
NUTRITION, EXERCISE AND LIFESTYLE (S SHAPSES AND R DALY, SECTION EDITORS)

Andréa Bezerra1,2 & Laura Freitas1,2 & Leonardo Maciel1,2,3 & Hélder Fonseca1,2

Accepted: 29 September 2022 /Published online: 19 November 2022
# The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Purpose of Review To revisit the bone tissue mechanotransduction mechanisms behind the bone tissue response to mechanical
loading and, within this context, explore the possible negative influence of regular swimming practice on bone health, particularly
during the growth and development period.
Recent Findings Bone is a dynamic tissue, responsive to mechanical loading and unloading, being these adaptative responses
more intense during the growth and development period. Cross-sectional studies usually report a lower bone mass in swimmers
compared to athletes engaged in weigh-bearing sports. However, studies with animal models show contradictory findings about
the effect of swimming on bone health, highlighting the need for longitudinal studies.
Summary Due to its microgravity characteristics, swimming seems to impair bone mass, but mostly at the lower limbs. It is
unkown if there is a causal relationship between swimming and low BMD or if other confounding factors, such as a natural
selection whithin the sport, are the cause.

Keywords Bone tissue .Mechanotransduction . Signaling pathway . Swimming . Non-weight bearing exercise

Introduction

Bone tissue can respond to mechanical stimulation promoted
by ground reaction forces (GRFs) or by direct tension elicited
by skeletal muscle contraction, and adapt itself to these stimuli
[1]. This occurs because bone cells, in particular osteocytes,
can identify mechanical stimuli, translate them into biochem-
ical second messengers and activate signaling pathways that
coordinate the differentiation and activity of osteoblasts and
osteoclasts [2, 3]. Several mechanisms are involved in the
detection of mechanical loading by osteocytes, namely ten-
sion exerted on components of the cytoskeleton such as actin
filaments, microtubules and intermediate filaments, deforma-
tion of the osteocyte dendrites cell membrane, stresses exerted
on focal adhesion molecules, changes in gap junctions struc-
ture, deformation of primary cilia and opening of voltage, or
mechanodependent ion channels [4•] (see Fig. 1).

When mechanically stimulated, osteocytes increase the ex-
pression of several intracellular second messengers such as
ionized calcium [5] adenosine triphosphate (ATP) [6], nitric
oxide (NO) [7], and prostaglandins (PGE2) [8], which trigger
anabolic signaling pathways on osteoblast precursors [7, 9],
inducing thereby osteoblastogenesis and new bone formation.

This article is part of the Topical Collection on Nutrition, Exercise and
Lifestyle

* Andréa Bezerra
dea.beatriz@hotmail.com

Laura Freitas
laura_c_freitas@hotmail.com

Leonardo Maciel
yung_maciel@hotmail.com

Hélder Fonseca
hfonseca@fade.up.pt

1 Research Centre in Physical Activity, Health and Leisure (CIAFEL),
Faculty of Sport, University of Porto (FADE/UP),
4200-450 Porto, Portugal

2 Laboratory for Integrative and Translational Research in Population
Health (ITR), 4050-600 Porto, Portugal

3 Department of Physiotherapy, Federal University of Sergipe,
Campus Lagarto, Lagarto, Brazil

Current Osteoporosis Reports (2022) 20:453–468
https://doi.org/10.1007/s11914-022-00758-3

Bone Tissue Responsiveness To Mechanical Loading—Possible
Long-Term Implications of Swimming on Bone Health
and Bone Development

http://crossmark.crossref.org/dialog/?doi=10.1007/s11914-022-00758-3&domain=pdf
http://orcid.org/0000-0003-2579-8437
https://orcid.org/0000-0001-6758-4520
https://orcid.org/0000-0001-5381-8015
https://orcid.org/0000-0002-9002-8976
mailto:dea.beatriz@hotmail.com


Conversely, lack of a sufficient amount of loading also trig-
gers signaling pathways, namely an increase in sclerostin ex-
pression [10], that reduce bone formation and increase bone
resorption, leading to bone loss such as in cases of long-term
immobilization [11], bed rest [12], or spaceflight [13].

