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Abstract

Purpose of Review The purpose of this review is to summarize the scientific evidence published in the past 5 years examining
the epidemiology of bone health as it relates to the gut microbiome, across race and ethnicity groups.

Recent Findings The link between the gut microbiome and bone health is well established and is supported by numerous
biological mechanisms. However, human study research in this field is dominated by studies of older adults residing in Asian
countries. A limited number of epidemiological and randomized controlled trials have been conducted with individuals in
other countries; however, they are marked by their racial and ethnic homogeneity, use varied measures of the gut microbiome,
and different interventions (where applicable), making comparisons across race and ethnic groups difficult.

Summary As the global prevalence of osteoporosis increases, the need for lifestyle interventions is critical. Existing data
suggest that racial and ethnic differences in gut microbiome exist. Studies examining the relation between bone health and
gut microbial structure and function across diverse racial and ethnic groups are needed to determine appropriate microbiome-

based interventions.
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Introduction

Osteoporosis (OP) is a metabolic disease of low bone mass
paired with weak bone tissue and strength that can lead to
life-threatening fragility fractures. OP is a global public
health issue that is increasing in prevalence as the popula-
tion ages, with a current worldwide prevalence in women of
23% and in men of nearly 12% [1]. OP is multifactorial in its
etiology, providing numerous potential points of intervention
in the development and/or progression of disease. The gut
microbiome (GM), an endocrine organ comprising trillions
of microorganisms that reside within the human intestines,
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has been established to play a role in the health of bone [2]
and has received increasing attention as a promising modifi-
able point of intervention [3].

Effective OP interventions require a clear understanding
of the physiological mechanisms linking the GM with the
prevention and development of OP, in addition to knowl-
edge about how these pathways may vary by age, sex, health
status, socioeconomic status, and race. Composition and
function of the GM are influenced and vary by race and
ethnicity [4]. Recent data from the Hispanic Community
Health Study/Study of Latinos (HCHS/SOL) revealed a
unique gut microbial composition based on migration status
and a difference in the GM compared to other race/ethnic
groups in the USA [5]. A multiethnic study of adults living
in Malaysia showed that ethnicity was most significantly
associated with the GM, compared to other factors such as
diet, health, demography, and hygiene [6®e]. Results from
the Healthy Life in an Urban Setting study demonstrated a
shared gut microbial composition with those of the same
ethnicity, supporting findings from the American Gut Pro-
ject and the Human Microbiome Project which revealed
differences in gut microbial composition between the four
represented ethnicities [7, 8]. Finally, a study of East Asian
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and White individuals living in San Francisco, California
reported differences between the groups in bacterial rich-
ness, community structure, and genetic potential functional
pathway enrichment [9e]. These studies demonstrate clear
differences in GM composition and function across ethnic
and race groups.

As with gut microbial composition, differences exist in
OP screening, prevalence of OP, fracture risk and rate, OP
care, and subsequent disability and/or mortality. In the USA,
Black and Hispanic women are screened less often for OP
than non-Hispanic White women despite the fact that Black
women have been shown to experience a higher proportion
of fragility fractures and higher risk of treatment disparities,
post-fracture disability, and mortality than non-Hispanic
White women [10]. Studies including Hispanic and Asian
subgroups, as well as Native American representation, are
lacking, but necessary, based on available data [10, 11]. A
2014 review identified a wide range in the global prevalence
of OP within industrialized countries (from 2% in Australia
t0 26.3% in Japan) [12]. In a recent meta-analysis, the lowest
overall prevalence of OP was reported in a Canadian study
(1.07%) and the highest in an Iranian study (77.3%), with
subgroup analysis by gender showing the highest prevalence
in men to be in Asia, and among women, in Africa [1].

