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Abstract
Purpose of Review This review aims to explore the interface between artificial intelligence (AI) and chronic pain, seeking 
to identify areas of focus for enhancing current treatments and yielding novel therapies.
Recent Findings In the United States, the prevalence of chronic pain is estimated to be upwards of 40%. Its impact extends 
to increased healthcare costs, reduced economic productivity, and strain on healthcare resources. Addressing this condition 
is particularly challenging due to its complexity and the significant variability in how patients respond to treatment. Current 
options often struggle to provide long-term relief, with their benefits rarely outweighing the risks, such as dependency or 
other side effects. Currently, AI has impacted four key areas of chronic pain treatment and research: (1) predicting outcomes 
based on clinical information; (2) extracting features from text, specifically clinical notes; (3) modeling ‘omic data to identify 
meaningful patient subgroups with potential for personalized treatments and improved understanding of disease processes; 
and (4) disentangling complex neuronal signals responsible for pain, which current therapies attempt to modulate.
Summary As AI advances, leveraging state-of-the-art architectures will be essential for improving chronic pain treatment. 
Current efforts aim to extract meaningful representations from complex data, paving the way for personalized medicine. The 
identification of unique patient subgroups should reveal targets for tailored chronic pain treatments. Moreover, enhancing 
current treatment approaches is achievable by gaining a more profound understanding of patient physiology and responses. 
This can be realized by leveraging AI on the increasing volume of data linked to chronic pain.
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Introduction

Pain represents an indelible problem for clinical and psy-
chosocial patient outcomes, as well as an economic, social, 
and individualistic burden on patients and communities. 
Because of this, it is imperative to understand the social 
and neurobiological tenets of pain and pain modulation. The 
International Association of the Study of Pain and the World 
Health Organization define pain as an unpleasant sensory 
and emotional experience associated with actual or potential 
tissue damage [1]. Pain is differentiated based on etiology 
and duration as acute, subacute, and chronic pain.

Chronic pain is one of the most common comorbidities 
in the United States with varying estimates of precise prev-
alence due to subjectivity of symptoms and consensus of 
diagnosis, but noted to be within the range of 2 to 40% of the  
general population [2]. Due to the high prevalence and nega-
tive downstream health outcomes, appropriate diagnosis and 
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treatment of chronic pain has become essential in clinical 
practice. Untreated chronic pain has been associated with the  
development of comorbidities including reduced cognitive 
function, insomnia, sexual dysfunction, increased instances 
of depression and anxiety, and overall decreased quality of 
life [3•, 4•]. Moreover, the impact of pain and its management  
include rising health costs, reduced economic productivity, 
and excessive strain on healthcare resources [1]. This has led 
to recognizing the access of pain management as a human 
right despite a scarcity of tools to manage pain [5]. There-
fore, applying the biopsychosocial model and understanding 
pain at both the physical level of nociceptor sensitivity and 
psychological level of behavioral patterns, can allow us to 
understand the current scope of chronic pain and the future 
of potential management options [6].

Chronic Pain

Chronic Pain and its Comorbidities

Patients diagnosed with chronic pain conditions present to 
clinicians with numerous secondary health problems includ-
ing sleep disturbance, mood and anxiety disorders, weight 
gain, and an increased propensity for substance use disorder 
[3•, 4•]. Functional imaging studies have shown that many 
of the neural pathways associated with nociception share 
mechanisms with those that control behavior and emotion 
[7]. In fact, growing evidence shows that there is a bidirec-
tional association between chronic pain and mental health 
disorders [6, 8].

The estimated prevalence of depressive disorder across 
chronic pain groups ranges from 2 to 61%, dysthymia from 
1 to 9%, and bipolar disorder from 1 to 21% [6]. In a popu-
lation-based study involving 845 adults, study participants 
with mild or disabling neck or lower back pain were 2.0 to 
2.5-times more likely to experience an episode of depres-
sion at 6- and 12-month follow-up than those without pain 
[9•]. Conversely, the patients deemed pain-free with severe 
levels of depression were found to be 4-times more likely to 
develop neck or low back pain at equal interval follow-ups. 
The study also showed that the rate of depression increased 
when pain severity worsened. Melzack [10] described 
neural activation and the conceptualization of what he 
deemed the pain matrix. Instead of these brain processes 
being unrelated, his work showed a possible hierarchical 
network between nociceptive processing, cognitive modula-
tion, emotional contextualization, and memory formation. 
Our inherent interpretation of pain, by the standards of this 
model, is an individualized experience affected by psycho-
logical factors and memory formation at the emotional level. 
Using this information, clinicians can garner a better under-
standing of appropriate treatment modalities and possible 

behavioral modification techniques that can better support 
their patients.

