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Abstract
Purpose of Review To summarize and discuss recent progress and novel signaling mechanisms relevant to bone marrow
adipocyte formation and its physiological/pathophysiological implications for bone remodeling.
Recent Findings Skeletal remodeling is a coordinated process entailing removal of old bone and formation of new bone. Several
bone loss disorders such as osteoporosis are commonly associated with increased bone marrow adipose tissue. Experimental and
clinical evidence supports that a reduction in osteoblastogenesis frommesenchymal stem cells at the expense of adipogenesis, as
well as the deleterious effects of adipocyte-derived signaling, contributes to the etiology of osteoporosis as well as bone loss
associated with aging, diabetesmellitus, post-menopause, and chronic drug therapy. However, this view is challenged by findings
indicating that, in some contexts, bone marrow adipose tissue may have a beneficial impact on skeletal health.
Summary Further research is needed to better define the role of marrow adipocytes in bone physiology/pathophysiology and to
determine the therapeutic potential of manipulating mesenchymal stem cell differentiation.
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Introduction

Bone marrow is a heterogeneous and dynamic tissue that un-
dergoes significant alterations in structure and compositionwith
age, exposure to therapeutic drugs, physiological changes, and
several pathological states. Bone marrow adipose tissue reflects
the accrual of adipocytes embedded within a complex extracel-
lular matrix along with cells of both the hematopoietic and
mesenchymal lineage. Adipocytes are one of themost abundant
cell types (15–70%) within human bone marrow [1, 2] and
changes in the number and size of bone marrow adipocytes
are well established to occur with aging and several clinical
disorders of bone loss such as osteoporosis. Consequently, con-
siderable attention has been directed to investigating the impact

of bonemarrow adipocytes on the critical physiological process
of bone remodeling as well as the relevance of these cells to
bone loss disorders [3••, 4]. Bone marrow mesenchymal stem
cells (MSCs) are a population of self-renewing pluripotent stem
cells with the ability to give rise to adipocytes or bone-forming
osteoblasts. Hematopoietic stem cells (HSCs) give rise to blood
cells of the lymphoid and myeloid lineage as well as bone-
resorbing osteoclasts [5, 6]. Adipocytes have been found to
influence bone remodeling by influencing osteoblast and oste-
oclast differentiation and function [5]. As a coordinated balance
between bone formation and resorption is critical to maintain
skeletal integrity, bone marrow adipocytes may play roles both
in homeostatic bone remodeling as well as bone loss disorders.
In this brief review, we will highlight recent advances in under-
standing the role of bone marrow adipocytes in contributing to
the deregulation of osteoblast and osteoclast differentiation that
affects bone remodeling under pathological conditions.

Cell-Intrinsic Suppression
of Osteoblastogenesis

A considerable body of fundamental experimental evidence
derived from cell and animal studies indicates adipocytes can
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affect the development and function of osteoblasts and osteo-
clasts and thereby bone remodeling [5]. As osteoblasts and
adipocytes are derived from a common MSC precursor, one
of the principal mechanisms believed to account for this is an
intrinsic effect on MSC lineage allocation. The lineage fate of
MSCs is determined both by activation of cell signaling path-
ways leading to a terminally differentiated cell type as well as
active suppression of competitive lineages [7–9]. For exam-
ple, the profound osteogenic influence of Wingless-type
MMTV integration site family (Wnt) signaling derives both
from the induction of osteoblastogenic transcription factors
such as runt-related transcription factor 2 (RUNX2) and
osterix [10, 11] and the active suppression of competing line-
ages fromMSCs [6, 12]. Most notably, Wnt signaling reduces
the expression and activity of the potent adipogenic transcrip-
tion factors peroxisome proliferator-activated receptor γ
(PPARγ) and CCAAT/enhancer binding protein α (C/
EBPα) in MSCs and thereby, inhibits adipocyte formation
[12, 13]. Similarly, MSC adipogenesis entails both stimulation
of adipogenic signaling and suppression of osteogenic path-
ways such as Wnt and Notch [14–16]. For example, the in-
duction and accumulation of intracellular proteins such as
transducing-like enhancer of split 3 (TLE3) with adipogenic
differentiation of bone marrow stromal cells was recently
reported to suppress the osteogenic signaling through syner-
gistic enhancement of PPARγ activity and repression of ß-
catenin and RUNX2 in a histone deacetylase-dependent
fashion [17, 18]. As such, factors that influence MSC lineage
allocation can have a profound influence on the balance of cell
types present within bone and thus skeletal homeostasis. It is
well known that bone marrow adipose tissue increases with
age and that reduced bone quantity and quality (i.e.,
osteopenia or osteoporosis) related to aging [19], menopause
[20], diabetes [21, 22], chronic glucocorticoid exposure [23,
24], and anorexia nervosa [25] is frequently associated with
elevated bone marrow adipocytes. This indicates at the very
least that changes in the physiological milieu that coincides
with these states result in greater relative predisposition for
MSC adipogenesis versus osteoblastogenesis.

