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Abstract
Purpose of Review The age-related loss of skeletal muscle and bone tissue decreases functionality and increases the risk for falls
and injuries. One contributing factor of muscle and bone loss over time is chronic low-grade inflammation. Exercise training is an
effective countermeasure for decreasing the loss of muscle and bone tissue, possibly by enhancing immune system response.
Herein, we discuss key interactions between the immune system, muscle, and bone in relation to exercise perturbations, and we
identify that there is substantial “cross-talk” between muscle and bone and the immune system in response to exercise.
Recent Findings Recent advances in our understanding of the “cross-talk” between muscle and bone and the immune system
indicate that exercise is likely tomediate many of the beneficial effects onmuscle and bone via their interactions with the immune
system.
Summary The age-related loss of muscle and bone tissue may be partially explained by an impaired immune system via chronic
low-grade inflammation. Exercise training has a beneficial effect on immune system function and aging muscle and bone.
Theoretically, the “cross-talk” between the immune system, muscle, and bone in response to exercise enhances aging musculo-
skeletal health.
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Introduction

Aging is associated with the development of a variety of non-
communicable diseases with some of the most significant de-
teriorations to health happening in the musculoskeletal sys-
tem. The age-related loss of skeletal muscle mass (i.e., one
defining factor of sarcopenia) and bone tissue (i.e., one defin-
ing factor of osteoporosis) is highly prevalent, and the

incidence of sarcopenia and osteoporosis will inevitably in-
crease with the growing (and aging) population [1, 2]. One
main contributing factor of muscle and bone loss over time is
altered/impaired immune system function, referred to as
“inflammaging” [3] which describes the low-level chronic
inflammatory response that exists in many aged conditions
and diseases [4]. Exercise training may act as a countermea-
sure; however, the mechanistic effects of exercise on
“inflammaging” are relatively unknown.

Research is emerging regarding our understanding of the
“cross-talk” between the immune system andmuscle and bone
[5, 6•, 7•]. Physical inactivity remains a major health concern
for a large variety of diseases and modifying physical activity
levels, and including more exercise as a lifestyle behavior, is
viewed as beneficial for reducing the risk of chronic disease
development [8]. This holds true for decreasing the risk of
developing musculoskeletal diseases such as sarcopenia and
os t eoporos i s [9 , 10 ] as we l l a s modi fy ing the
immunosenescence that occurs with aging [3]. The purpose
of this brief review is to provide an overview of (1) the im-
mune system response to acute and chronic exercise and the
effects of exercise on chronic low-grade inflammation; (2) the
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effects of exercise on immune response and skeletal muscle;
(3) the effects of exercise on immune response and bone; and
(4) future directions for research in this area.

Immune System Response to Exercise

With acute bouts of exercise, either aerobic or resistance ex-
ercise, there is a cellular (leukocyte) immune response that
occurs in the systemic circulation both in the innate (which
is partly composed of cells such as monocytes/macrophages,
neutrophils, and natural killer cells) and adaptive (which is
composed predominantly of T cells and B cells) branches of
the immune system [11, 12]. Within the innate immune re-
sponse, there is generally neutrophilia (an increase in neutro-
phil numbers) which occurs immediately following exercise
with a secondary increase hours later [13, 14]. There is a
transitory increase in monocytes, circulating dendritic cells,
and natural killer cells (which are all different types of leuko-
cytes or white blood cells) [15]. In the adaptive branch of the
immune system there is a biphasic response of lymphocytes
(T cells and B cells) to acute exercise [16, 17]. A transient
increase in circulating lymphocytes occurs in response to ex-
ercise which then subsides below baseline (resting) levels be-
fore gradually rising back to resting levels [16, 17].
Speculation exists that the transient decrease in lymphocytes
may cause an “open-window” for opportunistic pathogens to
infect the host, but the potential for lymphocytes to move to
areas where pathogens may be encountered (like the gastroin-
testinal tract and lungs) seems highly probable, thus increas-
ing the resistance to infections [18, 19].

The leukocyte response to chronic exercise training is well-
documented [18, 19]. In general, if an exercise-trained individ-
ual is in a truly rested state (i.e., no exercise for the previous
24 h), there does not seem to be any significant effect on leuko-
cyte or lymphocyte cell count in systemic circulation [20–24].
However, there is controversy about the effects of chronic ex-
ercise on the function of certain cells such as monocytes/

macrophages, dendritic cells, and natural killer cells [11, 25]
(see Table 1 for a brief summary of the different types of leu-
kocytes and their primary function in the immune system [26]).

