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Abstract
Purpose of Review Mesenchymal stem cells (MSCs) located in the bone marrow have the capacity to differentiate into multiple
cell lineages, including osteoblast and adipocyte. Adipocyte density within marrow is inversely associated with bonemass during
aging and in some pathological conditions, contributing to the prevailing view that marrow adipocytes play a largely negative role
in bone metabolism. However, a negative association between marrow adipocytes and bone balance is not universal. Although
MAT levels appear tightly regulated, establishing the precise physiological significance of MAT has proven elusive. Here, we
review recent literature aimed at delineating the function of MAT.
Recent Findings An important physiological function of MAT may be to provide an expandable/contractible fat depot, which is
critical for minimization of energy requirements for sustaining optimal hematopoiesis. Because the energy requirements for
storing fat are negligible compared to those required to maintain hematopoiesis, even small reductions in hematopoietic tissue
volume to match a reduced requirement for hematopoiesis could represent an important reduction in energy cost. Such a
physiological function would require tight coupling between hematopoietic stem cells andMSCs to regulate the balance between
MAT and hematopoiesis. Kit-ligand, an important regulator of proliferation, differentiation, and survival of hematopoietic cells,
may function as a prototypic factor coupling MAT and hematopoiesis.
Summary Crosstalk between hematopoietic and mesenchymal cells in the bone marrow may contribute to establishing the
balance between MAT levels and hematopoiesis.
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Introduction

Bone marrow is a hierarchal, self-renewing, and self-
amplifying tissue maintained by small numbers of hematopoi-
etic stem cells (HSCs) and mesenchymal stem cells (MSCs).
These cells have the capacity to self-renew asymmetrically

and differentiate into specific cell lineages. The hematopoietic
bone marrow is responsible for myelopoiesis, erythropoiesis,
thrombopoiesis, and lymphopoiesis [1]. Hematopoiesis oc-
curs in bone marrow in close contact with resident MSC-
derived stroma that provides structural and functional support
for HSC growth and differentiation [2, 3]. The stroma includes
endothelial cells, smooth muscle cells, reticular cells, stromal
fibroblasts, osteoblasts, and adipocytes [4]. HSCs and MSCs
within bone marrow contribute to additional important phys-
iological functions, including bone growth and turnover.
Specifically, HSCs give rise to osteoclasts andMSCs give rise
to endosteal osteoblasts [5, 6].

Marrow adipose tissue (MAT) refers to MSC-derived adi-
pocytes located within the bonemarrow niche. Although stud-
ied since the nineteenth century [7•], efforts to understand the
significance of MAT have increased substantially in recent
years. MAT has a unique set of characteristics that set it apart
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from other fat depots. Spatially confined within the skeleton,
expansion capacity of MAT is limited compared to visceral/
subcutaneous white adipose tissue (WAT) and brown adipose
tissue (BAT). While all adipose compartments are heteroge-
neous in their cellular composition, MAT differs from other
compartments in that the adipocytes are interspersed at vary-
ing density throughout a heterogeneous population of cells
that include HSCs and bone cells.

Differences among fat depots suggest unique functions.
WAT depots serve primarily as sites of energy storage and
adipokine secretion, and BAT depots serve as sites of basal
and inducible energy expenditure [8]. The function of MAT is
less certain. Here, we review evidence that MAT provides a
highly regulated expandable/contractible fat depot serving to
minimize energy requirements for sustaining optimal hemato-
poiesis. Figure 1 summarizes this model. For additional per-
spectives on MAT, we direct the reader to recent reviews
[9–13], including ones focusing on the relationship between
MAT and energy metabolism [14], MAT and energy deficit
[15], MAT and fatty infiltration of skeletal muscle [16], MAT
and diabetes [17], MAT and exercise [18], and MAT and can-
cer metastasis [19, 20].

