguingly, while basket cells are inhibitory, recent
findings suggest that chandelier neurons may in fact have
excitatory effects on PYR activity [37, 38], suggesting that
these two INT subtypes play distinct roles in cortical circuit
activity. In regards to Sz, convergent evidence (reviewed
next) suggests that FS/PV INT are functionally impaired,

potentially providing a neural basis for the abnormal gener-
ation of GBO activity.

FS/PV INT are functionally Impaired in Sz

Numerous lines of evidence support the hypothesis that
FS/PV INT are impaired in Sz (see Fig. 1b). Postmortem
studies of Sz patients have consistently observed reduced
levels of the GABA synthesizing enzyme, glutamic acid
decarboxylase 67 (GAD67) [39—41], particularly in FS/PV
INT. Specifically in the PFC of Sz patients, postmortem
findings show a ~45% decrease in GAD67 mRNA in PV
expressing neurons [41].

Reduced GADG67 expression likely results in reduced
GABA synthesis, and may lead to impaired activity of
inhibitory inputs in the cortical circuit. Activity driven ex-
pression of GADG67 is critical for controlling the synthesis of
GABA and thus the filling of secretory vesicles with trans-
mitter. [llustrating this idea, a recent study where GAD67
expression was disrupted via insertion of GFP [42], showed
reduced miniature inhibitory postsynaptic current ampli-
tude. Additionally, reducing overall neuronal activity with
tetrodotoxin reduced GFP expression in INT in these mice.
Together these findings suggest that the expression of
GADG67 is a key regulatory sensor of cortical circuit activity.

The putative reduction in activity of FS/PV INT associ-
ated with Sz may also lead to a number of downstream
compensatory changes [23]. Expression for PV mRNA is
also reduced in FS/PV INT in Sz patients. Decreased PV
expression has been observed to facilitate GABA release
[43]. Additionally, PV expression is essential for synchro-
nizing GABA release to neuronal firing, and computational
modeling studies suggest that decreased PV expression
would impair GBO activity [44].

Downstream of GABA release, mounting genetic and
molecular evidence suggests altered expression of GABA
(A) receptor and GABAergic signaling in Sz [45, 46]. Def-
icits in GABAergic neurotransmission from FS/PV INT
may lead to impaired activation of GABAergic receptors at
the postsynaptic targets of these INT. Postmortem findings
support this hypothesis, as the expression of GABA(A)
receptor «1 subunits is decreased at FS/PV INT synapses
onto PYR [47, 48]. As mentioned above, the frequency of
cortical oscillations is largely determined by the decay ki-
netics of GABA(A) receptor mediated inhibitory currents
[19]. The GABA(A) receptor «1 subunit displays fast ki-
netics capable of supporting GBO activity. Additionally, the
expression of the GABA transporter, GAT-1, is reduced at
FS/PV INT synapses onto PYR [48]. Thus, the reduced
expression of these factors observed in Sz patients may also
underlie altered GABAergic signaling and GBO abnormal-
ities associated with this disorder.
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NMDA Hypofunction may Result in Changes
in Inhibition and Cortical Circuit Dysfunction

In addition to changes in GABAergic function, deficits in
glutamatergic synaptic connectivity have been increasingly
implicated as a core feature behind the pathophysiology of
Sz [49]. This has resulted in the development and refine-
ment of the NMDA receptor (NMDAR) hypofunction mod-
el of this disease [50]. This model is largely derived from the
fact that NMDAR antagonists (Ketamine, PCP, etc.), are
capable of reproducing the full range of symptoms associ-
ated with Sz, including positive symptoms, negative symp-
toms, as well as cognitive deficits [51, 52]. Such findings
have led to widespread usage of these agents to model Sz in
both humans and animal studies [53]. Further, recent clinical
findings have shown reduced binding of an NMDAR probe
in the hippocampus of medication-free Sz patients, provid-
ing some direct evidence for NMDAR hypofunction [54].

A number of convergent studies provide evidence connect-
ing NMDAR hypofunction and inhibitory abnormalities (see
Fig. 1c). Chronic NMDAR antagonist treatment in rodents
reduces the expression of GAD67 and PV in FS/PV INT in a
similar manner to that observed in Sz postmortem studies [55,
56]. However, such results remain somewhat controversial, as
more recent attempts to replicate these findings have failed to
reproduce this effect [57]. Additionally, clinical and experi-
mental findings have shown that the expression of NMDAR
and a number of proteins that interact with these receptors are
altered in Sz [58]. For instance, postmortem studies of Sz
patients have found evidence for altered NMDAR expression
specific to FS/PV INT [17, 59¢]. However, these findings
require replication and show considerable variation from re-
gion to region within the brain [58].

