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Abstract
Purpose of Review The prognosis of pediatric patients who present with metastatic or recurrent sarcomas remains poor. In this
review, we summarize the advances in the management of metastatic and relapsed pediatric sarcoma by highlighting recent and
future clinical trials.
Recent Findings Research into the identification of novel therapies for refractory pediatric sarcomas continues to advance.
Outcomes have not improved in several decades underlying a need for improved understanding of the biology behind these
tumors and the identification of novel therapeutic molecular targets that can be exploited pharmacologically. Multiple challenges
remain for novel therapy in sarcomas such as the selection of effective targets, management of toxicities, and the tumor
microenvironment.
Summary Many unique challenges remain in the treatment of patients with refractory pediatric sarcomas. Multiple strategies and
targets are under investigation that hold promise.
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Introduction

Sarcomas are tumors of mesenchymal origin believed to arise
from bone or soft tissue precursors. While broadly rare—
accounting for only about 1% of all cancers in the general
population—they represent approximately 13% of cancers in
patients who are under the age of 20 [1]. Pediatric sarcomas
are largely divided between those that arise from bone, and
those that arise from soft tissue. The most common malignant
tumors of bone are osteosarcoma and Ewing sarcoma (ES),
while rhabdomyosarcoma (RMS) is the most common sarco-
ma of soft tissue. Other non-RMS soft tissue sarcomas such as
desmoplastic small round cell and synovial sarcoma, become
more common as children age into adolescence and young
adulthood [2]. Current treatment regimens rely on a

combination of systemic chemotherapy, surgery, and radia-
tion therapy and have resulted in 5-year event-free survival
(EFS) rates of 60–70% depending on the specific histologic
diagnosis and presence of metastatic disease. Patients with
metastatic disease have a poor prognosis with 5-year EFS
rates in the 20–30% range. Patients with disease recurrence
fare even poorer with EFS less than 20% [3, 4].

In this review, we summarize recent advances in the man-
agement of pediatric sarcomaswith a brief overview of current
therapeutic options followed by a review of active and recent-
ly closed clinical trials that have explored novel biologic tar-
gets and immunotherapy.

Osteosarcoma

Osteosarcoma is the most common malignant tumor of bone,
with an incidence of 4.8 per million per year. Unfortunately,
there have been no significant therapeutic breakthroughs in
several decades despite extensive clinical investigation [1, 5,
6]. The current standard of care for patients with osteosarcoma
comprises surgical resection of all detectable disease in con-
junction with systemic chemotherapy using a backbone of
methotrexate, doxorubicin, and cisplatin [7–9]. For patients
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with localized disease, this treatment regimen yields a 5-year
EFS of approximately 65% for patients with localized disease
[10, 11]. The overall survival (OS) rates for patients who
present with metastatic or recurrent disease remain poor, ap-
proaching approximately 25% and less than 20%, respectively
[12], and as such, the presence of distant metastasis remains a
key prognostic indicator [13]. The most common site of me-
tastasis in osteosarcoma is the lungs, which is seen in up to
25% of newly diagnosed patients [14].

Recent clinical trials have failed to show improvement in
progression-free survival (PFS) or response rates in the re-
lapsed disease setting. Osteosarcoma is genomically complex
with high heterogeneity characterized by chromosomal insta-
bility, including deletions, duplications, and other somatic
variants [15]. Tumors with high genomic complexity such as
osteosarcoma potentially have several neoantigens that may
be exploited for novel molecular therapy. The Children’s
Oncology Group (COG) has recently evaluated several
targeted agents that had shown promise in preclinical studies of
osteosarcoma. Glembatumumab vedotin (CDX-011)
(NCT02487979) is a well-tolerated antibody-drug conjugate that
selectively targets glycoprotein non-metastatic b (or
osteoactivin), which is expressed on the surface of osteosarcoma
cells [16, 17]. The agent exhibited moderate antitumor activity in
a phase 2 clinical trial but did notmeet the bar tomove forward to
full clinical evaluation [18]. Eribulin mesylate induces an irre-
versible mitotic blockade and apoptosis by inhibiting microtu-
bule dynamic instability. Eribulin mesylate had shown activity in
osteosarcoma xenografts, and although it was well tolerated in a
clinical study, it did not evoke sufficient response either to war-
rant further evaluation in a phase III trial [19]. Nuclear factor–κB
is a transcription factor known to regulate bone turnover recently
found to be expressed by osteosarcoma cells [20]. Denosumab is
a human monoclonal antibody that targets the receptor activator
of nuclear factor–κB ligand (RANKL) with activity in patients
diagnosed with giant cell tumor of bone where the protein is also
expressed [21]. Based on these data, the agent was recently eval-
uated in a phase II study (AOST 1321) in patients with recurrent
osteosarcoma by the COG [22, 23]. At this time, data from this
clinical trial is pending.