Adipocyte Differentiation andMAT Expansion

Local and systemic stimuli, which positively and negatively
regulate lineage-specific signaling pathways, regulate MSC
differentiation fate. The transcription factor PPARγ directs
adipogenic differentiation through two phases: (1) determina-
tion, which converts MSCs to preadipocytes and commits
them to the adipogenic lineage, and (2) terminal differentia-
tion, in which the preadipocytes begin to acquire the necessary
machinery for lipid transport and synthesis, and ultimately
begin to accumulate lipids. In humans, MAT development
and accumulation occur in a physiologically sequential con-
text driven by age, skeletal site, and gender. MAT develop-
ment begins just after birth in the terminal phalanges and
progresses to the distal and proximal long bones of the appen-
dicular skeleton at an accumulation rate of approximately 10%
per decade so that by middle age, MAT occupies 50–70% of
the total marrow volume and represents approximately 5–10%
of total body adipose tissue [21]. Men exhibit greater MAT
volume than women up to middle age, but following meno-
pause MAT volume in women becomes greater than in men
[22]. In addition to the natural progression of MAT accumu-
lation in healthy individuals, some pathological conditions,
including postmenopausal, alcohol abuse, and disuse forms
of osteoporosis, are associated with increased MAT
accumulation.

Two locally distinct populations of marrow adipocytes
have been described [23] and are commonly referred to as
constitutive MAT (cMAT) and regulated MAT (rMAT) [24].

cMAT, also known as “yellow” marrow, consists of densely
packed adipocytes. In rodents, cMAT is common in caudal
vertebrae, phalanges, and distal tibia and accumulates primar-
ily as a function of age. In contrast, rMAT is interspersed in the
red hematopoietic marrow of many bones and is more respon-
sive than cMAT to physiological challenges [10, 24, 25].
rMATadipocytes are reported to be smaller in size and contain
lower amounts of unsaturated lipids compared to cMAT, and
comparison of gene expression profiles suggests that rMAT
exhibits a transcriptional identity more similar to WAT [10,
24]. However, these observations may not offer a complete
description of the range of MAT phenotypes, nor be univer-
sally generalizable. Hypophysectomy-induced growth hor-
mone deficiency resulted in increased accumulation of triglyc-
erides and cholesterol in femur diaphysis, presumably
representing an increase in rMAT. However, in contrast to
the aforementioned analysis [24], the increase in rMAT was
associated with higher levels of unsaturated fatty acids (16:1,
n-7, 18:2, n-6) with no change (16:0) or lower levels (18:0) of
saturated fats [26]. It is clear that additional work is required to
characterize the nature and physiological significance of the
two or more locally distinct populations of marrow
adipocytes.

MATmay exhibit a “hybrid” phenotype (also referred to as
beige fat) with characteristics shared with adipocytes in WAT
and BAT [14]. Similar to WAT adipocytes, MAT adipocytes
are large spherical cells that contain a unilocular lipid droplet.
However, it is unclear the extent to which MAT is insulin
sensitive, a defining characteristic of WAT. Compared to
WAT, MATadipocytes contain a greater number of mitochon-
dria and higher level of expression of mitochondrial regulators
such as PGC-1α and PRDM16. While this suggests a BAT-
like phenotype, MAT does not express appreciable levels of
the BATmarker UCP-1, suggesting thatMATadipocytes have
limited ability to uncouple respiration [27]. In mice, UCP-1
gene expression levels were 1 × 105 greater in BAT than tibia
(Fig. 2). Mild cold temperature stress due to room temperature
housing (22 °C) resulted in 5-fold increase in UCP-1 gene
expression in BAT and a non-significant 1.2-fold increase in
femur compared to thermoneutral housing (32 °C) [28•].
These findings do not support an important role of MAT in
non-shivering thermogenesis in mice, at least in the tempera-
ture range evaluated.

MAT development and accumulation are species-specific
and in mice typically occur later in the life course compared to
larger animals, including rats and humans. As described by
Galileo Galilei in Dialogs Concerning Two New Sciences
(published in 1638), bone size does not scale linearly with
body size. In mice, the skeleton (including bone marrow)
makes up a substantially smaller percentage of total body
mass than in rats (10 times mouse mass) or humans (2 × 103

times mouse mass). Since hematocrit does not differ among
thesemammals, the hematopoietic capacity of bonemarrow in
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larger animals is greater than in smaller ones, whichmay provide
a plausible explanation for differences in MAT accumulation
among species. Mice are able to compensate for the inability of
their small skeleton to support hematopoiesis during a physio-
logical stress such as pregnancy by initiating extramedullary he-
matopoiesis [29]. Pathophysiological increases in bone volume
fraction due to estrogen-induced osteosclerosis or juvenile onset
osteopetrosis also induce extramedullary hematopoiesis in mice
[30, 31]. Because mechanistic studies examining the function of
MAT are often performed in mice, it is important to consider
these species differences in hematopoietic capacity before extrap-
olating results to humans.