The volume and type of mechanical loading to which
bones are exposed to, or the lack of thereof, are therefore
pivotal for shaping its geometry, microarchitecture, and me-
chanical properties. Nevertheless, the importance of mechan-
ical stimulation in shaping bone structure is not the same
throughout the lifespan [14]. Bone response to loading is more
expressive during the peripubertal years [15] making this pe-
riod a window of opportunity to enhance bone mass, geome-
try, and strength [16]. There is also evidence that these bene-
ficial adaptations are maintained long term until late adult-
hood, contributing to postpone the detrimental effects of
age-related bone loss such as osteoporosis and fragility frac-
tures [17•].

Weight bearing physical activities have been recommend-
ed as the optimal strategy to enhance bone formation, namely
during growth [18, 19], whereas non-weight bearing activities
have been suggested to not be sufficiently effective to stimu-
late an adequate bone formation response [20••, 21, 22]. This
can be appreciated by comparing bone mass in athletes from
sports with high loadingmagnitudes and loading rates, such as
volleyball, basketball, and gymnastics, with athletes from
non-impact sports, such as swimming [23–26].

However, there is an important caveat here since most of
these comparisons result from cross-sectional studies and,
therefore, they are unable to determine if there is, in fact, a
causal relationship between swimming and the swimmer’s ten-
dency to display a lower bone mass [23, 27]. Further, studies
performed with rats and mice usually report positive effects of
swimming on bone health, which contrast with most of the
available evidence from humans [28]. Considering the mecha-
nisms underlying bone tissue adaptation to mechanical loading

Fig. 1 Osteocyte molecular response to fluid flow shear stress forces and
bone tissue deformation. Mechanosensation: In response to the fluid flow
shear stress (FFSS) promoted by bone tissue deformation and generation
of pressure gradients within osteocytes canaliculi, mechanosensors, such
as mechanosensitive ions channels (MSIC), namely, Piezo channels,
voltagesensitive calcium channels (VSC), primary cilium, Gap
junctions (GJs), and integrins are activated. Mechanotransduction: One
of the first responses to mechanical stimulation is the increase of
intracellular calcium concentrations through MSCI, Piezo channel,
VSC, GJs, and primary cilium. This leads to intracellular increase in
ATP levels and prostaglandins (PGE2) and nitric oxide (NO) synthesis
and release. Intracellular increase in PGE2 can also occur due to GJs
response to mechanical stimulation. By connecting to E2-E4 receptors,

PGE2 (mediated by AKT) leads to glycogen synthase kinase-3β (GSK-
3β) inhibition, increasing free β-catenin content. This GSK-3β lock
mechanism also happens through NO/cGMP/PGK2 pathway, which
culminates in Src activation, and consequently, AKT phosphorylation.
YAP/TAZ and src/FAK pathways can also be activated by Piezo
channels and integrins, respectively. Mechanosensitive genes and
secreted factors: With the increase in β-catenin stabilization and nuclear
translocation, the activation of genes related with osteoblast
differentiation and secretory activity is stimulated. In opposition,
secreted factors related with bone resorption and osteoclastic activity or
differentiation, such as RANKL and sclerostin, will be downregulated in
order to favor bone formation.
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discussed previously and the available evidence suggesting that
swimmers tend to display a lower bone mass compared to
athletes from other impact sports and even physically inactive
counterparts, the aim of this review is to discuss how bone
tissue responds to different types of mechanical stimulation
and to determine if regular swimming practice can be, or not,
prejudicial to bone mass acquisition during growth [21].

Variations in the Bone Formation Response
to Different Physical Exercise Stimuli

Bone tissue does not perceive all types of mechanical loading
the same way. Some types of loading elicit very expressive
adaptations while others elicit no response [29]. Mechanical
stimuli considered as osteogenic tends to have high loading
rates, inducing mechanical stresses of greater magnitude and
therefore a higher degree of bone tissue deformation, triggering
thereby the osteocyte mechanisms involved in mechanical
loading detection, such as pulsatile fluid flow within the cana-
licular network [4•] culminating consequently in greater skele-
tal adaptations [30••, 31]. Further, bone tissue adapts more
efficiently when loading is fragmented into small bouts inter-
spersed with resting periods, in opposition as when it is deliv-
ered continuously in a single bout or continuous exercise [29].
This concept is well demonstrated in studies showing 80%
greater bone formation in the tibia of animal models, subjected
to four bouts of 90 cycles of loading compared to a single
continuous bout of 360 cycles [32]. Thus, merely increasing
the number of loading cycles without interruptions quickly
leads to saturation of the bone anabolic response, reflected by
the “diminishing returns” principle [33]. Bone tissue also re-
sponds more efficiently to loading stimulus applied in multiple
directions [34] and less well to monotonous and cyclical load-
ing patterns. Therefore, the optimal mechanical stimulation pat-
tern to stimulate osteogenesis is dynamic strains, with high
magnitude joint or GRFs, high loading rate, and short duration
interspersed with resting periods [29]. These characteristics are
mostly found in land based intermittent exercises involving
jumps, rapid changes in direction and lifting weights.