Influence of Adipocyte-Secreted Signaling
Molecules on Bone Remodeling

As introduced previously, adipocytes are generally abundant
in human bone marrow [1, 2] and expansion of bone marrow
adipose tissue is common with aging and several clinical bone
loss disorders. Aside from intrinsic effects on MSC differen-
tiation, adipocytes have the potential to impact the develop-
ment and function of other cell types in bone through the
paracrine actions of secreted biologically active signaling
molecules (adipokines). Several studies have reported that
adipocyte-conditioned media samples suppress the formation

of osteogenic lineages from MSCs [26–28] and promote os-
teoclast formation from HSCs [5, 29]. This indicates that
adipocyte-derived factors can influence the development of
key effectors of bone remodeling and thereby bone mass and
skeletal integrity. Over the past decade, several key inhibitors
of osteoblast differentiation were identified as adipokines
secreted by bone marrow adipocytes. For instance,
preadipocytes secrete the Wnt inhibitor, secreted frizzled-
related protein 1 (sFRP-1) that directs MSC fate decision
toward the adipogenic lineage and inhibits osteogenesis in
response to inhibition of Wnt/β-catenin signaling [28].
Legumain, a cysteine protease secreted in increasing amounts
with MSC adipogenic differentiation, has been shown to sup-
press osteoblast commitment and maturation concomitant
with inducing adipogenic differentiation of undifferentiated
cells in a paracrine/autocrine fashion [30]. Mechanistically,
the degradation of fibronectin by legumain prevents extracel-
lular matrix deposition essential for osteogenesis and provides
a microenvironment more amenable to bone marrow adipo-
genesis. The nuclear factor-kappa-light-chain-enhancer of ac-
tivated B cells (NF-κB) binding regions in legumain promoter
is thought to be activated to induce legumain expression dur-
ing the progression of adipogenic differentiation [30].
Consequently, legumain expression was found to be markedly
induced in MSCs isolated from osteoporotic individuals sug-
gesting a potential target to treat the condition [30].

Previously, we reported that bone marrow adipocytes se-
crete large amounts of chemerin and that this adipokine
promotes MSC adipogenesis while suppressing osteoblasto-
genesis [31]. Chemerin activation of its cognate receptor
chemokine-like receptor 1 (CMKLR1) in bone marrow
MSCs resulted in PPARγ-mediated β-catenin ubiquitination
that abrogated basal osteogenic Wnt signaling and promoted
the adipogenic PPARγ signaling in MSCs [32, 33•]. In
addition, the paracrine actions of chemerin through activation
of CMKLR1 expressed by HSCs promoted osteoclastogenic
differentiation and matrix resorption [29]. Conversely, other
adipokines such as C1q/tumor necrosis factor (TNF)-related
protein-3 (CTRP3) inhibit osteoblast-mediated osteoclastogenic
differentiation thereby disrupting the coordination between bone
formation and resorption [34]. Subfatin (METRNL) is another
novel adipokine induced during adipogenesis [35] that has been
reported to impair osteoblast differentiation and maturation [36].
Although these adipogenic factors oppose osteoblast develop-
ment, other factors such as the bone morphogenetic proteins
(BMPs) can stimulate both adipogenic and osteoblastogenic dif-
ferentiation. For example, BMP7 (also known as osteogenic
protein-1) has been shown to induce the proliferation and differ-
entiation of adipocytes and osteoblasts in mouse bone marrow
stromal cell cultures [37]. One possible mechanism could be
through the activation of alternate receptors depending on the
conditions prevailing in the microenvironment. For example,
while BMP receptor type IA (BMPR-IA) activates adipogenic
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pathways, the type IB BMPR (BMPR-IB) favors osteoblasto-
genesis [6]. However, the adipocyte-secreted factors exhibit a
predominant influence in suppressing osteoblastogenic BMP sig-
naling by activating the NF-κB pathway [26] suggesting that the
suppression of adipogenic factors is essential for BMP osteoblast
differentiation.