Differences in GM composition and function may
explain, in part, observed differences in OP prevalence and
incidence of fracture across ethnic/race groups. Hypoth-
esized mechanisms by which this relation differs are multi-
factorial. Genetic variations are an accepted contributor to
differences in bone outcomes, and while host genetics has
been estimated to account for 1.9-8.1% of the observed dif-
ferences in GM structure and function, this number requires
additional investigation [4, 6]. Different cultural practices
related to traditional remedies, breastfeeding, physical activ-
ity, and sun exposure could influence the GM-OP relation.
Different dietary practices are a likely factor impacting the
composition and function of the GM as well as the skeletal
system. Finally, differences in the built environment are also
a potential contributor and include such factors as living in
a rural versus urban setting and exposure to environmental
heavy metals.

Observed differences in the GM and the prevalence of
OP and related fracture suggest that gut microbial risk
factors and interventions to alter the GM to improve bone
health may need to be race and/or ethnicity specific; how-
ever, observational studies examining the relation of the
GM with bone outcomes in diverse populations are lack-
ing. Without epidemiological studies, informed clinical
trials cannot occur. This review reports on the state of
the research published in the past 5 years describing the
GM in relation to bone turnover markers (BTMs), bone
mineral density (BMD), and other measures of bone
health in observational and randomized controlled studies

(summarized in Table 1). Suggested mechanisms under-
lying the pathway from the GM to bone health are also
reviewed.

Methods for studying the GM include marker gene analy-
sis and metagenomic analysis. The difference is sequencing
based on targeting an amplicon of only one gene, typically
the 16S ribosomal RNA (rRNA) gene in a sample versus
sequencing all or most genes in a sample with the goal of
determining the comprehensive functional potential of the
GM. The 16S rRNA gene sequencing provides information
on microbial diversity and composition, allowing for taxo-
nomic classification of sample microbiota, while metagen-
omic sequencing reports functional pathways of the micro-
bial DNA. Tools such as PICRUSt allow for prediction of
the functional potentials of microbial communities based on
their taxonomic composition (from 16S rRNA gene sequenc-
ing). This review includes studies that report varying meth-
ods for studying the GM. Differences in outcomes between
studies should consider that differing methods could, in part,
explain differences in results.

Epidemiological Studies

The theory suggesting an association between the GM and
low BMD was introduced in a 2001 prospective cohort study
examining small intestinal bacterial overgrowth and meta-
bolic bone disease [13]. Since that time, epidemiological
studies have filled gaps in the literature and informed pre-
clinical studies and randomized controlled trials. A recent
meta-analysis of 12 epidemiological studies testing associa-
tions between the gut microbiota and OP showed that the
preponderance of the latest human data were cross-sectional,
conducted among adults living in Asian countries and uti-
lized 16s rRNA gut microbial gene sequencing methodology
[14ee]. Five observational studies included in the present
review, including two not considered in the recent meta-
analysis, also conducted metagenomic sequencing [15-19].
Ling and colleagues also reported on imputed functionality
based on the composition of taxa determined to be present
by16s rRNA gene sequencing [20e]. Women were the focus
of all but five of the observational studies in the current
review, with variation in their average age, menopausal
status, and degree of bone health that ranged from 40 to
mid-80s, from pre- to post-menopausal, and from healthy
BMD to senile OP [15, 19-22]. Overall, results across these
studies are inconsistent. Measures of bacterial richness and
diversity among people with healthy versus unhealthy bone
vary across studies. In addition, there is no agreement on
which gut microbial species, or their function, are consist-
ently related to bone outcomes. The subsections below out-
line important differences across these recent studies.