There is growing clinical evidence that multi-targeted tyro-
sine kinase inhibitors have efficacy in osteosarcoma. The
SARC0024 trial evaluated regorafenib, a multi-kinase inhibi-
tor, in 42 adult patients with metastatic osteosarcoma and
showed that the median PFS duration was 3.6 months, double
that seen in the placebo group [24•]. A case series of 15 pa-
tients treated with pazopanib showed one partial response
(7%) and a median PFS duration of 6 months [25]. A phase
II trial of cabozantinib in patients with osteosarcoma and
Ewing sarcoma reported a 6-month PFS rate of 33%, a median
PFS duration of 6.2 months, and a partial response in five of
42 pa t i en t s (12%) in the os t eosa rcoma cohor t
(NCT02243605) [26].

Immune checkpoint inhibitors have been studied in osteo-
sarcoma, and while initial preclinical data were promising, the
results in vivo have been disappointing. Both CTLA-4 and
PD-1 are targets that have shown significant control of tumor
spread in sarcoma mouse models [27–31]. One study showed
elevated expression of CTLA-4 in T cells collected from 20
pediatric sarcoma patients (11 osteosarcoma and nine ES), as
compared to those from healthy controls suggesting a role for
immune checkpoint blockade, particularly in osteosarcoma
[32]. A recent phase I study (NCT01445379) treated pediatric
patients with recurrent or refractory solid tumors with CTLA-
4 blockade via ipilimumab. This study, which included 8 pa-
tients with osteosarcoma, demonstrated increased activation
of cytotoxic T lymphocytes without increased infiltration of
regulatory T cells. Unfortunately, no objective tumor regres-
sion was observed [33].While the results with immune check-
point inhibitors have been disappointing, genetically modified
cell therapy may yet hold promise. Specifically, CAR T cells
have been evaluated in osteosarcoma. A phase I clinical trial
evaluating anti-Her-2 CAR T cells in patients with advanced
ped ia t r i c sa r coma— t he ma jo r i t y o f whom had
osteosarcoma—demonstrated a median OS duration of
10.3 months (NCT00902044) [34]. A current clinical trial
using CAR T cells that target the GD2 glycoprotein, which
is expressed in osteosarcoma, is ongoing (Table 1).

Ewing Sarcoma

ES is a sarcoma of bone or soft tissue composed of small
round blue cells thought to be of either the neural crest or
mesenchymal lineage [35–37]. The majority of cases of ES
are thought to arise from an oncoprotein produced by rear-
rangement between EWSR1 on chromosome 22 and FLI1
on chromosome 11 [38]. ES is the second most common type
of primary bone cancer in the USA, with an annual incidence
in patients younger than 20 years of 2.9 per million [1]. It
accounts for approximately 25% to 34% of malignant bone
tumors [1, 6], making it the second most common bone tumor
of childhood and adolescence after osteosarcoma. Similar to
osteosarcoma, patients with metastatic or recurrent disease
have a dismal prognosis compared to patients with localized
ES. The 5-year OS rate for patients with localized ES is ranges
from 65 to 75% with current therapy. Patients who present
with metastatic disease have a 5-year OS rate of less than
30%, although patients with isolated pulmonary metastasis
fare slightly better (approximately 50%) [39, 40]. Patients
with recurrence have a 5-year OS rate of approximately 10%
[38]. The standard of care for ES is alternating cycles of
interval-compressed vincristine, doxorubicin, cyclophospha-
mide, and ifosfamide and etoposide (VDC/IE) [40–42].
Currently, there remains no established standard backbone
therapy for patients with recurrent or refractory ES, and
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similar to other refractory pediatric sarcoma histologies—
there remains a vital need for novel therapies.