Does MAT Regulate Bone Turnover Balance?

MAT has generated considerable interest as a putative nega-
tive regulator of bone balance. Because adipocytes and

osteoblasts differentiate from MSCs, increasing marrow adi-
pocytes could reflect a shift in the differentiation program of
MSCs from osteoblasts to adipocytes [32]. Mechanistically,
inhibition of PPARγ decreases adipocyte differentiation while
increasing osteoblast differentiation. Conversely,
preosteoblast-targeted overexpression of PPARγ inhibits bone
mass gain in male mice and increases ovariectomy-induced
osteopenia in female mice [33]. On the other hand, it is uncer-
tain whether physiological regulation of MAT levels requires
changes in PPARγ gene expression [28].Whatever the precise
underlying molecular mechanisms, a shift in lineage decision
to favor adipogenesis over osteoblastogenesis may prevent
adequate coupling of bone formation to the prevailing level
of bone resorption and result in a negative bone remodeling
balance. Bone marrow adipocytes could also negatively influ-
ence bonemetabolism by releasing adipokines. There is ample
evidence that several of these (e.g. leptin, IGF-1, adiponectin,
resistin) are capable of influencing bone cell differentiation
[34]. Thus, factors produced byMATcould alter bone balance
by (1) changing the rate of appearance of osteoblasts and/or
osteoclasts onto bone surfaces, (2) increasing the rate of oste-
oblast and/or osteoclast disappearance from bone surfaces, or
(3) altering osteoblast and/or osteoclast activity.

Some investigators have concluded that marrow adipocyte
differentiation inevitably occurs at the expense of osteoblast
differentiation and function, and that MAT represents a poten-
tial therapeutic target for interventions to prevent and/or treat
osteoporosis [35, 36]. To challenge the hypothesis that in-
creasing MAT negatively affects osteoblasts, Keune et al.
[37] evaluated the impact of spaceflight-induced increases in
MAT on osteoblast kinetics in rats. While spaceflight resulted
in a 3.5-fold increase in MAT, there were no changes in oste-
oblast activity, lifespan, or production rate. This finding dem-
onstrates that increasing MAT does not necessarily alter
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Fig. 1 Putative role of MAT as an expandable/contractible fat depot to
optimize the hematopoietic cell compartment. The reduced requirement
for hematopoiesis with age results in a reduction in the hematopoietic
compartment with a corresponding increase in MAT. Perturbations that
increase hematopoiesis (pregnancy, blood loss, low temperature stress,
and certain infections) increase the size of the hematopoietic

compartment with a corresponding reduction in MAT. We hypothesize
that increased MAT during fasting is an adaptive response signaled by
negative energy balance. An increase in MAT and resulting reduction in
hematopoietic compartment size during fasting would promote survival
by lowering energy expenditure required to maintain unnecessary
turnover of hematopoietic cells

Fig. 2 Relative gene expression of representative adipokines and UCP-1
among fat depots in mouse. Adipokine expression levels in 4-month-old
female B6micewere 5 to 200-fold lower in total tibia (MAT) compared to
expression levels in BATandWAT.UCP-1 expression levels in tibia were
10-fold lower compared to WAT and 100,000-fold lower compared to
BAT. Values are mean ± SE, n = 8/group
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osteoblast dynamics. However, it is possible that failure to
increase osteoblast number in response to increased bone re-
sorption was due to diversion of MSCs from osteoblasts to
adipocytes. Thus, this study does not rule out the possibility
that increased MAT may have contributed to the negative
bone turnover balance.