@ Springer
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g between the gut microbiome and bone health via serum
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resorption marker carboxy-terminal crosslinked telopeptide

L B S é % S o« E >
= o ) » = 3 o0 = . .
. 228 §§ Z 3 § £T: |z% of type I collagen (CTX) and Allisonella, Klebsiella, and
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date of November 2021. However, the time frame of publi-
cations included in the meta-analysis was not provided by
the authors, or was a list of publications excluded from the
analysis. The first study reported 11 differentially abundant
taxa associated with increased BMD and 13 associated
with decreased BMD in post-menopausal women [23]. In a
separate study, four species of Bacteroides and Fusobacte-
rium ulcerans were shown to be negatively associated with
BMD, while Clostridium leptum and Ruminococcus lactaris
(both in Firmicutes) were positively associated with BMD
[16]. Wang and colleagues reported similar results as those
found in the meta-analysis: differences in f_Peptostreptoco-
coccaceae in women with OP compared to healthy controls
[15]. Lastly, in a study of older men residing throughout the
USA, the abundance of two genera were associated with
BMD: Anaerofilum (lower BMD) and Tyzzerella (greater
BMD) [27e].

Bone Mineral Density and Enrichment of Functional
Pathways

Six studies published in the last 5 years have evaluated
potential functional pathways as defined by a particular set
of genes. The researchers utilized the Kyoto Encyclopedia
of Genes and Genomes (KEGG) with one conducted in a
Western population, and the others conducted in Chinese
populations [15-20]. Carbohydrate or protein metabolism,
environmental information processing (membrane transport,
signal transduction, and signaling molecules and interac-
tion), and genetic information processing (translation, tran-
scription, folding, sorting, and degradation) are commonly
enriched functional pathways in individuals with poor BMD
[15, 17-20]. Numerous other KEGG pathways were corre-
lated with bone outcomes, but were unique to their respec-
tive study, or shown to lose significance after correction for
multiple testing [16e].

In conclusion, while differences in alpha and beta diver-
sity were not consistently observed in the studies included
in the present review, given the variety of diversity indexes
utilized in the studies, these results are difficult to interpret
confidently. Additional studies utilizing standardized meth-
ods and including diverse participants are necessary to make
meaningful comparisons. In contrast, individual taxa may
indicate presence or absence of OP in Asian adults [14ee].
Additional research is needed to determine whether these
taxa are mechanistically important in the development of OP
and if so, whether they can be targeted for therapeutic treat-
ment and whether they vary by sex and/or race and ethnic-
ity. Due to the paucity of research examining enrichment in
functional pathways and bone health outcomes, it is difficult
to assess whether reported differences are due to race ethnic-
ity, and/or other lifestyle and sociodemographic patterns.
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Randomized Controlled Trials

Informed by findings from pre-clinical and epidemiologi-
cal studies, four intervention studies have been conducted
within the past 5 years (Table 1); each has examined the
impact of administered probiotics on bone outcomes
in women. In one study, the probiotic was additionally
enriched with several bioactive nutrients [28e].

Bone Turnover Markers

A trial in post-menopausal Japanese women measured mean
relative change from baseline of select BTMs as secondary
outcomes in response to 24 weeks of ingestion of Bacil-
lus subtilis C-3102 supplement or placebo [29]. Changes
in urinary levels of the bone resorption marker N-terminal
telopeptide/creatinine between baseline and 12 weeks were
significantly lower in the intervention group compared to
the placebo group (placebo = 23.3 + 5.9%, C-3102 = 1.6
+ 6.3%; p = 0.015), resulting in a significant group-by-time
interaction effect (p = 0.033). Changes in serum levels of
the bone resorption marker tartrate-resistant acid phos-
phatase isoform 5b (TRAP-5b) between baseline and 12
weeks trended toward a significant decrease in the interven-
tion group compared to the placebo group (placebo = 4.5
+2.8%, C-3102 = —4.8 + 3.8%; p = 0.054). No significant
change was observed in either BTM after 24 weeks. Neither
the bone formation marker bone alkaline phosphatase (BAP)
nor intact parathyroid hormone differed significantly by
group over the study period. The 16s rRNA gene sequenc-
ing revealed a significant decrease in Chaol and Shannon
indices from baseline to 24 weeks in the C-3102 group. Pro-
biotic supplementation also resulted in changes in relative
abundance of 11 genera over time; however, these changes
did not correlate with bone outcomes.