A phase III trial (COG AEWS1221) comparing the com-
bination of insulin-like growth factor 1 receptor antibody
ganitumab and VDC/IE with VDC/IE alone [43] in patients
withmetastatic or refractory ESwas recently performed by the
COG, and data is pending at this time [43]. Several clinical
trials have attempted to exploit the EWS-FLI1 translocation as
a potential therapeutic target. EWS-FLI1 is known to drive the
expression of proteins that regulate microtubule stability. As
in osteosarcoma, eribulin mesylate has been studied for the
treatment of ES. A COG phase I trial showed a partial re-
sponse for 4 cycles in a patient with ES [44]. Currently, there
are two trials evaluating eribulin for relapsed ES (Table 1).
Recent preclinical data has suggested that targeting the epige-
netics of EWS/FlI1 may hold promise. Lysine-specific-
demethylase 1 (LSD-1) has shown high expression in ES. In
preclinical models, the enzyme is essential in driving the tran-
scriptional repression of the EWS/FLI1 oncoprotein through
direct binding of the oncoprotein via the NuRD-LSD1 com-
plex [45]. LSD-1 inhibitors preclinically have been shown to
impede tumorigenesis in ES models [46]. A phase I clinical
trial is currently underway exploring the LSD-1 inhibitor,
seclidemstat, for patients with refractory ES (Table 1).
Another small molecule inhibitor of EWS/Fli1 oncogenesis
is similarly undergoing clinical evaluation in ES—YK-4-
279/TK216—having been shown in vitro to inhibit the bind-
ing of RNA helicase A with the EWS/FLI1 oncoprotein lead-
ing to decreased growth in orthotopic xenografts [47]. This
phase I clinical trial is currently recruiting patients.

As in osteosarcoma, multi-target kinase inhibitors have al-
so been extensively evaluated for ES. ES patients have dem-
onstrated partial responses to pazopanib, which is FDA ap-
proved for adult soft tissue sarcoma, in several case reports;
however, there was evidence of resistance after prolonged use
[48, 49]. Cabozantinib, another multi-targeted TKI, was eval-
uated in a phase II trial for recurrent ES; the results showed
tumor control, with nine (27.7%) partial responses and 10
(30.3%) stable disease [26, 50••].

Rhabdomyosarcoma

RMS is the most common soft tissue sarcoma in the pediatric
population, with an annual incidence of 4.5 cases per 1 million
[51, 52]. The majority of cases are diagnosed in the first de-
cade of life, and there is a slight association with familial
cancer syndromes such as Li-Fraumeni syndrome, neurofibro-
matosis, and Beckwith-Wiedmann syndrome [52]. The geni-
tourinary tract and head and neck region are the most com-
monly affected sites; patients with lesions in the extremities
have an inferior prognosis as compared to other primary sites
[53]. Histologically, RMS may be categorized into

embryonal, alveolar, pleomorphic, and sclerosing subtypes
[52, 54]. Embryonal RMS is the most common subtype seen
in pediatrics and historically has been associated with a supe-
rior prognosis as compared to the second most common
subtype—alveolar RMS [52]. RMS is divided into two dis-
tinct genotypes on the basis of the presence or absence of
PAX-FOXO1 gene rearrangement: fusion-positive RMS and
fusion-negative RMS [52]. Recent data suggests that the infe-
rior prognosis of patients with alveolar RMS is likely related
to the majority of alveolar cases harboring the PAX-FOXO1
translocation [52, 55, 56, 57••]. The OS rate of RMS varies
widely depending on the child’s age and the tumor’s location,
stage, and risk group. Children aged 1 to 9 years old have a
better prognosis than do children who are older or younger
[58]. The 5-year OS rate for children who have low-risk RMS
ranges from 70 to 90%. The 5-year OS rate for children in the
intermediate-risk group ranges from 50 to 70%,while children
who have high-risk RMS have a 5-year OS rate of 20–30%
[58]. Patients with relapsed disease have a poorer outcome,
with a 5-year OS rate ranging from 5 to < 20% [59].
Historically, frontline patients are treated with vincristine, ac-
tinomycin D, and cyclophosphamide, which has been the
standard of care for RMS, along with surgery or radiation
therapy, for the last five decades [52].