To address causality and efficacy of targeting MAT to pre-
vent bone loss, Keune et al. [38•] evaluated the skeleton in
weight-bearing and hindlimb-unloaded WT and KitW/Wv

mice. Hindlimb unloading is a ground-based model for space-
flight, and KitW/Wv mice are MAT deficient. Osteoclast perim-
eter and bone formation were higher in distal femur
metaphysis ofMAT-deficient mice consistent with the concept
that preventing MAT increases the production of osteoblasts.
However, cancellous bone volume fraction was unchanged in
weight-bearing bones, and MAT-deficient mice exhibited ex-
aggerated bone turnover and bone loss during hindlimb
unloading. These results do not support the hypothesis that
MAT accrual is responsible for disuse-induced bone loss in
mice. Rather, they suggest that MAT attenuates disuse-
induced osteopenia by dampening bone turnover.

The above findings and earlier work [25, 39] indicate that a
negative association between MAT and bone mass is not uni-
versal and argue against indiscriminant suppression of MAT
as a general strategy to prevent or treat osteoporosis. Perhaps a
better understanding of how crosstalk between MAT and
neighboring cells involved in regulating bone turnover may
reveal conditions where purposely targeting MAT is
justifiable.

Is MAT an Endocrine Target Tissue?

MAT is an endocrine target tissue based on criteria that adi-
pocytes in bone marrow respond to changes in circulating
levels of hormones. Hormones derived from pituitary gland,
adipose tissue, ovaries, adrenal gland, and pancreas influence
MAT. The list of endocrine organs is likely to increase. To
date, studies have focused on hormone deficiency and excess.
The effects of physiological changes in hormone levels on
MAT have received much less attention and should be a pri-
ority for future studies.

Growth hormone, leptin, and estrogen are examples of hor-
mones that influence MAT levels. Growth hormone deficien-
cy following hypophysectomy in rats, leptin deficiency in ob/
ob mice, and estrogen deficiency following ovariectomy in
mice and rats each lead to elevated MAT levels [26, 40, 41].
However, hypophysectomy, leptin deficiency, and ovariecto-
my also result in a plethora of metabolic changes that may
obscure the specific effects of these hormones on MAT.
Hypophysectomized rats, for example, become osteopenic,
hypogonadal, hypophagic, hypoleptinemic, and have low
IGF-I levels. Leptin-deficient mice have impaired bone

growth , depressed growth hormone leve l s , a re
osteopetrotic, and become hyperphagic, diabetic, and
hypogonadal, while ovariectomized rodents experience ac-
celerated bone growth, develop bone- and bone
compartment-specific bone gain or loss, and become hy-
perphagic and hyperleptinemic. Conditions resulting in
end organ resistance to growth hormone (e.g. alcohol
abuse, skeletal disuse) can increase MATwithout changing
growth hormone levels [42, 43]. These findings suggest
that hormones playing an important role in energy metab-
olism, reproduction, or bone biology are likely to influence
MAT. However, the profound and often overlapping ac-
tions of these hormones on their target tissues also suggest
that multiple hormones act in concert to regulate MAT.

While findings to date implicate growth hormone as a key
regulator of MAT levels, the underlying mechanisms mediat-
ing this hormone’s action on bone marrow adipogenesis have
received little attention. To better understand the role of
growth hormone in regulating MAT and the impact of MAT
on bone formation, Menagh et al. treated hypophysectomized
rats exhibiting extensive fat infiltration into marrow with
growth hormone, estrogen, IGF-I, or intermittent parathyroid
hormone [26]. Intermittent parathyroid hormone is of interest
because it is a potent stimulator of bone formation in the
presence or absence of high MAT [39]. Whereas treatment
with growth hormone normalized MAT levels without chang-
ing leptin levels, treatment with either estradiol or IGF-I was
ineffective in lowering MAT. A recent study suggests that
intermittent parathyroid hormone directs bone marrow MSC
fate to osteoblasts and away from adipocytes [44•], a conclu-
sion supported by an earlier study in calorically restricted rats
[45]. However, treatment of hypophysectomized or ovariecto-
mized rats with intermittent parathyroid hormone, while dra-
matically increasing bone formation, did not alter MAT levels
[46]. These divergent results suggest that bone anabolic inter-
ventions such as intermittent parathyroid hormone therapy
may direct differentiation of MSCs towards osteoblasts with-
out reducing existing MAT levels.