Two 12-month studies in post-menopausal Swedish
women investigated the impact of daily supplementation
with different probiotics on BTMs [30, 31]. The ProBone
study investigated the effects of Lactobacillus paracasei
DSM 13434 and two strains of Lactobacillus plantarum
(DSM 15312 and DSM 15313) compared to placebo on
BTMs. Results revealed no significant difference between
groups over time in serum levels of osteocalcin (OC),
PINP, CTX, or NTX [30]. The ELBOW study compared the
effects of Lactobacillus reuteri 6475 compared to placebo
on BTMs. The authors showed no significant differences
between the groups in serum NTX or BAP [31]. These two
studies suggest that 12-month supplementation of probiotics
had no effect on BTMs in northern European women.

Finally, a 6-month study in menopausal women of
Spanish origin investigated the effects of daily intake
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of a dairy product enriched with calcium, zinc, magne-
sium, vitamins D, C, and K, L-leucine, and Lactobacillus
plantarum 3547 on BTMs [28e]. Serum levels of PINP
were significantly increased from baseline in the women
consuming the enriched dairy product, compared to con-
trols (13.19 = 25.17 ng/mL vs. —4.21 + 15.62 ng/mL; p
< 0.05), while levels of CTX were significantly decreased
(—0.05 + 0.19 ng/mL vs. 0.04 + 0.14 ng/mL; p < 0.05).
Although the strains used in Spanish women and in Swed-
ish women were not identical, they were all from the same
Lactobacillaceae genus.

Bone Mineral Density

BMD was also assessed in the four studies presented in this
review that measured BTMs. In Japanese women, a signifi-
cant increase in mean relative change total hip BMD was
observed in those who consumed the C-3102 supplement
(C-3102 = 2.53 + 0.52%) compared to placebo (0.83 +
0.63%; p = 0.043) but did not show a significant change
in LS BMD. In contrast, results from the ProBone study
showed no loss of LS bone in Swedish women after sup-
plementation versus a significant loss of LS bone in those
who received placebo (—0.72%, 95% CI: —1.22 to —0.22)
[30]. Results from the ELBOW study revealed no signifi-
cant difference in microarchitectural indices but did show a
significant difference in mean relative change in tibia total
volumetric BMD (1.02%, 95% CI: 0.02-2.03) between treat-
ment and placebo. There were no significant differences in
areal BMD at the total hip, femoral neck, or lumbar spine
(L1-L4). Spanish women consuming an enriched dairy
product maintained their BMD over the course of the study,
compared to a significant loss of BMD in the placebo group
(0.00 + 0.00 g/cm? vs. =10 + 10 g/cm?; p < 0.05). While
30% of the intervention group was classified as osteopenic at
baseline, only 24% were classified as such by the end of the
study, compared to an increase in osteopenia in the placebo
group, from 28 to 31%.

Overall, probiotic interventions yielded contrasting bone
health results when assessed via BTMs. In women from
Japan, intervention decreased a marker of bone resorption.
A different probiotic did not impact markers of bone resorp-
tion in women from Sweden, but this same probiotic did
improve markers of bone health in women from Spain. It is
difficult to assess whether these contrasting bone responses
are due to differences in probiotic strain, race or ethnic-
ity, regional location, age, or mode of probiotic delivery
(through enriched milk intake in the Spanish study, and pill
supplementation in the Swedish studies). In contrast, sup-
plementation with probiotics either maintained or increased
BMD in women.

These studies highlight the paucity of racial and ethnic
diversity as well as representation of men in clinical trials

examining the GM and OP. As with the majority of the
observational studies, the clinical trials are also limited by
a lack of metagenomic analysis of the GM. A limitation of
all observational studies discussed is their cross-sectional
nature, which lack causality and are, therefore, hypothesis
driving. Additionally, small sample sizes and a focus on
women minimize generalizability to men and other sub-
groups. Future observational studies should be well-pow-
ered and longitudinal. Both observational and clinical stud-
ies would benefit from representation across sex and race
ethnicity groups within and between different geographic
regions, as well as including metagenomic sequencing of
the gut microbiome.