In contrast, physical activities that do not involve weight
bearing or high loading rates, with static or monotonous strains,
such as swimming [35] and cycling [36], are considered as
having a reduced osteogenic effect compared to other exercises
[20••, 21, 22, 23, 24, 37, 38] or even to the effects of physical
inactivity [27, 39–42]. Therefore, these non-weight bearing
activities have not been recommended as a strategy to promote
increases in bone mass [43, 44], especially during the period of
growth and development. A review [30••] comparing the effect
of different exercise protocols on bone quality in experimental
animals, such as treadmill running, wheel running, swimming,
resistance exercise and vertical whole-body vibration, reported
that swimming, the only non-weight bearing activity included

in the study, was associated with the highest percentage of
negative effects on bone microarchitecture, specifically a lower
trabecular number (Tb.N) and a higher trabecular separation
(Tb.Sp), among all exercise protocols studied.

However, one study reported these detrimental effects on
tibia proximal metaphysis only when compared with a base-
line, and thus younger, control group [45]. Further, trabecular
microarchitecture was impaired when rats performed a much
more vigorous swimming protocol (6h/day, 5 days/week) than
usual (2h/day, 5 days/week), exposing them to a higher
hypogravity duration [46] or to exceedingly demanding met-
abolic conditions [47]. Another review with small animals
exposed to low-impact loading exercise protocols, such as
swimming and treadmill running, also showed positive in-
creases in Tb.N and slight increases in Tb.Th, whereas high-
impact loading exercises, such as jumping, were mostly asso-
ciated with increases in Tb.Th [48••]. These findings suggest
that different mechanical loading stimulus can lead to different
patterns of trabecular microarchitecture adaptation.

Studies carried out with humans also suggest that activities
with higher impacts tend to favor bone health outcomes [49,
50]. For instance, higher bone stiffness is found in children
and adolescents regularly engaged in exercise with high me-
chanical impacts [51•]. Participation in high-intensity jumping
exercises for seven months also enhanced lumbar spine and
femoral neck BMC, and lumbar spine aBMD, as well as bone
area at the femoral neck in prepubertal children [52].
Engaging in weight-bearing intermittent sports with dynamic
loading profiles, such as soccer and volleyball, can also in-
crease at least 10% male aBMD in the femoral neck, com-
pared with mean growth values [53••].

Most of the available data therefore suggest that sports or
exercises with a high loading rate and high frequency loading,
such as running and jumping [16, 54], as well as activities
with significant overload and adequate periods of recovery
[31] are the best suited to increase bone mass and to favor
beneficial long term geometrical adaptations in adolescents.
However, the question remains if other types of exercises that
do not comply with the principles of bone tissue adaptation to
mechanical loading [29] could be merely suboptimal for lead-
ing adolescents to achieve their full genetic potential in terms
of bone mass and strength or, in opposition, could even have a
(long lasting) detrimental effect on bone health.

Bone Tissue Responses to Unloading
and Microgravity Environments

Gravity has a crucial influence on cell functionality and bone
tissue homeostasis [55•] and changes in local and systemic
bone metabolism during unloading conditions can significant-
ly contribute to the impairment of the musculoskeletal system
[55•, 56]. In animal models, hindlimb suspension can promote
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significant decreases in BMD, trabecular bone volume frac-
tion (BV/TV), Tb.Th and bone formation [57]. In humans,
only 17 weeks of bed rest lead to a decrease in lumbar spine,
pelvis and legs BMD [58]. In other experiments, 60 days of
bed rest negatively affected not only BMD [59], but also bone
microarchitecture and geometry [60]. Similarly, space mis-
sions can lead to BMD losses between 2 and 9% [61], or even
higher than 10% [62], with skeletal regions such as the lumbar
spine, femoral neck and hip, losing over 1% BMD per month
[63]. Therefore, weight bearing skeletal sites have been de-
scribed as the anatomical regions most severely affected by
microgravity conditions [56].