Sleep disturbance also appears to be a component of 
chronic pain. It is proposed that sleep disturbance and 
chronic pain share a bidirectional relationship much like 
chronic pain and mental health disorders [8]. It has been 
shown that the estimated prevalence of sleep disturbance 
in patients with chronic pain ranges between 50 and 80% 
[11–15]. Moreover, studies show a positive correlation 
between insomnia severity and increased pain intensity [8]. 
The overlapping mechanisms involved in pain and sleep 
functions present a promising target for treatment modali-
ties in the future. [6].

At this time, the ideal and optimal approach to chronic 
pain management is multidisciplinary treatment that incor-
porates both pharmacological intervention and physical 
rehabilitation, but many times, due to discordant care or 
cost, does not occur at the patient level [16]. Because of 
these shortcomings, the complexity of pain etiology, and 
the high prevalence of chronic pain in the population, it is 
important to find alternative means to better tailor care to the 
individual patient. In the current practice, many clinicians 
increase health expenditure costs by ordering expensive 
diagnostic tests and invasive treatment strategies that may 
provide little to no benefit to the patient. Employing low bar-
rier technologies that can be applied to existing data is the 
next fundamental step in creating efficient and cost-effective 
care. As the trend towards digitizing medicine increases, the 
use of artificial intelligence (AI) and machine learning (ML)  
has become integral to clinical application [17•]. Through use  
of these technologies, we are better able to utilize aggregated 
data sets of patients as well as larger amounts of pain-related 
data which include genomic information, medical imaging, 
and clinical phenotype data [17•].

The Consequences of Chronic Pain

In 2022, $4.1 trillion was spent on healthcare in the United 
States [18•], with much of the cost concentrated on those 
suffering chronic neck and lower back pain [19]. Moreover, 
chronic pain in the United States leads to an estimated $79.9 
billion in lost wages, with its impacts exacerbated by its 
correlation with mental health conditions stemming directly 
from pain-related outcomes and decreased functionality [3•].

The social landscape is significantly influenced as well. 
With the emergence of the pain movement in the 1990s,  
opioid analgesics became widely regarded as a cornerstone 
for pain management. Many prescribers during this time had 
little to no pain management training but were still expected 
to fulfill patient expectations and ascribe pain as a “fifth vital  
sign.” The tandem of opioid marketing, prescriber behav-
iors, and changes to pain management lead to the opioid 
crisis as we know it today [20]. From 1991 to 2021, nearly 
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645,000 people died from overdose involving opioids [21], 
and though it is difficult to parse out all-cause mortality, a 
percentage of these cases were chronic pain patients [22].

The prevalence of chronic pain poses a unique dilemma 
to medicine and future public policy. In order to improve 
and mitigate opioid usage, it is imperative to look at root 
cause problems. Thus, the future of chronic pain manage-
ment and improved patient outcomes must emphasize find-
ing multimodal approaches for treatment and improving our 
understanding of the complex array of psychosocial factors 
that contribute to chronic pain and opioid use.

The Future of Chronic Pain Diagnosis and Management

Chronic pain has a profound impact on both patients and 
healthcare. Its treatment presents challenges due to the com-
plexity of the condition and the considerable variability in 
how patients experience and respond to different treatments. 
Current therapeutic options often fail to provide long-term 
relief, and the benefits of these treatments rarely outweigh 
their risks, such as dependency or other side effects.

Much work has focused on (1) developing novel treat-
ments, (2) improving current treatment modalities, and (3) 
identifying subpopulations of patients with unique pheno-
types to facilitate development of patient-specific interven-
tions. State-of-the-art AI and ML approaches have recently 
emerged as a necessary means to disentangle the relation-
ship between patient phenotype and disease manifestations, 
particularly when using complex, often noisy, medical data 
that includes genomic, transcriptomic, metagenomic, and 
proteomic sequencing data; structured and unstructured  

electronic medical record data; clinical trial and pharma-
cological data; and neuronal signal processing data. For 
example, it has been estimated that the amount of genomic 
sequencing data alone will soon surpass the total amount 
of other forms of biological and medical data [23]. Hence, 
with the rapid pace of data generation, there is a clear need 
for automated algorithms that can learn from these data and 
shed light on underlying patterns and signals [24].

In this review, we first introduce the field of ML and 
define the necessary terminology and architectures. We then 
discuss the approaches relevant to subgroup identification 
and, potentially, precision medicine. Finally, we present the 
current literature on neuromodulation and how ML can be 
leveraged. Throughout this review, we will speculate on the 
potential of AI and ML in each respective field.

A Primer on Machine Learning

Chronic pain management stands at the forefront of medi-
cal challenges, demanding innovative solutions to alleviate 
suffering and improve patient outcomes. In recent years, 
the integration of AI and ML has emerged as a promising 
avenue for transforming the landscape of chronic pain care. 
AI refers to the simulation of human intelligence processes 
by machines, encompassing a broad range of techniques 
aimed at enabling computers to perform tasks that typically 
require human intelligence (see Table 1). ML, a branch of 
AI, focuses on the development of algorithms that allow 
computers to learn from and make predictions or decisions 
based on data, without being explicitly programmed.