Recently, there has been increasing interest in the role of
adenosine-mediated purinergic signaling on bone marrow ad-
ipogenesis and bone metabolism. Experimental evidence in-
dicates that MSCs are both a source of adenosine within the
marrow microenvironment and a target for adenosine signal-
ing through the expression of purinergic receptors that
influence fundamental cellular processes including MSC
self-renewal, differentiation, and survival [38–42]. MSCs ex-
press significant levels of the ectoenzymes ectonucleoside tri-
phosphate diphosphohydrolase 1 (ENTPD1; CD39) and 5′
nucleotidase (CD73) which produce adenosine through the
sequential degradation of extracellular ATP. Adenosine has
been shown to promote both osteoblastogenic and adipogenic
MSC differentiation depending upon the subtype of adenosine
receptor activated [41–43]. For example, adenosine stimula-
tion of A2BR promotes MSC osteogenesis at the expense of
adipogenesis by stimulating cyclic AMP (cAMP) while the
cAMP inhibitory adenosine receptors such as A1AR and
A3AR suppress osteogenesis by promoting adipogenesis
[43–47]. Contrastingly, although the cAMP stimulatory
A2AR induces osteogenesis at the late osteoblast stage of dif-
ferentiation, it promotes adipogenesis in undifferentiated
MSCs [43]. Furthermore, at the basal level, the degradation
of ATP by the expression of CD39 and CD73 is a prerequisite
to block ATP-mediated adipogenic signaling and activate
adenosine-induced osteogenic differentiation [48].
Mechanistically, this has been shown to entail ATP binding
and activation of the P2 subtype purinergic receptor which
promotes PPARγ expression. On the other hand, conversion
of ATP to adenosine by CD39 and CD73 is a prerequisite for
activation of P1 subtype receptors that promote RUNX2 ex-
pression [46, 47, 49]. Studies also suggest that the adenosine-
producing ectoenzymes and the purinergic receptors mutually
influence each other to establish regulatory circuits that main-
tain MSCs [46, 50]. For instance, a loss of CD73 mRNA
expression was observed in A2AR knockout mouse MSCs
and conversely A2AR mRNA expression was downregulated
in CD73 knockout mouse MSCs [46]. Although the mecha-
nisms involved in this interplay are unknown, it is likely that
the adipogenic A2AR expression [43] is coordinately regulated
with osteogenic CD73 expression [41] to maintain stemness.
In the context of osteoclast differentiation, all four adenosine
receptors A1R, A2AR, A2BR, and A3R were found to be
expressed in osteoclast precursors and further induced by
osteoclastogenic stimuli [51–55]. Similar to that in MSCs,
these receptors exhibit differential effects on HSC differentia-
tion. For example, while A1R promotes osteoclast

differentiation, activation of A2AR blocks osteoclastogenesis
[54, 55]. Also similar to that in MSCs, HSCs express high
levels of ectonucleotidases (CD39 and CD73) that can shift
HSCs from ATP-induced granulocyte-macrophage differenti-
ation program [56] to adenosine-induced osteoclast differen-
tiation program [52, 53].

In addition to contributing to the de novo generation of
adenosine by metabolizing extracellular ATP, bone marrow
stem cells can influence levels of extracellular adenosine and
thereby local purinergic signaling through the expression of
equilibrative adenosine transporters at the cell membrane.
Evidently, loss of the equilibrative nucleoside transporter 1
(ENT1) in mice increases extracellular adenosine levels by
preventing the transport of adenosine into cells that promotes
activation of P1 receptors [42, 57]. Consequently, osteoblast
marker gene expression and osteoblast differentiation in-
creases in ENT1 null mice [42, 57]. However, ENT1-null
mice manifest an osteopenic phenotype with increased bone
turnover [57–59] perhaps due to a dominant effect of ENT1
on osteoclast formation than osteoblast differentiation [57].
Mirroring these effects, loss of function ENT1 mutations also
impairs bone homeostasis in humans [59]. Conversely, muta-
tions in an acidic pH-dependent lysosomal adenosine trans-
porter ENT3 [60] result in reduced resorptive abilities of os-
teoclasts leading to dysosteosclerosis, a form of osteopetrosis
in humans [61]. Together, these findings signify that both
intra- and extracellular adenosine can differentially influence
bone marrow stem cell differentiation and bone remodeling.