Resistance exercise protocols during spaceflight missions
seem to only attenuate bone mass losses but not to effectively
prevent them [64, 65] probably because, due to the lack of
GRFs, muscle contraction seems to be the unique mechanism
to induce bone tissue strain on space. Nevertheless, in the
lower limbs, which are responsible for weight-bearing func-
tion, it is hard to appreciate the isolated effect of muscle con-
traction on bone. In this regard, some studies have assessed
the effect of muscle contraction elicited by electrical stimula-
tion in the bone of hindlimb suspended animal models.
Electrically stimulated suspended limbs can exhibit a higher
tibia BMD and bone formation [66], as well as an increased
cross-sectional area and bone volume [67], compared to the
non-stimulated contralateral limb.

Despite some evidence showing that an effective
adaptative bone response to muscle contraction can occur
even in the absence of gravitational forces [68], this effect is
typically not observed in astronauts, even after four months
performing an exercise protocol (2–3 h/day, 4 d/week) with
cycle ergometer or treadmill with bungee cords to promote a
gravitational force about 0.6 times the body weight on earth,
as well as resistance training with elastic bands [63].
Nevertheless, muscle contractions elicited during these exer-
cise protocols led astronauts to present with lower lean mass
losses compared to bedridden subjects without any exercise
intervention [58, 69]. Curiously, astronauts still present higher
bone mass losses [58], suggesting that even though skeletal
muscle contraction has an important role in bone mass main-
tenance, the lack of GRFs can still significatively impair bone
health, making them probably the most important factor for
inducing bone mass gains during exercise.

Bone Response to Mechanical Stimulation
During the Period of Growth and Peak Bone
Mass Attainment

During childhood and adolescence, the skeletal system is
more sensitive and responsive to mechanical stimulation than
during adulthood [49, 50, 54] due to the intense bone metab-
olism during the period of growth and development [15] with

a greater number of actively bone forming cells and a more
favorable hormonal context [70], such as adequate estrogen
[16, 26] testosterone and somatotrophin levels [71]. All these
factors make this period a “window of opportunity” for bone
accrual, favoring net bone gains during remodeling and a fa-
vorable bone modeling adaptation [72•].

Peak bone mass (PBM) is considered as the largest amount
of bone mass accumulated at the end of the growth period and
is an important determinant of bone strength and bone health
[70, 73]. Despite the importance of genetic factors, environ-
mental and behavioral factors, such as nutrition and physical
activity, influence between 20 and 40% of the PBM attained
[72•, 74]. The precise age at which PBM is reached remains,
nevertheless, uncertain [15]. Some authors report that the
PBM is completely achieved around the age of 20 [75–77],
while others argue that it can be reached until the third decade
of life [15, 78, 79]. More specifically, it is around the two
years before and after peak height velocity (PHV), that one
third of the maximum bone mineral content (BMC) can be
attained, which corresponds to an approximate age of 12 years
for girls and 14 years for boys [80].

Bone growth and BMC are sex-independent until about 13
years of age; however, at 15 years, boys can present a 13%
higher BMC than girls [53••]. During pubertal maturation,
increases in cortical thickness in boys are mostly related with
greater periosteal bone apposition, whereas in girls, it is most-
ly the result of endosteal bone apposition [81]. The periosteum
growth leads not only to a higher bone strength to bending and
torsion, but can also be a good predictor of future bone health
since bone resorption in the periosteal surface is extremely
rare during adulthood [82]. When periosteum expansion
matches marrow cavity expansion, cortical thickness remains
unaltered during growth. However, asymmetries in these pro-
cesses lead to the “modelling drift”, and to changes in bone
geometry [83]. The coordinated communication between end-
osteal resorption and periosteal expansion can be regulated by
many mechanisms, including mechanosensing of external
loading by osteocytes, adapting bone shape to its loading
needs [84]. Sex differences during bone growth can also be
explained by the later puberty timing in male adolescents in
comparison with females. The longer maturational period al-
lows males to further increase bone mass and size, reaching
larger bone sizes, as can be evidenced by their higher bone
area and endocortical area [85]. Accordingly, in young adult-
hood, men can display a 35–42% larger bone area than wom-
en. The smaller bone size attained by women at their peak
bone mass age, as well as a lower trabecular and cortical
volumetric bone mineral density are contributing factors to
the higher fracture risk seen in elderly women [86].