Table 1  Key terms

Term Definition

Artificial intelligence (AI) The simulation of human intelligence in machines, programmed to mimic human actions
Machine learning (ML) A branch of AI that uses models to learn from data, identify patterns, and make decisions or predictions 

based on that learning
Natural language processing (NLP) A branch of AI that uses models to understand, interpret, and generate human language
Deep learning (DL) A branch of ML that uses artificial neural networks (NNs) with many layers ("deep") to model complex 

problems
Large language model (LLM) A type of model used in NLP that typically leverages DL (such as transformers) to generate human lan-

guage
Labels The outcomes or categories that a ML model is trying to predict
Features The individual measurables of the data that are used as inputs in ML models
Unsupervised learning A type of ML where the model is trained on unlabeled data to learn the structure of the data without any 

guidance on what the output should look like
Supervised learning A type of ML where the model is trained on labeled data to learn a relationship (a “mapping”) between the 

input (features) and output (e.g., labels) variables
Classification A type of supervised learning where the goal is to predict the label of new observations based on past 

observations with known labels
Dimensionality reduction The process of reducing the number of features in a dataset to simplify the dataset by capturing the most 

important information while discarding redundant or irrelevant features
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Supervised Learning

Supervised learning is a foundational concept in ML where 
the algorithm learns from labeled data. In this paradigm, 
each training example consists of an input feature vector 
(such as patient weights, morbidity scores, lab values, etc.) 
paired with a corresponding output label (such as mortal-
ity, length of stay, complications, etc.). The goal is to learn 
a mapping or relationship between the input features and 
the output labels, allowing the algorithm to generalize and 
make predictions on new, unseen data. Common tasks in 
supervised learning include regression, where the goal is to 
predict a continuous value, and classification, where the goal 
is to predict a categorical label. For example, in chronic pain 
management, supervised learning algorithms can be trained 
on patient data with labeled pain intensity scores to predict 
the effectiveness of different treatments or interventions. 
A range of supervised ML algorithms have been explored 
for patient selection and diagnostic aid in pain progression. 
Pateria and Kumar [25•] found that decision tree regressor  
models using clinical measures and functional magnetic 
resonance imaging (fMRI) data, as well as classifiers built 
using electroencephalogram (EEG) and positron emission 
tomography (PET) data, can predict neuropathic pain fol-
lowing spinal cord injury. Nijeweme-d’Hollosy et al. [26] 
employed ML algorithms on patient-reported data to model 
treatment selection for low back pain. They evaluated the 
ability of the model to learn from the data, which, in turn,  
demonstrated the feasibility of using ML for decision-making  
processes regarding treatments. They evaluated 25 ML 
models, with BayesNet and Naive Bayes performing best. 
Additionally, Zmudzki and Smeets [27•] developed a mul-
tidimensional ML framework for chronic musculoskeletal 
pain treatment.

Unsupervised Learning

Unsupervised learning, on the other hand, involves learning 
patterns or structures from unlabeled data. In this paradigm, 
the algorithm seeks to identify underlying patterns or group-
ings within the data without explicit guidance from labeled 
examples. Unsupervised learning tasks include clustering, 
where the goal is to partition data into distinct groups based 
on similarity, and dimensionality reduction. The objective 
is to reduce the number of input features while preserving 
important information, which can aid interpretation for 
downstream ML tasks.

In the context of chronic pain management, unsupervised 
learning techniques can help uncover hidden subtypes of 
pain conditions or identify clusters of patients with similar 
symptom profiles, potentially revealing personalized treat-
ment approaches. A range of unsupervised learning tech-
niques have been applied to identify biomarkers of pain and 

treatment. Kharghanian et al. [28] proposed a hierarchical 
unsupervised approach for pain detection from facial images, 
achieving near 95% accuracy. Loetsch et al. [29] applied 
unsupervised ML to identify patient subgroups with differ-
ent pain intensities in rheumatoid arthritis and then used 
supervised ML to identify meaningful features for persistent 
pain, achieving accuracy of 70%. These studies demonstrate 
the potential of unsupervised learning techniques in identify-
ing biomarkers of pain and potential avenues for treatments.

Reinforcement Learning

Reinforcement learning is a paradigm of ML where an agent 
learns to make decisions by interacting with an environment. 
Unlike supervised learning, reinforcement learning does not 
rely on labeled input–output pairs but instead learns through 
trial and error based on feedback from the environment. 
The agent performs actions in the environment and receives 
rewards or penalties based on its actions, guiding its learn-
ing process.