Administration of leptin, whether by intracerebroventricu-
lar or subcutaneous delivery, was effective in reducing elevat-
ed MAT levels in long bones of leptin-deficient ob/ob mice
[40, 47–49]. The reduction in MAT was likely due to a com-
bination of reduced adipocyte differentiation, increased fat
oxidation, and increased adipocyte apoptosis [40, 47–49].
Evidence for a potent inhibitory effect of leptin on MAT re-
ceived additional support from recent studies demonstrating
that long-duration hypothalamic leptin gene therapy normal-
ized MAT levels as well as body weight and most bone pa-
rameters in ob/obmice fed normal and high fat diets [50]. The
physiological actions of leptin on the skeleton occur at low
hormone levels [51]. This could help explain why some stud-
ies fail to detect a relationship between blood leptin levels and
MAT [52•].
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Is MAT an Endocrine Tissue?

Bone marrow adipocytes have the transcriptional machin-
ery to generate and secrete a variety of hormones, cyto-
kines, and growth factors. Thus, MAT has the potential to
influence target cells in marrow and beyond through para-
crine and endocrine signaling mechanisms. That being
said, the specific functional role of MAT as an endocrine
organ remains largely unknown due to two primary chal-
lenges: (1) assigning the contribution of MAT and
extramedullary adipose depots to circulating adipokines,
and (2) technical limitations related to a mixed cell pop-
ulation that confound accurate determination of MAT se-
cretory profile. In Fig. 2, we compare expression levels of
adipokines (adiponectin, leptin, resistin, adipin, and
adipogenin) attributable to adipocytes among total tibia,
BAT, and WAT. Although expressed in tibia, expression
levels for the adipokines were lower than in BAT or WAT,
in part reflecting the relatively low MAT volume fraction
in young adult mice. The lower gene expression levels do
not support an important endocrine role for MAT under
basal conditions. However, a recent report suggests that
during caloric restriction, MAT-derived adiponectin sig-
nificantly contributes to circulating levels of the hormone
and exerts systemic metabolic effects at distant tissues
such as muscle [53]. It remains to be determined how
different conditions (e.g. obesity, aging, disease) influence
the secretory profile, phenotype, and endocrine nature of
MAT.

MAT and Cold Stress

Mice are typically housed at temperatures (18–23 °C) well
below thermoneutral for the species (~ 32 °C) [54]. Mice
are obligatory daily heterotherms, and the resulting cold
stress greatly increases sympathetic outflow to BAT and
has profound effects on energy allocation. The requirement
for adaptive thermogenesis to maintain body temperature
results in increased food consumption and important
changes in body composition [28]. As pointed out by
Overton [55], housing mice at sub-thermoneutral tempera-
ture alters nearly all physiological systems associated with
the metabolic syndrome. A collateral impact of room tem-
perature housing is premature cancellous bone loss.
Housing mice at thermoneutral (32 °C) prevented bone
loss observed at 22 °C and led to higher mineralizing pe-
rimeter and lower osteoclast-lined bone perimeter [28]. In
addition to higher bone mass, there was a 2-fold increase in
MAT; these findings should raise concern regarding inter-
pretation of results in studies evaluating MAT in mice sub-
jected to room temperature-induced cold stress.

MAT as a Dynamic Depot Important
for Hematopoiesis

Hematopoietic lineage cells in bone marrow undergo contin-
uous and very rapid turnover [56]. In a healthy human, ~ 35
billion bone marrow-derived blood cells are replaced/h due to
cell death. To place this number in perspective, osteocytes
make up the majority of bone cells and the average adult
human skeleton contains ~ 45 billion osteocytes [57]. These
terminally differentiated osteoblasts have estimated average
lifespans of ~ 25 years [57]. Thus, the daily turnover of oste-
ocytes is negligible (~ 0.001%) compared to blood cells. It
would require multiple lifespans for cumulative osteocyte
turnover to equal a single day of hematopoietic cell turnover.
As such, the high rate of exodus of hematopoietic lineage cells
from bone marrow in conjunction with MAT expansion pro-
vides a plausible cellular mechanism for rapid replacement of
hematopoietic cells by MAT.