The amount and type of mechanical loading experienced
by the skeleton during the peripubertal years is pivotal in
determining the bone mass and geometry attained at early
adulthood. For instance, adolescents who started practicing
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sports in a period close to PHV were shown to have a similar
BMD compared to children who were actively engaged in
sports since childhood [87]. This clearly shows that those
early years of exercise contributed far less than the
peripubertal years for the adolescents’ bone mass. In the two
years around PHV,moderate to vigorous physical activity was
able to elicit greater adaptations in bone strength determinants,
specifically to the total area and cortical porosity of the tibia
[88]. Another strong evidence is the higher difference in BMC
and bone area displayed by the dominant vs non-dominant
arm of peri-pubertal tennis players (from 11 to 13 years) com-
pared to that of pre-pubertal (from 7 to 9 years) players [89].
All these data support that mechanical stimulation seems to be
particularly important in the years surrounding the PHV.

In addition, many of the bone adaptations acquired in this
age period, both in terms of bone mass and specially, geometry
and microarchitecture, are mostly maintained throughout life
[90, 91]. Studies with animal models show that improvements
in bone mass and strength attained during the early period of
life are maintained, even after detraining, during most of the
animal’s lifespan. In particular, early life geometrical adapta-
tions seem to be well preserved thought life and to have a long
lasting significant contribution to bone strength [92]. Further, a
cross-sectional study conducted among professional baseball
players also demonstrated that the effect elicited by exercise
during youth on the humerus geometry and estimated strength
was maintained throughout life, even long after the cessation of
regular exercise practice [90]. Physically inactive men, but who
were actively engaged in sports during growth, also tend to
have higher cortical cross-sectional area, cortical thickness,
and cortical periosteal circumference at the tibia compared to
subjects that were inactive at younger ages [91]. Together, this
evidence suggest that bone adaptations elicited by mechanical
stimulation during childhood and adolescence, both in bone
mass and specially, geometry and microarchitecture, seem to
be maintained at long term and to impact bone health during
adulthood, raising thereby concern regarding the potential neg-
ative consequences of performing non-osteogenic activities
during the most sensitive period of bone development.
Considering that, theoretically, the higher the PBM reached
the lower the risk of developing osteopenia, osteoporosis and,
bone fractures [49, 72•, 78], several authors have considered
osteoporosis as a disorder with pediatric roots, whose preven-
tion should be particularly promoted during the years of the
growth spurt [54, 74].

Effects of Regular Swimming on Bone
Development and Concerns About Its
Long-Term Bone Health

Swimming has traditionally been considered as a non-
osteogenic physical activity since it does not offer any weight

bearing or GRFs type of loading, promoting a neutral [93], or
even a negative [35, 94••] influence on bone health. Although
swimming might elicit bone strain mostly through muscle
contraction forces, as previously discussed, this type of strain,
in the absence of significant GRFs, seems to not be sufficient-
ly effective to improve bone mass [94••]. Moreover, the me-
chanical stimulation promoted by swimming does not follow
the optimal mechanical loading characteristics to induce an
osteogenic response [29], since swimming induces low mag-
nitude peak strains, low loading rate due to the absence of
rapid accelerations or decelerations, the absence of GRFs re-
lated impacts (apart from turns and starts), and the higher
number of repetitive cycles per session, favoring osteogenic
signal saturation [95]. Thus, engaging in this sport during
youth could raise some concerns, since the lack of adequate
amounts of loading could compromise the attainment of an
adequate PBM and, thereby, compromise long-term bone
health [18].

The daily training history of several years in a hypogravity
environment, which can promote a negative impact on bone
health, could explain the low BMD identified in many swim-
mers [23]. In addition, a lower amount of daily time perform-
ing other moderate to vigorous physical activities was docu-
mented in swimmers [96]. Nevertheless, the lack of an ade-
quate training characterization, years of practice, or even the
simultaneous engagement in other exercise activities is a ma-
jor limitation of most studies which hinders understanding the
isolated effect of swimming on bone health [96].