Chronic low-grade inflammation is defined as a 2- to 4-fold
increase in circulating levels of inflammatory cytokines [27].
The chronic low-grade inflammatory condition may be com-
batted to a certain extent by participation in regular exercise
training [11, 28]. In particular, during an acute bout of exer-
cise, there is a substantial increase in interleukin-6 (IL-6), a
multifunctional myokine/cytokine, that may act in both pro-
and anti-inflammatory capacities [11, 29]. Skeletal muscle is
able to produce myokines which are peptide/protein-based
mediators that act in an autocrine, paracrine, and/or endocrine
fashion to influence other tissues [30]. In the context of acute
exercise, IL-6 is theorized to reduce the pro-inflammatory
cytokine tumor necrosis factor-α (TNF-α) and increase the
levels of anti-inflammatory cytokines such as IL-1 receptor
antagonist (IL-1ra) and IL-10 [11]. The “cross-talk” between
the immune system and muscle and bone is possibly influ-
enced by myokines and cytokines [7•, 31, 32].

As mentioned above, chronic (regular) exercise training is
associated with a reduction in low-grade inflammation, and
both endurance (aerobic) and resistance training are associated
with reductions in various biomarkers of systemic inflamma-
tion (such as IL-6, TNF-α, C-reactive protein (CRP), and
serum amyloid A (SAA)) [3]. Furthermore, one of the main
mechanisms whereby chronic exercise training may decrease
inflammation is through a reduction in fat mass (and especial-
ly visceral fat mass) [29]. The next sections of this review will
address the influence of exercise on the immune response in
relation to muscle and bone health.

Effects of Exercise on Immune Response
and Skeletal Muscle

Chronic low-grade inflammation may contribute to the devel-
opment of sarcopenia, and maintaining muscle mass and

Table 1 Various types of
leukocytes (white blood cells) and
their main function in the immune
system

Cell type Main immune system function Acute
exercise

Chronic
exercise

Neutrophils Phagocytosis ↑ ↔

Monocytes/macrophages Phagocytosis, antigen presentation, cytokine
production, cytotoxicity

↑ ↔

Dendritic cells Antigen presenting cells ↑ ↔

Natural killer cells Cytotoxicity ↑ ↔

T cells Lymphocyte regulation, antigen recognition,
B-cell proliferation

↑ then ↓
(biphasic)

↔

B cells Antibody production, memory cell production ↑ then ↓
(Biphasic)

↔

↑, increase in circulating cell numbers systemically; ↓, decrease in circulating cell numbers systemically; ↔, no
change in circulating cell numbers systemically. Adapted from reference [26]
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function throughout the aging process is viewed as a major
health challenge [33]. The process of muscle hypertrophy and
regeneration is highly regulated and involves communication
between the immune system and muscle [5]. As mentioned
above, myokines are released from contracting skeletal mus-
cle, and these myokines are likely to play an essential role in
coordinating the “cross-talk” which occurs between the mus-
cle and the immune system [30].

In muscle, there are resident monocytes and macrophages
(part of the innate immune system) that are normally quies-
cent, but when muscle is contracted forcefully and/or muscle
damage occurs, resident leukocytes will become activated.
The activated macrophages release chemokines that attract
other leukocytes such as neutrophils to the region of muscle
damage. The neutrophils’ main function is to create a pro-
inflammatory environment where pro-inflammatory cyto-
kines such as IFN-γ and TNF-α predominate and attract fur-
ther macrophages from the systemic circulation via extravasa-
tion (i.e., the movement of macrophages from the systemic
circulation to areas within the tissue itself). These macro-
phages are phenotypically distinct and are named theM1 type.
The M1 type of macrophage is known as the pro-
inflammatory phenotype, whereas theM2 type of macrophage
is involved in creating an anti-inflammatory environment and
is involved with muscle regeneration. Thus, depending on the
stage of muscle injury or repair, either the M1 or M2 type of
macrophage will predominate which allows for a coordinated
response of the immune system in the muscle [5, 29].

The link between the regulation of the immune system,
the associated inflammatory response, and muscle has re-
cently started to become apparent. There are a few cytokines
that play an essential role in linking the inflammatory re-
sponse of the immune system with the muscle regeneration
that occurs. Included in this is IFN-γ, which acts to mediate
the production of the M1 type of macrophage but also con-
trols the expression of genes encoding major histocompati-
bility complex class II transactivator (CIITA) in myocytes.
IFN-γ will activate muscle satellite cells to express the tar-
get genes for CIITA which essentially links the immune
system with skeletal muscle [34–37]. Furthermore, TNF-α
is intricately involved in linking the inflammatory response
due to muscle injury and muscle regeneration following
injury. Here, the TNF-α cytokine is linked to suppression
of proliferation, but promotion of differentiation of muscle
satellite cells as well as the activation of NF-κB in myeloid
cells and myocytes (inducing an inflammatory response and
muscle atrophy respectively) [38, 39]. Thus, it is evident
that TNF-α plays multiple roles and influences the muscle
and immune systems in a variety of ways. It is interesting to
note that TNF-α is not released in substantial quantities into
the systemic circulation with exercise but is increased at the
gene level within skeletal muscle itself [40]. This suggests
that TNF-α acts in an autocrine manner within the muscle

tissue but may also communicate with resident macro-
phages in the muscle itself.