Pre-clinical Studies

Mechanisms Underlying How the Gut Microbiome
May Influence Bone

Studies in Drosophila melanogaster, livestock, and other
mammals have shown the gut microbiota to be responsi-
ble for the synthesis of insulin-like growth factor 1 IGF-1)
through the production of short-chain fatty acids (SCFAs) in
the gut [32, 33]. It has been suggested that SCFAs and other
metabolic byproducts of gut microbial fermentation are
absorbed into circulation and act on the liver and adipose tis-
sue to induce the production of IGF-1. It is well established
that IGF-1 is fundamental in skeletal growth, development,
and maintenance throughout life [34]. Recent research also
suggests that SCFAs act independently on bone, by operating
directly on bone cell types such as osteoblasts, osteoclasts,
chondrocytes, and fibroblasts, and indirectly, by stimulat-
ing antiinflammatory and immune regulatory responses [35].
Specific SCFAs may also be responsible for anabolism of
bone tissue. For example, microbiota depletion in antibiotic-
treated and germ-free mice resulted in lower butyrate lev-
els [36]. When butyrate levels were reestablished, depleted
parathyroid hormone (PTH) levels were restored, as well
as number of bone marrow regulatory T cells (Tregs). This
study suggests that adequate butyrate production in the gut
is required for the anabolic action of PTH on bone.

The anabolic action of PTH on bone is suggested to occur
via an attenuation of the oxidative stress that occurs as levels
of sex steroids deplete with age and reactive oxygen spe-
cies (ROS) accumulate. Dietary intake of antioxidants miti-
gates the deleterious effects of oxidative stress associated
with inflammation-based diseases, and recent work in mice
examined the effect of polyphenol supplementation (10%
lyophilized blueberry, cultivar Montgomery) on skeletal
endogenous antioxidant response [37]. Ovariectomized mice
fed the blueberry-enriched diet exhibited significantly higher
gut microbial a and f diversity, as well as significantly lower
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percent change in BMD of the femur compared to controls.
Results suggest that the blueberries exerted their protective
effects against estrogen-induced bone loss via healthy gut
microbial composition (significantly higher mean relative
abundance of Ruminococcus 1, Provotellacaea UCG-001,
and Coriobacteriales Incertae compared to controls) with
a subsequent increase in EAR gene expression (Hmoxl,
Ftll, Gstpl) in lumbar vertebrae of treated mice. Of note,
these results were not observed consistently in orchiecto-
mized males. While another study in 4-month-old ovariec-
tomized rats supplemented with a 5% blueberry-enriched
diet reported a 25.6% increase in bone calcium retention
compared to control, a more recent study conducted on
5-month-old ovariectomized rats did not find an improve-
ment in BMD or bone mechanical strength with 90 days of
blueberry supplementation [38, 39]. The disparate outcomes
reported in these studies may be explained by the different
rodent species, the age of the animals studied, the length of
the intervention, and/or the cultivar of blueberry.

The brain-gut-bone axis is of mechanistic interest due
to the association of chronic stress and depression with OP
[40]. Previous research has shown beneficial synergistic
effects on this axis by supplementation with probiotics and
the n-3 polyphenols eicosapentanoic acid (EPA) and doco-
sahexanoic acid (DHA) in a rat model with ligature-induced
periodontitis [41]. Recent work investigated the effects of a
diet comprising 0.6% EPA and 0.4% DHA with Bifidobac-
terium longum, Lactobacillus helveticus, and Lactobacillus
plantarum (one group consumed live bacteria, the other dead
bacteria) on stress-induced bone loss in 4-week-old male rats
[42¢]. Following 5 weeks of chronic mild stress, rats con-
suming the experimental diet exhibited significantly lower
serum NTX, stress hormones (ACTH and cortisol), gut sero-
tonin, and significantly higher brain serotonin, gut SCFAs
(acetate, propionate, and butyrate), and BMD of the femur
and tibia compared to rats consuming a non-supplemented
diet in the face of stress. The 16s rRNA gene analysis of
the GM revealed a significant increase in fecal abundance
of Lactobacillus (~24%, p = 0.026) and Blautia (~5%, p =
0.037) between experimental and control animals, respec-
tively. Consumption of live versus dead bacteria did not alter
the additive effect of the combined EPA, DHA, and probiotic
supplementation on outcomes.