Adding a typical adipocyte to mouse bone marrow (5.5 ×
104 μm3) displaces ~ 30 nucleated hematopoietic marrow
cells. MAT volume increases gradually with age but can also
change rapidly in response to metabolic, hormonal, and other
perturbations (e.g. spaceflight). In Menagh et al. [26] de-
scribed above, hypophysectomy increased MAT from ~ 5 to
~ 45% volume fraction in only 25 days and MATwas restored
to normal levels within 10 days of initiation of growth hor-
mone administration. These changes in MAT volume fraction
could have resulted in displacement/replacement of more than
100,000 hematopoietic cells/mm3 of bone marrow.

Role of c-Kit Signaling in Coupling MSC
and HSC Differentiation and Function
in Marrow

c-kit is a receptor tyrosine kinase. The ligand for c-kit has
numerous aliases, including kit ligand, mast cell growth fac-
tor, stem cell factor, and steel factor. Alternative splicing re-
sults in membrane-bound (m-kit ligand) or soluble (s-kit
ligand) forms of the ligand which differ in their biological
actions [58]. Interest in kit signaling as a putative pathway
coupling MSC and HSC differentiation and function in bone
marrow stems from the critical role of this pathway in hema-
topoietic lineage decision, cell proliferation, and cell survival
[59], and the cellular distribution of c-kit and kit-ligand. With
a few notable exceptions, c-kit expression is lost during HSC
differentiation. The exceptions include (1) osteoclasts, which
may play a role in mobilization of HSCs from their niche in
bone marrow and (2) mast cells, which may play a role in
regulation of adipogenesis [60, 61]. Cells derived from
MSCs express m-kit ligand and s-kit ligand and osteoblast
lineage cells may tether HSCs within the HSC niche, in part
through m-kit ligand [62]. Considerable controversy
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surrounds the precise organization of the hematopoietic niche
and roles of cells that comprise the stroma. Nevertheless, it is
well documented that cells derived from MSCs, including
adipocytes, support hematopoiesis in vitro [63•] and a recent
study suggests that kit-ligand is critical to this function [64•].

Loss of function mutations in c-kit receptor and kit-ligand
can result in anemia, mast cell deficiency, altered body com-
position, and skeletal abnormalities. Mutations leading to
global reduction in c-kit receptor function (e.g. kitW/Wv) and
m-kit ligand function (e.g. kitSl/Sld) in mice also result in the
absence of MAT in long bones and lumbar vertebrae [65]. A
deficiency in kit signaling in mice prevents ovariectomy-
induced increase in MAT and accentuates bone loss in
hindlimb-unloaded mice [38, 66].

In addition to an absence of bone marrow adipocytes, kit
receptor-deficient kitW/Wvmice havemultiple abnormalities in
fat metabolism, including hypertriglyceridemia, hypercholes-
terolemia, and elevated chylomicrons, low density lipopro-
tein, and very low density lipoprotein, indicating a defect in
lipid transport into cells [67]. Additionally, the mutant mice
have reduced lipoprotein lipase activity. These findings imply
that kit signaling plays a role in lipid metabolism.
Furthermore, receptor tyrosine kinase inhibitors targeting kit
signaling, such as gleevec, have been reported to reduce blood
glucose levels in patients with chronic myeloid leukemia and
decrease body weight in rodents fed a high fat diet [68, 69]. In
rats, MAT was 47% lower in gleevec-treated animals com-
pared to controls due to reduced adipocyte density [70]. It is
worth noting that gleevec treatment also reduced osteoblast-
lined bone perimeter [70], an observation that further contra-
dicts the assertion that drugs that decrease MATwill necessar-
ily lead to an increase in osteoblasts.

KitSh/Sh mice have a mutation in a regulatory element lead-
ing to cell-specific loss of kit signaling. The mice are mast
cell-deficient but in contrast to kitW/Wv and kitSl/Sld are not
anemic and have MAT, indicating that the absence of MAT
is due to kit signaling insufficiency and not mast cell deficien-
cy, per se [65]. Adoptive transfer of WT bone marrow into
kitW/Wv mice was effective in replacing kitW/Wv HSCs with
WT HSCs but, surprisingly, did not result in MAT infiltration
[38•]. It is not yet clear whether the absence of MAT in kit
signaling-deficient mice is due to failure to form adipocytes or
failure of adipocytes to accumulate lipids. In either case,
kitW/Wv and kitSl/Sld mice may provide models for investigat-
ing the physiological role of MAT.