Interestingly, in rodents, acute administration of NMDAR
antagonists elicits a paradoxical increase in the activity of
cortical PYR [60]. This effect was accompanied by a decrease
in the activity of INT, suggesting that the observed increase in
PYR activity was mediated by a decrease in INT-mediated
tonic inhibition. This idea is supported by previous findings
suggesting that INT are especially sensitive to NMDAR
antagonists [61, 62]. Further, acute NMDAR antagonist ad-
ministration in human studies also increases cortical excitabil-
ity [63], suggesting that NMDAR hypofunction in Sz
produces PYR disinhibition through reducing the activity
specifically of FS/PV INT [64, 65].

The above findings suggest that a reduction in NMDAR-
mediated signaling may represent a core component of the
mechanism responsible for the development of Sz patho-
physiology. As such, it has been suggested that NMDAR
hypofunction is an upstream cause of the observed FS/PV-
INT dysfunction in Sz [65]. NMDAR mediated input at
glutamatergic synapses onto FS/PV INT may play an essen-
tial role in regulating the activity of these INT. Thus,
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impaired excitatory drive onto these INT could result in
decreased activity of these neurons and decreased GABAer-
gic inhibition.

Use of NMDA Antagonists to Model Sz Related Cortical
Circuit Abnormalities

NMDAR antagonists alter GBO and induce Sz-like psycho-
sis and cognitive impairments in both humans and animal
models [3, 53]. Thus, they represent a useful tool to model
the cortical circuit abnormalities observed in Sz. Imaging
studies in healthy humans have revealed increased metabol-
ic activity and glutamate release in medial PFC following
acute ketamine treatment [66—70]. In rodent models, in vivo
studies have shown that acute systemic administration of
NMDAR antagonists leads to significant increases in the
power of both baseline and stimulus-evoked GBO in the
hippocampus and frontal cortex [71-73, 74¢]. Such findings
have been largely confirmed in vitro by our lab and others
[75¢, 76] although see [77]. Interestingly, in our study [75¢]
acute ketamine potentiated GBO power in the medial PFC,
paralleling the effect of systemic ketamine observed in vivo,
and this effect was mimicked by selective NMDAR antago-
nists MK-801 and AP-5. However, ketamine, unlike more
specific NMDAR antagonists, also significantly reduced peak
oscillatory frequency. This effect was mediated by a slowing
of the kinetics of GABA(A) mediated currents in identified
GABAergic interneurons, suggesting that acute ketamine
alters GBO synchronization locally in the mouse prefrontal
cortex by acting on both NMDA and GABA(A) receptors.

Chronic administration of ketamine, as well as other
NMDAR antagonists (PCP, MK-801), has been used to mimic
the longer term effects of NMDAR hypofunction. Such treat-
ment paradigms likely lead to structural alterations in neocor-
tical circuitry, and negative/cognitive symptoms of Sz [52,
78-80]. Recent, in vivo studies suggest that chronic ketamine,
unlike acute administration, reduces both the power of hippo-
campal GBO activity and the number of detectable FS/PV
INT [74¢]. Similarly, in preliminary studies we have found
that chronic ketamine reduces prefrontal GBO [81].

It is important to note that, over the years, studies
employing NMDAR antagonists to model Sz have used
numerous acute and (sub)chronic dosing regimens, as well
as a number of different pharmacological agents with vary-
ing levels of specificity for the NMDAR. Further, several
recent studies, including our own, suggest that the Sz-like
behavioral and neurophysiological effects elicits by certain
non-specific NMDAR antagonist (Ketamine and PCP) may
be elicited at least in part through effects of these agents on
targets beyond the NMDAR alone [75¢, 82]. Finally, models
that involve chronic NMDAR antagonist administration are
most likely to correspond to the full complexity of the Sz
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related disease state, whereas acute models more closely
model acute psychotic states [3].

Does Deficient NMDAR Mediated Excitatory Input
to FS/PV INT Cause GBO Abnormalities Typical of Sz?