When M1 macrophages are transitioning to the M2 pheno-
type, there is concomitant increase in IL-10 (a cytokine that is
predominantly considered to be anti-inflammatory). This cy-
tokine is involved in both inflammatory modulation, via M1
toM2 phenotypic shifting, and regeneration of muscle follow-
ing damaging injury by signaling myogenic satellite cells to
transition from proliferation to differentiation [41, 42].
Remarkably, this links another cytokine (IL-10) with pleiotro-
pic roles in the immune and muscle systems and demonstrates
the cross-talk that occurs between these two physiological
systems. The IL-10 cytokine/myokine is also released in sub-
stantial amounts into the systemic circulation via exercise and
is thought to play an essential role in producing the anti-
inflammatory effects of exercise (Fig. 1) [11, 40] which may
contribute to improving muscle health in those with chronic
low-grade inflammation. Transforming growth factor-β
(TGFβ) is another cytokine that is intricately involved in the
muscle and immune compartments within regenerating mus-
cle tissue. Here, TNF-α expression is suppressed, and TGFβ
expression is increased which shifts the phenotype of macro-
phages to the M2 type [43–45]; this promotes muscle regen-
eration following damage or injury.

Effects of Exercise on Immune Response
and Bone

As already mentioned, chronic low-grade inflammation is
highly associated with the development of bone loss
(osteopenia, osteoporosis) as an individual ages. Many of
the inflammatory signaling pathways and molecular mecha-
nisms responsible for inflammation are countered by partici-
pating in regular exercise [7•]. For instance, IκBα kinase
(IKK) phosphorylates nuclear factor-κB (NF-κB) which is a
transcription factor that plays a key role in immunity and
inflammation via the production of many pro-inflammatory
regulators [46]. NF-κB is stimulated by the receptor activator
of NF-κB ligand (RANKL) which binds with the receptor
activator of NF-κB (RANK) on precursor osteoclast cells to
eventually form osteoclast cells which results in bone resorp-
tion [47–49]. Many pro-inflammatory cytokines such as
interleukin-1 (IL-1), IL-6, IL-7, IL-17, vascular endothelial
growth factor (VEGF), and TNF-α will promote osteoclasto-
genesis as well as bone resorption via their stimulation of
RANK through accumulative production of RANKL [49].
Osteoprotegerin (OPG) is a cytokine decoy receptor that binds
with RANKL and inhibits its ability to bind with RANK
which results in less osteoclast differentiation and consequent-
ly less bone resorption [48, 49]. The drug denosumab, a
monoclonal antibody to RANKL, binds to RANKL in a sim-
ilar manner as OPG and is now used in the treatment of
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osteoporosis [50]. The RANK receptor, which is typically
associated with the immune system, clearly has profound in-
fluences on bone.

High-impact exercise (plyometric jumping) in girls, boys,
and young men acutely stimulates a systemic increase in OPG
which suggests that exercise of this type may have a beneficial
effect on bone [51, 52]. Systemic RANKLwas decreased after
an acute plyometric exercise session in female children and
adolescents; however, OPG remained unchanged in this co-
hort [53]. In contrast, two back-to-back days of high-intensity
metabolic conditioning (that involved both cardiovascular
conditioning and resistance exercise) resulted in a significant
decrease in OPG 48-h post-exercise in a group of young adults
[54]. Further work indicated that an acute session of high-
intensity interval exercise on a cycle ergometer was able to
significantly increase immediate post-exercise concentrations
of bone alkaline phosphatase (a biomarker of bone formation),
OPG, and RANKL but the effect was only sustained for bone
alkaline phosphatase at 1-h post-exercise [55]. A biomarker of
bone resorption (amino-terminal cross-linking propeptide)
was reduced 24-h post-exercise [55].

The effects of chronic exercise training on OPG/RANK/
RANK-L are mixed. Eight weeks of resistance training in
middle aged women with metabolic syndrome (which is asso-
ciated with low-level chronic inflammation) was able to raise
the basal systemic levels of OPG compared with that of a
control group; this suggests that chronic resistance training
is able to raise OPG levels which may have a beneficial effect

on bone [56]. In contrast, aerobic-based endurance exercise
for 8months in a cohort of 30–65-year-old adults had no effect
on the systemic resting levels of OPG [57]. In a group of older
women and men (mean age 68.2 years) who completed
32 weeks of 2 days per week of resistance training and
1 day per week of weight-bearing impact exercise training,
there was a significant decrease in the inflammatory cytokines
interferon-γ (IFN-γ) and IL-6 (in the men only) with no
change in resting values of OPG, osteocalcin (a marker of
bone formation), C-terminal telopeptide of type I collagen (a
marker of bone resorption), or RANKL [58]. This type of
exercise training may therefore be an effective anti-
inflammatory modality; however, it may not have the desired
chronic effect on bone biomarkers.