In addition, recent evidence in mice suggests that the
production of vitamin K by gut bacteria may be essential
for the protection of bone tissue strength. Antibiotic-treated
mice from 4 to 16 weeks of age showed significantly lower
total cecal vitamin K compared to untreated mice and sig-
nificant disruption of the gut microbiome was associated
with decreased crystallinity (average difference 1.1%) [43].
In a separate study assessing which microbial contents
influence bone tissue-level strength in mice, seven groups
were treated with various antibiotic cocktails to selectively
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modify constituents of the gut microbiota [44e]. After 12
weeks of treatment, analysis of the fecal microbiota detected
seven lower ranked taxa differentially abundant in animals
with cortical bone tissue-level strength impairment, and 14
differentially abundant taxa associated with increased tissue-
level strength. In addition, the only group to show impaired
bone tissue strength also showed large reductions in many of
the genes required to synthesize vitamin K, which is consist-
ent with previous work in this area [45, 46]. Vitamin K is
required for the synthesis of OC, and in the absence of this
protein, bone tissue strength is altered [47, 48].

These studies provide potential mechanisms that can
be tested in future human trials to elucidate differences in
GM-OP outcomes across racial and ethnic groups. Skel-
etal differences such as hip axis length, size, bone thick-
ness, and volumetric density are known to differ by sex and
between racial and ethnic groups [49]. These differences are
thought to contribute to differing fracture rates and could
be the result of structural and/or functional differences in
the GM. It is plausible that biological, environmental, and
cultural differences by race ethnicity groups could cause one
microbe to be beneficial in one group, yet pathogenic in
another, resulting in differences in gut SCFAs, serotonin,
and vitamin K levels, thereby influencing bone health [50].
For example, racial and ethnic differences in nutrient status,
including vitamin D, have been reported to account for some
of the racial and ethnic variation in diabetes and cardiovas-
cular disease, findings that could extend to OP [51]. Shea
and colleagues (2012) added to this body of literature by
reporting racial and ethnic differences in vitamin K status
which remained after adjustment for dietary, lifestyle, and
sociodemographic covariates, suggesting that biological dif-
ferences might explain the observed racial and ethnic dif-
ferences in health outcomes such as bone strength that are
related to vitamin K.

Conclusion

Examination of the recent literature investigating the path-
way between the GM and bone health reveals a dominant
focus on Asian adults, with modest consistency in the
results. It is likely there is information to be gleaned from
these studies that is applicable to other populations, but
given the different outcomes reported in other populations
and within the individual GM and OP fields, it is critical
that the impact of race and ethnicity on this relation be
examined more extensively. A recent meta-analysis of five
continents showed Europe and Africa as having the high-
est prevalence of OP (18.6% and 39.5%, respectively), yet
there are only a small number of recent studies examin-
ing GM and OP in cohorts from the former countries and
none from the latter [1]. It is imperative that observational
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studies and randomized controlled trials characterize the
gut microbiome-bone health relation in men and women
of diverse races and ethnic subgroups, paying particular
attention to inclusion of underrepresented populations.
In addition, comparison of race ethnic differences versus
regional differences must be disentangled to better identify
meaningful, culturally tailored interventions. Until these
studies are conducted, any modification of the GM as a
means of preventing or mitigating the effects of OP will
represent a generalization of studies performed on homo-
geneous participants.
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