Although widespread NMDA blockade reliably results in
abnormal GBO activity, the site where NMDAR antagonists
act in the cortical circuit is unclear. One hypothesis is that
impaired NMDAR input specifically in FS-PV INT gives
rise to Sz-related neural network impairment/dysfunction.
Supporting this idea, postmortem analysis of the prefrontal
cortex of Sz patients has shown that the expression of NR2A
mRNA is reduced by ~50% in PV INT [59¢], suggesting
altered NMDAR mediated signaling. Interestingly, the
amount of NR2A in FS/PV INT has been found to be five-
fold that observed in PYR, and antagonists specific for
NR2A downregulate GAD67 and PV expression in INT in
primary culture [83]. Additionally, genetic deletion of
NMDAR selectively from FS/PV-INT increases the power
of GBO in the cortex and hippocampus [28+, 30]. Taken
together, these findings indicate that reduced glutamatergic
input onto FS/PV INT via NMDAR is perhaps responsible
for the reduced GAD67 and PV expression observed in SZ,
and could lead to circuit impairments responsible for abnor-
mal GBO activity.

In a recent study by Carlen and colleagues [28¢] optoge-
netic techniques were employed to directly assess the role of
NMDAR input onto FS/PV INT on cortical activity and
cognition. Here they demonstrated that transgenic mice with
impaired NMDAR expression, specifically on FS/PV INT,
had enhanced baseline cortical GBO activity in vivo. How-
ever, GBO induction via optogenetic stimulation of FS-PV
INT was impaired. Thus, both enhanced baseline GBO and
reduced evoked GBO were observed in the same animals.
Additionally, these mice showed reduced sensitivity to
NMDAR antagonists mediated effects on GBO activity
and behavior, as well as Sz-like cognitive impairments.
These findings provide strong evidence linking impaired
NMDAR function on FS/PV INT to abnormal GBO activity
and cognition.

The above results notwithstanding, the role of NMDAR-
mediated input into FS/PV INT remains somewhat contro-
versial. Recent findings from the Gonzalez-Burgos lab, and
others, show that excitatory input into FS/PV INT in the
adult mouse PFC is mediated largely by AMPA receptors
(AMPAR) with little to no contribution of NMDAR [84e,
85]. AMPAR mediated currents have much faster kinetics
than those mediated NMDAR, which they suggest may be
required for the fast and temporally precise activity of these
neurons [86]. Supporting this idea, earlier studies showed
that selective KO of AMPA mediated input into FS/PV INT

led to a reduction in GBO activity [87]. Further, EM studies
have observed a lower density of NMDAR in glutamatergic
synapses onto FS/PV-INT vs those onto PYR [88]. Addi-
tionally, a recent study by Sarihi et al. [89] showed that LTP
induction is NMDAR independent in cortical FS/PV-INT,
but not PYR. Thus, it is possible that NMDAR antagonists
may produce cortical disinhibition and GABA neuron alter-
ations via NMDAR receptors at synaptic sites different from
the glutamatergic synapses on FS/PV INT [86]. Alternative-
ly, taking into account the studies described above which
show that deletion of NMDAR on these neurons leads to
altered GBO, it is possible that, while quite modest, the low
levels of NMDAR mediated excitatory drive onto FS/PV-
INT may be sufficient to alter the GAD67 level of these INT
and thereby impact inhibition and cortical circuit function.

Many now consider Sz to be a neurodevelopmental dis-
order in which psychosis represents a late stage outcome of
the disease [5]. Significant developmental changes in
GABAergic neurotransmission occur during adolescence.
NMDAR-mediated currents in FS/PV-INT are stronger early
in development, and progressively weaken as these neurons
mature [85]. Postnatal maturation of FS/PV INT in sensory
cortical regions occurs during a period of experience depen-
dent refinement of neural circuits [90], which also coincides
with the period of maturation of GBO activity [91, 92].
Recent findings show that selective NMDAR deletion in
cortical INT (including FS/PV-INT), only produces Sz-like
behavioral alterations and enhanced GBO in mice if
NMDAR deletion is induced early in development [26¢].
This suggests increased complexity of the role of NMDAR
hypofunction in cortical circuit development and activity,
and that the developmental timing and nature of dysfunc-
tional NMDAR function likely plays a key role the patho-
physiology of Sz [86].