Several studies show that swimmers tend to have a similar
[18, 22–25, 38, 93, 97, 98] or even smaller BMD [27, 35, 39,
99, 100] when compared to physically inactive counterparts.
Further, twometa-analyses were carried out, one with children
and adolescents [26], and other with adults aged 18–30 years
[18] and both studies reported lower BMD values at the lum-
bar vertebrae, femoral neck and whole-body in swimmers
compared to other athletes, but similar values compared to
non-athletic controls. Therefore, these findings can be ob-
served not only in the maturational [21, 22, 25, 38, 101], but
also in the post maturational period. In fact, engaging in swim-
ming during growth could be a possible explanation for the
lower BMD observed in adult swimmers [18, 53••].
Nevertheless, to ascertain if this low BMD is the result of
not reaching an optimal PBM, longitudinal studies are needed
to follow these athletes from childhood into adulthood,
assessing the effect of swimming on bone outcomes [15, 49,
102].

The differences found in the femoral neck and lower limbs
BMD between swimmers and other athletes reinforce the no-
tion that the impact promoted by weight bearing activities is a
key factor for the increase in local BMD, and that the bone
response to mechanical stimulation is type- and site- depen-
dent [27]. The hypogravity elicited by the aquatic environ-
ment can partially explain the decreased BMD in swimmers’
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lower limbs. Even though lower limbs are subjected to some
GRFs during turns and block starts in a competitive race [103,
104], their main function during swimming is to stabilize the
body in water [102], as can also be evidenced by the low
fatigue index in the lower limbs muscles assessed through
electromyography during swimming [105].

Contrarily, the upper limbs are responsible for most of the
mechanical work needed for propulsion and swimming veloc-
ity, and thus are more exposed to internal forces resulting from
muscle contraction, which could elicit substantial mechanical
strains on bone structures [106]. Consequently, when upper
and lower limbs BMD are compared between swimmers and
weight-bearing sports athletes, or non-athletes, interesting pat-
terns can be observed related to a site-dependent response to
swimming exercise (Table 1). Most studies showed lower
BMC and BMD on swimmers’ lower limbs when compared
with weight bearing sports athletes [21, 38, 100, 107–110]. In
comparison with non-athletic controls, no differences were
observed inmost of the studies except two, which found either
higher [111] or lower [42] values for swimmers, respectively.
Nevertheless, for upper limbs/arms BMC and BMD, most of
the studies found no differences between swimmers and other
athletic groups [21, 38, 100, 107, 108, 110, 112] or non-
athletic controls [38, 95, 100, 107, 108, 110, 113]. Still, some
studies also observed higher upper limbs BMD in swimmers
compared to physically active controls [42, 109, 111, 112].

Considering only the studies evaluating swimmers of elite
or national competition level [21, 38, 100, 110, 113, 114], this
pattern can be even more evident, with all lower limbs related
outcomes presenting lower and similar values for swimmers
in comparison with weight-bearing athletic groups and non-
athletes, respectively. Moreover, for the upper limbs, all the
comparisons evidenced no differences between swimmers and
other athletes’ BMD, BMC or bone area, and for BMC and
bone area between swimmers and non-athletes.

These findings might suggest that muscle contractions on
the upper limbs elicited during swimming may represent a
sufficiently high stimulus to induce bone formation in the
non-weight bearing limbs, reducing thereby the effect of the
hypogravity environment in this region. Nevertheless, in ana-
tomical regions related to weight bearing, such as the lower
limbs and hip, daily GRFs seems to be the most important
mechanical stimulus to induce bone formation, since despite
the existence of muscle contraction during swimming, lower
bone formation is observed in these regions. In accordance,
during spaceflight, upper limbs bone mass tends to not be
impaired by the lack of gravitational forces, which is in oppo-
sition to what is observed in the lower limbs [63], where bone
losses occur even despite exercise stimulation [64]. Therefore,
as bone tissue adaptations to loading are mainly local and not
systemic, swimming, like any other sport, can have distinct
effects on bone according to the different anatomical regions
analyzed [102].