Does Clinical Evidence Support a Role
for Adipocytes in Skeletal Health?

The presence of adipose tissue in the bone marrow of healthy
individuals with no evidence of pathological bone loss raises
the fundamental question of whether there is physiological
role for adipocytes in the maintenance of skeletal integrity.
For example, consistent with the role of peripheral adipose
depots, it is possible that marrow adipocytes through the up-
take of fatty acids may protect other cells in the local micro-
environment from potential lipotoxicity and/or serve as a
mobilizable reservoir that can be accessed during periods of
energy deficit [62]. Moreover, under physiological conditions,
marrow fat has a positive association with bone mass.
However, this may be related more to the nature rather than
the quantity of marrow adipose. For example, during puberty
and with fracture repair processes, marrow fat exhibits a
brown adipocyte-like phenotype characterized by the expres-
sion of brown adipocyte transcription factors (e.g., PR domain
containing 16 (Prdm16) and Forkhead Box C2 (FoxC2)) and
marker genes (e.g., PGC1α, deiodinase 2 (Dio2), beta-3-
adrenergic receptor (β3AR), and uncoupling protein 1
(UCP1)) [1, 4, 63, 64]. It is generally believed that marrow
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adipocytes exhibiting brown adipocyte-like phenotype con-
tribute to a microenvironment favorable for osteogenesis by
providing the necessary energy balance, adaptive thermo-
genesis, and/or by releasing pro-osteogenic factors such as
insulin-like growth factor 1 (IGF1) and leptin [1, 4, 64, 65].
In support of this, adipocyte-specific FoxC2 overexpression
in mice or ectopic expression of FoxC2 in cultured bone
marrow-derived adipocytes induced the browning of adipo-
cytes and promoted the secretion of paracrine bone anabolic
factors such as insulin-like growth factor binding protein 2
(IGFBP2) and wingless related MMTV integration site 10b
(WNT10b) leading to enhanced osteogenesis and increased
bone mass [66••].

On the other hand, there is substantive and consistent evi-
dence from clinical studies that conditions associated with
bone loss, such as osteoporosis, aging, and glucocorticoid
therapy, are commonly associated by an adipose-rich bone
marrow [2, 5, 6, 67]. It is postulated that in addition to a
general expansion of adipose volume, bone marrow adipo-
cytes under these conditions lose their brown adipose tissue
characteristics which contributes to the increased production
of factors such as inflammatory cytokines and free fatty acids
that suppress osteogenic differentiation of MSCs [1]. This
shift in the impact of marrow adipocytes on bone remodeling
between physiological and pathological conditions is thought
to arise from sensing and transducing stress responses during
disease conditions. A common condition associated with most
diverse disease processes affecting bone remodeling is oxida-
tive stress which can contribute to a switch from a brown to
white adipocyte-like phenotype in bone marrow adipose tis-
sue [68–71]. For example, it has been reported that proteins
which inactivate reactive oxygen species (ROS) such as anti-
oxidant enzymes and UCP1 were induced during differentia-
tion of brown adipocytes [72]. However, increased production
of ROS by pro-inflammatory cytokines could overwhelm the
antioxidant capacity of these cells resulting in downregulation
of the classical brown adipocyte markers such as UCP1 andβ-
Klotho [72]. Experimental evidence also supports that oxida-
tive stress and the switch from a brown adipocyte phenotype
can also contribute to the expansion of the bone marrow adi-
pose tissue commonly observed with bone loss disorders such
as osteoporosis. For example, the elevated oxidative stress
can lead to an increasing dependence on alternate cellular
defense mechanisms such as FoxO transcription factors
that require β-catenin for activation [73, 74•]. The
resulting diversion of β-catenin to FoxO-mediated tran-
scription in response to oxidative stress is believed to lead
to reduced T-cell factor/lymphoid enhancer-binding factor
(TCF/LEF)-mediated osteogenic signaling in MSCs [73].
This loss of β-catenin with oxidative stress further re-
lieves functional repression of the master adipogenic tran-
scription factor, PPARγ that promotes adipogenesis and
negatively associates with bone mass [75].