Relating NMDAR Antagonist Modeling of Sz With Clinical
Findings

NMDAR antagonist treatment currently represents the gold-
standard for preclinical, modeling of Sz since it causes
behavioral and molecular changes reminiscent of the disease
state. Use of NMDAR antagonists to study GBO deficits is a
more recent development and it is important to evaluate to
what extent the preclinical models recapitulate clinical find-
ings. The clinical literature relating to GBO changes in Sz is
quite complex. However, the majority of studies have found
impaired GBO in response to stimuli or during the perfor-
mance of cognitive tasks. However, acute NMDAR antag-
onism (e.g., with ketamine) causes enhanced GBO. How are
these findings to be reconciled?

While GBO deficits observed with chronic NMDAR
hypofunction may impair communication between and
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within brain regions and cause cognitive deficits, abnormal-
ly elevated GBO, as observed with acute NMDAR antago-
nism, may also lead to positive Sz symptoms such as
hallucinations. Thus, signals that would normally be ignored
may instead be misinterpreted. Recent clinical findings pro-
vide some support for this idea. Increased high-amplitude
gamma band EEG oscillations observed during psychosis
[93], and auditory hallucinations appear to be associated
with increased power or synchrony of GBO activity
[94-96]. Additionally, a number of studies by Spencer et al.
[14, 95, 97] have shown positive correlations between the
prevalence of psychotic symptoms and GBO power, further
suggesting that increased GBO activity is linked to psychosis.
Abnormally elevated GBO activity could cause a ceiling
effect, preventing further gamma recruitment during cognitive
tasks [98e]. Interestingly, the Carlen study described above
confirmed that both increased basal GBO and reduced
stimulus-evoked GBO can co-exist. Background GBO is dif-
ficult to evaluate in between-subject clinical studies. Thus,
increases in background GBO activity may have been over-
looked in previous clinical studies which focused exclusively
on stimulus locked evoked GBO responses.

To test this hypothesis, the Spencer laboratory has recent-
ly reanalyzed data from one of their earlier studies which
showed deficits in auditory-evoked GBO activity in Sz
patients versus healthy controls. Looking specifically at
the pre-stimulus baseline GBO power (40 Hz), a significant
increase was observed in the left auditory cortex of chronic
Sz patients compared to healthy controls [98¢]. Further,
computational modeling suggests that reducing the level of
NMDA input to FS/PV INT would increase both cortical
excitability and increase GBO level [95] in a manner similar
to that observed in NMDAR antagonist modeling studies
described above. Thus, Sz may not just be associated with
deficits in GBO activity, but pathological increases as well.
These findings provide a critical link between clinical stud-
ies and NMDAR hypofunction models of Sz.

As suggested above, Sz related dysfunction of NMDAR
input into FS/PV INT may lead to an overall decrease in the
inhibitory output of these neurons, resulting in increased
excitation in the cortical circuitry. Such an elevation in the
ratio of excitation to inhibition (E/I balance) has been theo-
rized to give rise to GBO abnormalities, and certain Sz-
related symptoms. Recently, Yizhar and colleagues [99+]
have directly tested the E/I balance hypothesis through
direct optogenetic manipulation of specific neuronal sub-
types in the medial PFC of freely moving mice. In this
study, the authors demonstrated that optogenetic upregula-
tion of PFC excitatory neuronal activity results in a pro-
found, yet reversible, impairment in both social function and
cognition, suggesting elevated E/I balance impaired infor-
mation transmission within cortical circuitry. Interestingly,
these findings were not observed with upregulation of
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inhibitory neuronal (PV INT) activity and were specific for
the PFC. The authors of this study also showed that elevated
E/l ratio was associated with an increase in GBO activity.
Their findings suggest that high background gamma activity
may interfere with normal cortical processing, and contrib-
ute to certain neuropsychiatric symptom classes.

Conclusions

The studies reviewed above almost universally implicate
impaired FS/PV INT function as a central component of
the pathophysiology underlying a number of the symptoms
associated with Sz. However, there is still much debate over
how such dysfunction arises throughout the course of neu-
ronal development, and how this dysfunction results in
abnormal GBO activity observed in Sz patients. Recent
advances (e.g., optogenetics, genome wide analysis, etc.),
provide the opportunity to better model Sz, allowing better
characterization of genetic and developmental mechanisms
involved in the cortical circuit abnormalities observed in this
disease. Beyond its role in Sz, GBO abnormalities are ob-
served in a number of other neuropsychiatric disorders
(autism, Alzheimer’s disease, epilepsy) [100]. Thus, eluci-
dation of the mechanisms mediating these abnormalities
holds the promise of improved therapeutic intervention for
a number of devastating disorders.
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