While OPG has received a high degree of attention as a
potential mediator of bonemetabolism, and may be stimulated
with acute exercise interventions, there are a number of other
cytokines that have an influence on bone from a variety of
different research models. As previously discussed, IL-6 is
elevated in chronic inflammatory states and stimulates bone
resorption by augmenting osteoclast differentiation via
RANKL stimulation [59, 60]. In a group of post-menopausal
women diagnosed with osteopenia, the systemic concentra-
tion of IL-6 negatively correlated with bone mineral density
(BMD) and hand-grip strength at baseline. Furthermore, the
decrease in IL-6 with 6 months of alendronate-calcitriol ther-
apy negatively correlated with baseline lumbar BMD and pos-
itively correlated with parathyroid hormone concentration

Fig. 1 Acute and chronic effects
of exercise on some inflammatory
cells and cytokines. IL-6,
interleukin-6; IL-10, interleukin-
10; IL-1ra, interleukin-1 receptor
antagonist; IL-1β, interleukin-1
beta; TNF-α, tumor necrosis fac-
tor alpha
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(PTH) [61]. This study concluded that the improvement in IL-
6 concentrations over the 6 months was associated with the
severity of bone loss at baseline and higher levels of PTH [61].
Muscle contraction (exercise) is known to stimulate the re-
lease of the myokine/cytokine IL-6 into the systemic circula-
tion but the increase is only a temporary response with con-
centrations usually decreasing fairly rapidly after the exercise
session is complete [11]. It is likely that the pulsatile nature of
the acute exercise IL-6 response helps create the anti-
inflammatory environment, whereas chronic elevation of IL-
6 is viewed as pro-inflammatory with deleterious effects on a
number of tissue types including bone [62]. Additional anti-
inflammatory cytokines such as IL-1 receptor antagonist (IL-
1ra) and IL-10 are released with acute bouts of exercise [11,
63]. It is theorized that this systemic cytokine response creates
an anti-inflammatory environment for individuals who engage
in regular exercise training.

There are a number of additional cytokines that may affect
bone metabolism. IL-7 is a pleiotropic cytokine which has
effects on both osteoclasts and osteoblasts, and thus, it re-
mains a contentious issue as to what effects IL-7 has on bone
metabolism [64]. Osteoblasts produce RANKLwhich is stim-
ulated by TNF-α which is induced by IL-15; therefore, IL-15
is involved in osteoclastogenesis via the RANK/RANKL
pathway [7•]. TNF-α is a major stimulator of osteoclastogen-
esis and therefore bone resorption [65]. Myostatin, which is
considered a myokine that inhibits muscle hypertrophy, di-
rectly affects bone loss in a mouse model of rheumatoid ar-
thritis and inhibition of myostatin resulted in preservation of
bone [66]. Seven days of unloading in myostatin knockout
mice decreased osteoblast cell numbers, and bone loss was
not prevented in this model [67]. Finally, the myokine irisin
is lower in post-menopausal women who had a previous fra-
gility fracture when compared with those who had not had a
fragility fracture [68]. In mice, injection of low-dose recom-
binant irisin stimulates an increase in cortical bone mass [69],
prevents trabecular and cortical bone mineral density loss dur-
ing hind-limb suspension, and restores bone mass once hind-
limb suspension ceases [70]. These cytokines and myokines
demonstrate the cross-talk that the immune system has on
bone as well as the cross-talk that may be occurring when
skeletal muscle releases myokines that could influence bone.
More research evaluating the effects of various cytokines and
myokines on bone tissue may lead to better therapeutic ap-
proaches to diseases and the understanding of the cross-talk
between various physiological systems.

Conclusion

While there is some understanding of the inter-relationship
between the immune system, muscle, and bone in response
to exercise, research is limited and additional work is

warranted. Specifically, identifying the types, doses, intensi-
ties, and frequencies of various exercise modalities on
influencing the immune system response and how this influ-
ences bone and muscle is an area apt for future research. Also,
identifying the similarities or differences in the acute response
of the immune system, and its cross-talk with muscle and
bone, between an un-trained and trained state is of interest.
Will the strength of the response remain, or even be more
robust, in a trained state? Understanding the effects of exercise
training on the cross-talk between the immune system and
bone or muscle in diseased populations is an area that should
continue to undergo pre-clinical and clinical research efforts.
These interactions are essential for maintaining musculoskel-
etal health as individuals’ age.
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