In chronic pain management, reinforcement learning can 
be applied to optimize treatment strategies by adapting to 
changes in patient responses over time. Multiple studies have 
explored the potential of reinforcement learning in critical care 
settings [30, 31•, 32•]. Lopez-Martinez et al. [30] applied this 
approach to pain management with morphine, demonstrating 
its ability to provide personalized dosing recommendations. 
However, Roggeveen et al. [31•] described the feasibility and 
efficacy of employing an online reinforcement learning agent 
to tailor personalized physical exercise recommendations,  
with a specific focus on alleviating endometriosis-related  
pain. The research not only introduces an innovative trial 
design but also sheds light on the transformative potential of 
such interventions at enhancing patient outcomes.

Deep Learning

Deep learning (DL) has gained significant traction in vari-
ous domains, including healthcare, due to its ability to learn 
intricate patterns from data. At the core of deep learning 
lies artificial neural networks (NNs), which are inspired by 
the structure and function of the human brain. NNs consist 
of interconnected nodes organized into layers, including an 
input layer, one or more (“deep”) intermediate (“hidden”) 
layers, and an output layer. Each node performs a sim-
ple computation, and the connections between nodes are 
assigned weights that are adjusted during training to mini-
mize prediction errors. Deep NNs are widely used for tasks 
involving structured data, such as electronic health records 
or physiological signals.

Among the different types of DL models, convolutional 
neural networks (CNNs) excel in processing grid-like 
data, such as images, by leveraging spatial hierarchies of 
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features. This makes CNNs particularly useful in medical 
imaging tasks, where they can aid in detecting abnormali-
ties or anomalies in scans related to chronic pain conditions. 
Shin et al. [33] highlighted the effectiveness of CNNs in 
computer-aided detection, with a focus on different CNN 
architectures, dataset characteristics, and transfer learn-
ing. Patel [25•] further emphasized the utility of CNNs in 
medical image segmentation, particularly in tasks such as 
x-ray, MRI, computed tomography (CT), ultrasound, and 
PET. Recurrent neural networks (RNNs), on the other hand, 
are well-suited for sequential data processing, making them 
valuable for time-series analysis, including longitudinal 
patient data or physiological signals [34]. In the context of 
chronic pain, RNNs can capture temporal dependencies and 
dynamics in pain trajectories, enabling better prediction and 
management strategies. Wang et al. [35] introduced a hybrid 
RNN (a bidirectional Long Short-Term Memory (LSTM)) 
model for pain recognition, which combines auto-extracted 
and handcrafted features.

Moreover, DL techniques have shown remarkable suc-
cess in natural language processing (NLP) tasks, including 
sentiment analysis, language translation, and clinical text 
mining. Techniques like LSTMs are particularly effective 
in modeling text where words have contextual relationships 
between other words that are distantly separated, making 
them indispensable in analyzing clinical narratives, patient 
reports, or social media data related to chronic pain experi-
ences. By integrating deep learning techniques into chronic 
pain research and clinical practice, one can harness the 
power of data-driven insights to improve diagnosis, treat-
ment, and management strategies for individuals living with 
chronic pain.

Self‑Supervised Learning

Self-supervised learning offers a compelling approach for 
extracting meaningful representations from unlabeled data, 
a common scenario in chronic pain research where labeled 

datasets are often limited in terms of amount and quality. 
One prominent technique within self-supervised learning 
is the use of autoencoders (AEs). AEs are NNs designed to 
learn representations of input data that ideally generalize 
to unobserved data. AEs have been successfully applied to 
diverse medical data modalities, including medical image 
analysis [36•], medical image synthesis [37], and mammo-
gram compression [38]. Zhou et al. [39•] demonstrated the 
effectiveness of a masked AE self-pre-training for tasks 
such as lung disease classification, CT abdomen multi-
organ segmentation, and MRI brain tumor segmentation. 
By encoding the salient features of these data types into a 
low-dimensional latent space, AEs facilitate the discovery 
of underlying patterns and associations relevant to pain 
pathology and treatment response. AEs, particularly vari-
ational AEs and denoising AEs, have shown promise in 
extracting biologically-relevant features from non-image-
based data, genomic, and gene expression data. Way and 
Greene [40] introduced Tybalt, a variational AE method 
that effectively captures aberrant pathway activation and 
identifies treatment vulnerabilities in cancer gene expres-
sion data. Similarly, Tan [41] introduced denoising AEs 
as a method for unsupervised feature construction and 
knowledge extraction from breast cancer gene expression 
data. These AEs were found to successfully construct fea-
tures containing both clinical and molecular information, 
including tumor presence, estrogen receptor status, and 
molecular subtypes.