Despite compelling evidence from cell-based models, the
impact of marrow adipose tissue on skeletal homeostasis or
bone loss disorders is less clear owing to inconsistencies in
findings from clinical studies [76, 77]. This challenge to the
classical view on the inverse association between adipogenic
and osteoblastogenic signaling is further bolstered by reports
of a lack of association between marrow adiposity and skeletal
phenotypes in animal models such as loss of function muta-
tions in kit receptor [78] and 11beta-hydroxysteroid dehydro-
genase 1 (11 β-HSD1) enzyme [79] or in some mouse strains
such as C3H/HeJ [80]. Thus, the type of correlation between
bone marrow adipocytes and bone formation cannot be gen-
eralized and appears to vary with the nature of stimuli driving
MSC adipogenesis and the physiological/pathophysiological
context. Furthermore, the development and mass of bone mar-
row adipose tissue are distinct from those of peripheral adi-
pose depots which under pathological conditions are often
found to be negatively associated with the marrow adiposity
[81]. For instance, type I diabetes, malnutrition, anorexia
nervosa, calorie restriction, and lipodystrophy exhibit reduc-
tion in peripheral adipose depots but an inverse increase in
marrow adiposity [82, 83]. However, even this relationship
between bone marrow and peripheral adiposity also cannot
be generalized as there are other scenarios such as growth
hormone deficiency where positive correlation exists between
the developments of these adipose depots [84].

Impact of Therapeutic Drugs on Bone
Remodeling

In addition to endogenous adipocyte-secreted factors, several
therapeutic drugs are known to influence the balance between
adipogenesis and osteoblastogenesis by targeting the
adipogenic and/or osteogenic signals. For example, antidia-
betic drugs such as thiazolidinedione and steroidal anti-
inflammatory agents are well-known inducers of PPARγ
and thereby suppress osteogenesis and promote adipogenesis
of MSCs. Consistent with this, the clinical use of these drugs
has been reported in several analyses to be associated with
both decreased bone formation and enhanced bone resorption
[85–87] as well as an increased risk for bone fracture [87].
Glucocorticoids are commonly used for the chronic treatment
of rheumatic diseases [88, 89]. These drugs cause an increased
production of receptor activator of nuclear factor-kappa B
ligand (RANKL) in osteogenic cells that promotes osteoclas-
togenesis and ultimately leads to accelerated bone resorption.
Steroidal anti-inflammatory drugs also suppress the produc-
tion of cytokines, TGFβ and BMP2, and induce the
adipogenic transcription factors, CEBP α, CEBPβ, and
PPARγ, that drive the adipogenesis at the expense of osteo-
genic differentiation [88, 89]. Chronic treatment with
anticancer/antiviral nucleoside analogs (zidovudine, 5-
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fluorouracil, tenofovir, emtricitabine, ritonavir) that compete
with natural nucleosides for transport and/or incorporation into
DNA, modulate intracellular or extracellular availability of nu-
cleosides, and have been reported to induce bone marrow adi-
pogenesis and bone loss [90–94]. Consistent with the
established increased risk for bone loss with menopause, drugs
that reduce estrogen levels, such as medroxyprogesterone ace-
tate which is widely used for treating endometriosis and as a
contraceptive agent, can lead up to 8% bone loss depending on
the dose and extent of administration [95]. Similarly, aromatase
inhibitors such as anastrozole, exemestane, and letrozole which
are used as hormone therapy for estrogen receptor-positive
breast cancer also drastically reduce estrogen levels and cause
marked bone loss (2% bone loss per year compared with 1%
loss in post-menopausal women) [96].