Why Does Long-Term Fasting Increase MAT?

At first glance, an increase in MAT with weight loss
seems counterintuitive. However, taking into consider-
ation the low energy cost of generating adipocytes and
storing triglycerides compared to the high cost of

maintaining hematopoietic bone marrow, thermodynamics
should favor MAT formation. The energy cost of replac-
ing hematopoietic cells leaving bone marrow with adipo-
cytes is low. As mentioned, an average adipocyte oc-
cupies the same volume as ~ 30 nucleated bone marrow
cells. During a prolonged fast, fat stored in WAT un-
dergoes lipolysis, leading to increased circulating levels
of fatty acids. Deposition of fatty acids released from
WAT during fasting into MAT requires minimal energy
expenditure. Once generated, the energy cost required to
maintain MAT is low because of the large size and low
metabolic rate of individual adipocytes. The low energy
cost of maintaining MAT contrasts with the high-energy
costs required for the high metabolic rate and rapid turn-
over of hematopoietic cells (Fig. 3); in contrast to simple
incorporation of preformed lipids into fat, formation of
hematopoietic cells requires continuous de novo synthesis
of macromolecules. Fasting results in important adaptive
responses that increase survival by reducing energy ex-
penditure. Based upon the above considerations, we hy-
pothesize that the increase in MAT initiated during fasting
represents one such adaptation.

Evidence Supporting a Reciprocal
Relationship Between MAT
and Hematopoiesis

Several lines of evidence support a tight reciprocal rela-
tionship between MAT levels and hematopoiesis. Normal
aging is associated with an increase in MAT and a de-
crease in hematopoietic cellularity in humans [71, 72].
As mentioned, deficiencies in growth hormone, leptin,
and estrogen all result in reversible increases in MAT. In
each case, the increase in MAT is associated with de-
creased hematopoiesis. Furthermore, prolonged fasting,
chronic alcohol abuse, and skeletal disuse (e.g. chronic
bed rest, spaceflight) result in increased MAT and de-
creased hematopoiesis in humans or animal models.
Importantly, age-related increases in MAT and decreases
in hematopoiesis are reversed by cold temperature stress,
blood loss, and infection [73–75] and enhanced by treat-
ment with the PPARγ agonist troglitazone [76], providing
circumstantial evidence supporting the concept that the
prevailing requirement for hematopoiesis regulates MAT
levels. Finally, Boyd et al. [77] recently reported that bone
marrow failure associated with acute myeloid leukemia is
due, in part, to leukemic suppression of bone marrow
adipocytes. Specifically, the suppression of the adipocytes
disrupts regulation of HSCs and progenitor cells, resulting
in impaired myelo-erythroid maturation.
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Conclusions

MAT is often inversely associated with bone mass, naturally
fueling speculation that bone marrow adipocytes play a large-
ly negative role in bone metabolism. Mechanistically, it has
been hypothesized that differentiation to adipocytes at the ex-
pense of osteoblasts and/or adipocyte-derived adipokines lead
to negative bone balance. According to this view, the plasticity
of MSC differentiation is an attractive target for development
of pharmaceutical interventions to suppress MAT and thereby
increase bone formation. However, a negative relationship
between MAT and osteoblasts is not universal, and when ob-
served, causality has not been established. Taken together, the
experimental evidence does not support the deterministic
model where reducing MAT will invariably lead to increased
bone volume.

An important physiological function of MAT may be to
provide an expandable/contractible depot to minimize energy
requirements for sustaining optimal hematopoiesis. If correct,
there must be tight coupling between MSCs and HSCs to
regulate the balance between MAT and hematopoiesis. The
c-kit signaling pathway has emerged as an important compo-
nent in this regulatory system. Future research directed to-
wards understanding of crosstalk between MAT and hemato-
poietic lineage cells may lead to an improved understanding of
MAT function relevant to human health.
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cells experienced multiple rounds of proliferation during the labeling
interval. Although one adipocyte would replace 30 nucleated
hematopoietic cells, the majority of the energy savings following
replacing hematopoietic marrow with MAT would stem from the
differential in energy costs of maintaining the two tissues. Please note
the size of the adipocyte and the potential for its displacing numerous
hematopoietic stem cells
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