Another self-supervised learning approach gaining trac-
tion is contrastive learning. Contrastive learning focuses 
on learning representations by contrasting similar and dis-
similar pairs of data points within an embedding space. This 
technique has shown promising results in various domains, 
including computer vision and NLP, by encouraging the 
model to distinguish between similar and dissimilar pairs. 
Contrastive learning can be leveraged to identify latent simi-
larities or subgroups within heterogeneous patient popula-
tions [42•, 43] (Table 2).

Table 2  Relevant work applying ML approaches to chronic pain. RF, random forest. PCA, principal component analysis. LSTM, long short-term 
memory

Study Aim Approach

[25•] Predict neuropathic pain after spinal cord injury with fMRI, EEG, and PET data Decision trees
[26] Benchmark ML models for decision support of low back pain treatments Multiple models including BayesNet
[27•] Decision support of chronic musculoskeletal pain Multiple models including decision trees
[28] Pain detection from facial images Convolutional deep belief network
[29] Identify subgroups and features based on pain intensities in rheumatoid arthritis Multiple models including RF, PCA
[30] Dosing of morphine for pain management Reinforcement learning
[31•] Alleviating endometriosis-related pain Reinforcement learning
[32•] Exercise recommendations Reinforcement learning
[35] Pain recognition based on bio-signal data Bidirectional LSTM
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Subgroup Identification

Natural Language Processing of Clinical Text

NLP is a branch of AI that focuses on developing models 
that understand, interpret, and generate human language 
that is both meaningful and useful. Examples of NLP in 
healthcare include (1) named entity recognition (NER) 
where sequences of text are associated with a concept 
[44, 45]; (2) information retrieval where spans of text are 
identified that meet specific criteria [46]; and (3) relation 
extraction where semantic relationships between compo-
nents in a document are obtained [47, 48]. For example, 
Branco et al. [49•] used supervised approaches and latent 
semantic analysis to identify placebo responders based on 
text from patient interviews. Fodeh et al. [50] developed a 
classifier to identify pain assessment information. Schirle 
et al. [51] selected relevant terms from clinical notes using 
Term Frequency-Inverse Document Frequency (TF-IDF) 
to identify chronic pain patients with opioid use disorder. 
Lastly, Goudman et al. [52•] extracted relevant topics that 
summarize a popular chronic pain subreddit.

NLP can benefit from various ML architectures; how-
ever, NNs have entrenched themselves as a vital means to 
extract meaningful information from text. A simple NN for 
text involves “embedding” words into a numerical space 
that can aid in recognition of meaningful patterns as well 
as being more conducive for downstream ML approaches. 
This approach can be applied to either raw clinical text 
[53, 54] or genomic sequence information [55]. For exam-
ple, CNNs have been leveraged to classify International 
Classification of Diseases (ICD) codes indicative of low 
back pain from clinical notes [56].

Research has demonstrated the use of DL for analyzing 
clinical notes [57], ICD coding [58], genomic sequencing 
data [59], and adverse drug events [60]. Squarcina et al. 
[61] highlighted the promising results of deep learning in 
predicting treatment response in depression, a common 
comorbidity of chronic pain. Leveraging deep learning in 
NLP can provide insights into patient-reported outcomes, 
treatment responses, or socio-psychological factors influ-
encing chronic pain management [62••].

Furthermore, large language models (LLMs), such as 
BERT (bidirectional encoder representations from trans-
formers), have revolutionized NLP by training on text to 
capture contextual representations of words or phrases. 
“Fine-tuning” LLM-based models on domain-specific data,  
such as clinician notes, enables more accurate and context-
aware predictions, facilitating personalized interventions or 
decision support systems. Specifically, BERT models have 
been used to summarize patient views on chronic pain treat-
ments, their side-effects, and self-medicating approaches 

from Twitter posts [63•]; identify persistent opioid use after 
spine surgery [64•]; and associate chronic low back pain 
with social determinants of health disparities [65•]. Bely-
aeva et al. [66•], on the other hand, developed a multimodal 
LLM framework which achieved high performance in esti-
mating disease risk using diverse data modalities.

‘Omics, the Potential Role of the Microbiome, 
and the Goal of Precision Medicine

The use of precision medicine is an emerging field for the 
treatment of chronic and acute pain, offering medical prac-
titioners the opportunity to improve outcomes by tailoring 
treatments to patients, particularly by leveraging specific 
genetic variants and the metabolic pathways that can lead to 
different pain states and pain-related phenotypes [67, 68]. 
One field that offers much potential in precision medicine 
involves the large-scale analysis of functional and structural 
aspects of multiple biological components, consisting of 
technologies such as genomics and transcriptomics, often 
collectively referred to as “omics.” Omic methods are used 
to analyze aspects of a single biological system, as opposed 
to meta-omic methods which focus on analyzing an envi-
ronment consisting of multiple organisms [69]. A general 
pipeline for processing omic data is shown in Fig. 1.