In addition to adverse actions on bone tissue, drugs used for
treating bone disorders can negatively influence bone marrow
fat. Intriguingly, a number of antiresorptive and anabolic
drugs that increase bone mass also exhibit a general inverse
relationship with bone marrow fat [97–102]. For example,
despite the therapeutic benefits of bisphosphonates being di-
rected toward osteoclast inhibition, certain drugs within this
class, including residronate and zoledronic acid, suppress
bone marrow fat [97–99]. In addition, anabolic agents that
target osteoblast development/function have also been shown
to reduce marrow fat formation [100–102]. Notably,
teriparatide reduces fat accumulation in bone marrow but not
in white adipose tissue [100, 101]. Thus, understanding how
drugs can act on bone marrow fat is a fundamental challenge
that has the potential for developing effective therapeutic
applications.

Therapeutic Implications

Antiresorptive therapy is themost common approach to treating
bone loss disorders such as osteoporosis and agents with this
mechanism of action generally fall under five categories:
bisphosphonates, estrogen, selective estrogen receptor modula-
tors (SERMs), monoclonal antibodies (e.g., denosumab), and
calcitonin. Among these, bisphosphonates are the most typical-
ly used first-line antiresorptive agents owing to a long history of
clinical experience, relatively low cost, and established benefit
to reduce fracture risk. However, while studies examining the
long-term safety and efficacy in different categories of patient
subpopulations are still ongoing [103], the improved
antifracture efficacy and safety profile of denosumab to date
have contributed to a rapid and increasing clinical adoption of
the use of this drug for osteoporosis. In general, the principal
antiresorptive therapy is to re-establish the balance of bone
remodeling through a relative improvement in bone formation
secondary to inhibition of bone resorption. In contrast to these
agents, anabolics such as parathyroid hormone (PTH) and

teriparatide directly stimulate bone formation resulting in a rap-
id increase in bonemass. Although these drugs are approved for
the treatment of bone loss disorders such as osteoporosis, cost
and concerns regarding increased long-term risk for adverse
effects, such as osteosarcoma, have limited the clinical applica-
tion of these agents [104]. Moreover, while anabolics enhance
bone formation, with prolonged use they also can increase the
overall rate of bone turnover by activating MSCs and osteo-
blasts to release pro-osteoclastogenic signaling molecules that
stimulate bone resorption with prolonged use. Therefore, acti-
vation of bone formation needs to be coupled with a reduced
resorption in order to promote bone regeneration in osteoporot-
ic individuals. This has led to the exploration of combination
therapy or a sequential anabolic followed by antiresorptive ther-
apy to improve the efficacy and overcome the limitations of
monotherapy with antiresorptives or anabolics [105–108].
However, with newfound knowledge gained from research in
bone marrow fat, it is tempting to speculate that interventions
promoting osteoblastogenic versus adipogenic MSC differenti-
ation, transdifferentiation of existing marrow adipocytes into
osteoblasts, and/or white-to-brown conversion of marrow adi-
pocytes could offer novel and effective therapeutic avenues.
Outcomes from recent preclinical studies supporting this prep-
osition are also encouraging in this direction [66••, 109].

Summary

In conclusion, a well-established body of clinical literature sup-
ports an association between bone marrow adipose tissue and
bone loss attributed to aging, menopause, and drugs. Similarly,
considerable experimental evidence from animal and cell cul-
ture models provides a mechanistic basis for rationalizing the
deleterious effects of bone marrow adipocytes on the develop-
ment and function of other bone cell types. However, this view
is complicated by studies indicating that marrow adipose tissue
may be largely inconsequential, or in some cases, beneficial. As
such, it is becoming increasingly apparent that our view of bone
marrow adipose tissue must go beyond a limited consideration
of volume to consider other factors such as adipocyte pheno-
type (e.g., brown versus white) and the physiological/
pathophysiological context. Recent studies reveal that antioxi-
dant defenses associated with acquiring brown fat feature as
one possible cause for the positive association between bone
marrow adipose tissue and bone mass under physiological
states (e.g., puberty and fracture repair). However, further stud-
ies are required to improve understanding of the mechanisms
that contribute to transition between the potential beneficial
physiological and deleterious pathological effects of bone mar-
row adipose tissue. Ultimately, this may lead to novel therapies
for bone loss disorders that modulate the lineage determination
(adipocytes versus osteoblasts) of mesenchymal stem cells and/
or phenotype of marrow adipocytes (white versus brown).
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