A recent review comparing the effect of swimming with
other sports during growth, reported that beyond the lower
lumbar and leg aBMD and distal tibia Tb.Th, swimmers also
presented lower arms aBMD and distal radius Tb.Th. com-
pared to other athletes [53••]. These results are somewhat
contradictory with findings that swimmingmay not negatively
affect upper limbs, but it opens a discussion to the plausible
hypothesis that “natural selection”might also justify the lower
BMD profile typically observed in swimmers. It is possible
that subjects with a predisposition for a lower BMDmay have
some competitive advantage in swimming, particularly due to
their greater horizontal buoyancy. This hypothesis could also
explain the higher prevalence of adult swimmers with lower
bone mass, since these would tend to have a higher competi-
tive success and, consequently, to display lower attrition rates
and to remain for a longer time in this sport, as well as to reach
higher competitive levels. However, this hypothesis is unable
to be adequately addressed in any cross-sectional study carried
out in swimmers [23, 27].

Studies with laboratory animal models, with the same ge-
netic background, could offer some advantages for answering
natural selection hypothesis. Unlike human studies [28],
swimming protocols lasting between eight and 12 weeks with
rats between four and 12 weeks-age [28, 43, 115–117] tend to
show, in general, positive effects on bone mass. Nevertheless,
some interventions have also demonstrated that swimming
protocols can lead to smaller bone formation and inferior bio-
mechanical properties [45] or to cause trabecular bone loss in
the lumbar vertebrae and distal femur [46], leading to an in-
conclusive overall interpretation. Different follow-ups dura-
tion may also explain these results discrepancy, since some
protocols may have an insufficient length to promote signifi-
cant adaptations in these animals bone structure [116]. Also,
the absence of protocols that follow these animals during the
whole period of growth and development is another major
limitation [116, 118].

A possible explanation for different effects of swimming
on humans and small animals’ bone is that, as GFRs are re-
lated with body weight, it seems that in humans it might pro-
duce a higher mechanical stimulation on bone than only mus-
cle contraction [28], and thus, this could be the major respon-
sible for bone strain in human bone cells. Possible evidence of
this is an experimental study with rats that assessed different
jumping phases, the “take-off”, usually related to muscle con-
traction, and the “landing phase”, theoretically more osteogen-
ic due to higher GRFs involved. Interestingly, the rats exposed
only to the “take off” phase presented better bone
microarchitecture responses, namely in BV/TV and Tb.Th
compared to the take-off plus landing group [119].
Similarly, in another study with rats submitted to hindlimb
unloading and daily sessions of jumping (only the take-off
phase), there was an increase in lower limbs Tb.Th and a
suppression of Tb.N reduction [120]. Interestingly, micro-
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finite element analysis evidenced that some structural param-
eters, such as lacunae volume and osteocytes shape and size,
can influence the strain detected by bone cells [121]. Thus, it
is possible that some differences between larger and small
mammals bone tissue, such as differences in the number of
osteons and Haversian channels, can somehow, interfere with
osteocytes sensibility to mechanical loading, leading to differ-
ent adaptative responses. However, there is a gap in the liter-
ature regarding how these micro-structural differences could
interfere with changes in the mechanosensation process be-
tween humans and rats, making this hypothesis speculative
and highlighting the need of further investigation.

Conclusions

Bone tissue is a very plastic structure that can adapt itself to
the usual mechanical forces that are applied to it, being this
responsiveness considerably higher during childhood and ad-
olescence. Therefore, adequate stimulation of bone structures
during this age period is critical for reaching the highest PBM
possible and to prevent the premature onset of bone disorders
associated with increased fracture risk. Considering that bone
tissue is mostly sensitive to mechanical loading induced by
gravitational GRFs and vigorous muscle contractions, a re-
duced amount of weight-bearing activities, such as in swim-
ming, seems to be detrimental for bone health, and may ex-
plain the low BMD phenotype typically displayed by swim-
mers, especially in the lower limbs.

Nevertheless, and despite the mechanistic evidence
supporting this hypothesis, considering that most evidence
on athletes is cross-sectional, it is not possible to establish a
definitive causal relationship between regular swimming and
low bone mass. In addition, studies performed with experi-
mental animal models show contradictory findings about the
effects of swimming on bone health. Consequently, longitu-
dinal studies encompassing a substantial part of the develop-
mental period are necessary to fully elucidate whether lower
BMD typically observed in swimmers, in particular at the
lower limbs, is causally related with the hypogravity water
environment to which they are chronically exposed to, or if
it is more plausible that these differences could be attributed to
attrition and a selection effect within the sport.
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