Previous work has applied NNs to gene expression data 
to identify disease subtypes and phenotypic clusters. For 
example, transcriptomic approaches have identified breast 
and ovarian cancer subtypes [41, 70] as well as predicted 
potential candidate genes targets [71, 72]. Omic techniques 
have been used to derive a number of biomarkers associated 
with pain conditions [73, 74•, 75].

Additionally, recent evidence suggests that the microbi-
ome plays a role in the pathogenesis of several chronic pain  
disorders [76, 77, 78•, 79•]; hence, analysis of host-microbiome  
omic data may reveal pathways for targeted treatments.  
Investigations into the gut microbiome have uncovered taxo-
nomic diversity biomarkers relating to chronic widespread pain 
[76], fibromyalgia [80•], and irritable bowel syndrome [81•, 
82•], as well as chronic pain syndrome [83•, 84•, 85•, 86•, 87•]. 
Through state-of-the-art shotgun-sequencing, information char-
acterizing species and function can be obtained. ML architec-
tures are used for high-throughput classification of metagen-
omic subsequences [88, 89•, 90, 91] and genome reconstruction 
[92–95], allowing for abundance estimation of microbial com-
munities and description of specific genes and phenotypes.

Moreover, transcriptomics, proteomics, and meta-bonomics 
may be used to profile the transcripts, proteins, and metabolites, 
respectively [96]. For example, Miettinen et al. [97•] performed 
a supervised ML approach to identify key metabolite features 
that could be implicated in chronic pain, specifically metabolic 
pathways involved in sleep and obesity. Furthermore, integrated 
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multi-omic approaches have been successful at predicting treat-
ment responses and disease states in Crohn’s disease [98–100], 
which may prove useful when applied to chronic pain. Tools 
such as RNA-seq [101] can also be used to significantly 
improve gene prediction when used in combination with other 
omic approaches. Gene expression can be estimated for both 
the host [102] and multiple species [103]. Another approach 
involves measuring the structure and function of proteins 
through mass spectrometry [104–108], which can provide a 
unique look into the metabolic pathways associated with a gene, 
as well as the taxonomy and metabolism of the microbiome. 
Together, this can help uncover drug-host-microbiome interac-
tions that may impact treatment [109, 110, 111•].

The complexity of multi-omic data lends itself naturally 
towards ML-based approaches. Promising work is also being 
done to differentiate between healthy and disease states and aid in 
the discovery of novel biomarkers [112–114]. Various ML meth-
ods are used, both in supervised and unsupervised capacities, for 
analysis of integrated multi-omics datasets, which have enabled 
better understanding of biological systems [115] (Table 3).

Neuromodulation: Current Methods 
and Potential Areas for Improvement 
via Machine Learning

Spinal Cord Stimulators

Recent advances in brain computer interfaces (BCIs), 
neuroprosthetics, and neuromodulation are offering new 

opportunities to restore function in patients with catastrophic 
spinal cord nerve injuries, chronic pain, and hearing loss, 
paving the way for restoration of motor and hearing defi-
cits, decreased pain, and the means for further rehabilita-
tion [116–118, 119•]. Such breakthroughs offer promise for 
improving quality of life in these select individuals [120•]. 
The development of BCIs and neuroprosthetics is closely 
linked to AI and ML, which play a crucial role in interpret-
ing the intricate patterns of neuronal activity responsible 
for movement [121•, 122]. These patterns can be detected 
through various monitoring techniques, including noninva-
sive methods such as EEG, MRI, and fMRI, as well as inva-
sive methods such as electrocorticography (ECoG).

Current neuromodulation strategies can also be broadly 
categorized into invasive and noninvasive approaches. 
Invasive methods, such as deep brain, spinal cord, sacral 
nerve, and vagus nerve stimulation, offer greater precision 
and efficacy, but come with surgical risks during implan-
tation, battery replacements, repairs, and removal. Nonin-
vasive approaches, such as transcutaneous (TENS), vagus, 
ultrasonic, magnetic, alternating current, direct current, and 
near-infrared laser stimulation, lack surgical risks but may 
be limited in their effectiveness due to lower penetrating 
power, increased inter-user variability in terms of treatment 
response, and bulkiness [123•].

The emergence of “smart” technologies enables AI 
training to (1) detect neural signals associated with pain, 
(2) provide optimized feedback to reduce pain signals or 
perception (e.g., Medtronic's spinal cord stimulation (SCS) 
device AdaptiveStim [124]), and (3) continuously refine the 

Fig. 1  Input data can be categorized into two groups: Host and 
Microbiome. Data is first gathered using the respective technique 
(mass spectrometry, sequencing, etc.), then preprocessed to remove 

any suboptimal data or to transform/normalize data for easier down-
stream analysis. The resulting data can then be analyzed for insight 
into the respective biological system
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feedback for a patient-specific intervention. These smart 
technologies can leverage ML to develop feedback circuits 
and identify potential biomarkers necessary for finely tuned 
feedback. Specific biomarkers may include (1) body posi-
tion in space measured by accelerometry; (2) shifts in spinal 
cord position, which could reflect cardiovascular and res-
piratory changes; (3) electrically evoked compound action 
potentials from Aβ fibers for pain suppression; (4) overcom-
ing neuronal adaptation elicited by repetitive neurostimu-
lation overtime, and, potentially, (5) local field potentials 
of regions that contribute to pain signal generation includ-
ing the anterior cingulate cortex, orbitofrontal cortex, and 
primary somatosensory cortex, which are thought to be in 
desynchrony in chronic pain [125].

Several studies have demonstrated advancements in uti-
lizing prospective targets. For example, asynchronous sto-
chastic bursts have shown efficacy in overcoming neuronal 
adaptation [126, 127], while differential target multiplexed 
stimulation (of neurons and neighboring glial cells) has been 
effective in improving pain relief compared to standard tech-
niques, with recent randomized control trials (RCTs) show-
ing improved pain relief when compared to standard stimula-
tion techniques [128•, 129]. Moreover, the type, target, and 
frequency of neurostimulation waveforms can significantly 
impact its efficacy, with some studies showing superior pain 
relief with specific targets (e.g., dorsal root ganglion) and 
lower frequency stimulation [130–134].

It has been postulated that dyssynchrony between affec-
tive, cognitive, and somatosensory components of pain are 
responsible for chronic pain; hence, this dyssynchrony could 
be modulated, restoring normal state-space signaling [135]. 

Most neuromodulation techniques are currently programmed 
as open-loop systems, which do not adapt to patient-specific 
physiological states [123•]. However, closed-loop systems, 
such as closed loop evoked compound action potential SCS, 
where the stimulation current is adjusted to maintain con-
sistent spinal cord activation within a patient's therapeutic 
window, have shown superiority over fixed open-loop stimu-
lation in treating chronic leg and back pain [136]. Walton 
et al. [137] showed with magnetoencephalography that type 
1 complex regional pain syndrome (CPRS) is associated 
with low frequency somatosensory activity in the theta and 
delta band range and that increased low frequency is likely 
associated with peripheral chronic pain that lacks underlying 
nerve damage. Accordingly, studies have shown that inter-
fering with low-frequency bursts via deep brain stimulation 
could potentially alleviate neuronal dysrhythmias associated 
with chronic pain syndromes such as CPRS [138]. Also, 
differential target multiplexed SCS that deliver electrical 
pulses that vary in terms of frequency, charge, amplitude, 
and duration have shown to be efficacious in treating chronic 
back pain [129, 139].

ML can further enhance recent advances in neuromodula-
tion. For instance, SCS fails in upwards of 25% of patients; 
hence, ML could facilitate selection of ideal candidates for 
SCS. Hadanny et al. [140•] successfully classified treat-
ment response to SCS based on a 50 to 70% drop in pain 
scores using demographic, pain outcome, and psychologi-
cal data. Other work had similar success identifying treat-
ment responders using fMRI [141] as well as identifying 
responses in a treatment naive group [142]. Accordingly, not 
only could ML assist in classifying SCS responses, but it too 

Table 3  Relevant work applying natural language processing (NLP) 
and ‘omic approaches to chronic pain. SVM, support vector machine. 
CNN, convolutional neural network, BERT, bidirectional encoder 
representations from transformers. TF-IDF, Term Frequency-Inverse 

Document Frequency. NN, neural network, LASSO, least absolute 
shrinkage and selection operator. LDA, Latent Dirichlet allocation. 
GWAS, genome-wide association study

Study Aim Approach

[49•] Predicting placebo responders in chronic pain management Latent semantic 
analysis, logistic 
regression, SVM

[50] Identify deficits in pain care quality including pain assessment, treatment, and reassessment Multiple models 
including decision 
trees, RF, SVM

[51] Development of a text-based risk assessment tool for opioid use disorder in a chronic pain population TF-IDF
[52•] Identification of keywords and location of chronic pain in online support groups LDA
[56] Classification of acute versus chronic pain in patients suffering from lower back pain CNN
[63•] Identification of self-reported chronic pain in social media RoBERTa
[64•] Classification of persistent opioid use following surgical procedures BERT
[65•] Extraction of social determinants of health from medical notes of chronic lower back pain patients RoBERTa
[74•] Identification of biomarkers from GWAS data for low back pain LASSO
[75] Classification of chronic pain in primates using gene expression data NN
[97•] Identified metabolites and metabolic pathways associated with chronic pain RF, PCA, clustering
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could augment or ideally replace SCS trial implantation and 
lead testing [143]. Lastly, applicable to both the initial trial 
phase and the subsequent treatment phase, parameterization 
could be optimized based on patient-specific and population 
data [144], as well as omic, lymphocytic, and imaging-based 
data [145•].

Facial Scoring

Previous research has focused on quantifying pain by assess-
ing facial responses elicited by painful stimuli. Scoring 
methods, such as the Facial Action Coding System (FACS), 
involve visually describing facial expressions using 46 
individual action units (AUs), which can then be used to 
quantify responses to painful stimuli, particularly with the 
Prkachin and Solomon Pain Intensity Scale (PSPI). How-
ever, these coding systems have limitations as they rely on 
human coders and are thus susceptible to implicit biases. 
Additionally, differences in facial expressions across popula-
tions, such as cultural variation, can introduce further bias 
in quantification [146, 147].

With the advancement of ML approaches, efforts have 
been made to enhance understanding and prediction of 
facial expressions. ML models, including ImageNet [148] 
and VGGface [149], have been trained on image reposito-
ries, leading to the development of NN architectures such 
as LeNet [150], AlexNet [151], and GoogleNet [152]. These 
advancements have laid the foundation for architectures that 
offer a deeper understanding of facial behavior. Initial work 
involved the detection of AUs using support vector machines 
(SVMs), hidden Markov models, and GentleBoost [153]. 
Subsequent research by Kim et al. [154] improved upon this 
by employing a hidden conditional ordinal random field to 
address the variation among subjects, followed by further 
enhancements using k-nearest neighbors [155] and AEs 
[156].

Baltrusaitis et  al. [157, 158] developed OpenFace, a 
framework that uses the convolutional experts constrained 
local model, to capture facial landmarks, eye gaze, facial 
expressions, and head pose. Further work aimed at asso-
ciating facial expressions with pain intensity to develop 

automated systems for decision support in the diagnosis and 
assessment of pain could prove valuable in the post operative 
recovery and intensive care settings, where pain scoring is 
done by medical providers, but is limited by patient partici-
pation, illness type, disease status, intubation, and language 
barriers [159•]. These automated systems could thereby help 
improve patient care as well as reduce PACU and ICU stays.

Despite these advancements, developing an algorithm 
for these tasks remains challenging due to variation in sub-
ject physical features, behavior, and head position, as well 
as lighting conditions. Nevertheless, researchers such as 
Neshov and Manolova [160] have used SVMs to classify 
PSPI, demonstrating the potential for medical applications. 
Additionally, Bargshady et al. [161, 162] achieved improved 
pain classification using a CNN bidirectional LSTM archi-
tecture on video sequences, surpassing previous work by 
Rodriguez et al. [163]. Their approach achieved 91.2% and 
90.0% accuracy for the training and test data sets, respec-
tively, showcasing the advancements in pain intensity clas-
sification through ML techniques (Table 4).

Conclusion

The intersection of ML, precision medicine, and chronic 
pain represents a compelling frontier in healthcare innova-
tion. Advances in ML offer unprecedented opportunities for 
personalized treatment modalities that can optimize patient 
care, improve patient outcomes, reduce healthcare cost, and 
advance the understanding of pain mechanisms. Current 
advancements in the omic domains, along with the ongo-
ing utilization of NLP for analyzing electronic healthcare 
records, offer a pathway to delineate patient subgroups based 
on distinct chronic pain-related profiles. This approach can 
facilitate targeted interventions and lay the groundwork for 
future research.

Utilization of AI will continue to enhance our understand-
ing of the relationships between mental health, sleep dis-
turbance, substance use disorder, and chronic pain. These 
algorithms identify meaningful subgroups and patterns that 
enable more accurate conclusions about patient behavior, 

Table 4  Relevant work applying ML approaches to neuromodulation and facial analysis. SCS, spinal cord stimulation. PSPI, Prkachin and Solo-
mon Pain Intensity Scale

Study Aim Approach

[148] Classified treatment response to SCS from demographic and outcome data K-means, logistic regression, RF, boosting
[130] Classified treatment response to SCS from fMRI data Multiple models including decision trees, SVM
[126] Classified treatment response to SCS from electronic health record data Multiple models including regression trees, boosting
[130] Classified PSPI SVM
[126, 127] Pain classification trained on video sequences CNN, bidirectional LSTM
[152] Pain classification trained on video sequences LSTM
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neurobiological involvement, and diagnostic phenotypes. 
Ultimately, this may lead to personalized treatment plans, 
which in turn may reduce financial costs, optimize patient 
experiences, and improve health outcomes.

Moreover, optimizing current treatment modalities is pos-
sible through a deeper understanding of patient physiology 
and responses, which can be achieved by applying ML to 
the ever-growing data associated with chronic pain. As ML 
continues to advance, so too will medicine as long as the 
synergy between these fields is maintained.
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