Because of the poor survival outcomes of patients with
high-risk and recurrent RMS, molecular-targeted therapy
and immunotherapy approaches have been emerging; these
methods are associated with a decrease in treatment-
associated toxicity compared with standard chemotherapy
[55]. Patients with fusion-positive RMS could benefit from
PAX-FOXO1–targeted therapy that acts directly to its up-
stream transcription factor and can control subsequent signal-
ing cascades and other target genes. However, preclinical and
clinical studies have failed to demonstrate better outcomes
with PAX-FOXO1–targeted therapy compared with standard
therapy [55].

Clinical trials using targeted therapies against single point
mutations that act within the receptor tyrosine kinase/RAS/
PIK3A pathways have failed to improve outcomes; these
pathways require further study to become a future point of
intervention [55]. Table 1 summarizes the current clinical tri-
als that are recruiting patients (phases I, II, and III).

Synovial Sarcoma

Synovial sarcoma (SS) is a rare and aggressive high-grade
malignancy representing 8–10% of all soft tissue sarcoma
cases, which makes it the most common non-RMS soft tissue
sarcoma in children and adolescents [60, 61]. SS can arise at
any age but predominantly affects individuals aged 15–
35 years, with one-third of all patients being younger than
20 years at diagnosis [62]. SS is a mesenchymal neoplasm
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with variable epithelial differentiation and a specific reciprocal
t(x:18)(p11.2;q11.2) chromosomal translocation comprised of
fusion of the SS18 gene and one of three closely related genes
(SSX1, SSX2, or SSX4). Histologically, both pediatric and
adult SS can be subdivided into monophasic, biphasic, and
poorly differentiated subtypes [63]. Pediatric patients with
SS have an improved prognosis compared to adults; however,
both have a poor prognosis when they present with metastatic
disease (5–11% of pediatric cases) [60, 64].

Over the last three decades, a rise in the incidence of SS has
been seen, with no change in the survival rate [65]. Therapy
for pediatric SS is determined by the size of the tumor at
diagnosis and the ability to achieve a full surgical resection,
the presence of metastatic disease, and the histologic grade of
the tumor. Certain pediatric patients whose tumors are small
and can be fully resectedwill be cured with surgery alone [66].
Pediatric SS patients with high-risk features such as a large
primary tumor or the presence of metastatic disease at diagno-
sis will often be treated with systemic chemotherapy that in-
cludes doxorubicin and ifosfamide, radiotherapy for local con-
trol, and surgery [61]. Options for patients who suffer recur-
rent or progressive disease are limited. Unfortunately, clinical
t r ia ls of immune checkpoint inhibi tors , such as
pembrolizumab, nivolumab, and ipilimumab, have not shown
promise for SS; however, other immunotherapies may provide
benefit [61]. NY-ESO-1 is a highly immunogenic cancer-
testes antigen that is expressed in 70–80% of SS [67]. It has
been targeted using both vaccines and adoptive cell therapy
[68, 69]. In a phase I study, 11 of 18 adults with metastatic
disease experienced a partial response using genetically
engineered T cells that were reactive with NY-ESO-1 [70].
Another study using genetically engineered T cells showed
similar response rates in conjunction with the long-term per-
sistence of NY-ESO-1 T cells [71]. Currently, a pilot study in
children is being conducted that further evaluates adoptive
immunotherapy with T cells that have been engineered to
recognize the NY-ESO-1 peptide [61] (Table 1).

Desmoplastic Small Round Cell Tumor

Desmoplastic small round cell tumor (DSRCT) is an extreme-
ly aggressive, rare soft tissue sarcoma that frequently presents
with diffuse abdominal sarcomatosis in mostly male adoles-
cents and young adults [72, 73, 74•, 75]. Patients present with
non-specific symptoms of abdominal pain or distention, nau-
sea, constipation, and weight loss that do not improve with
medical management [72, 73, 74•]. Notwithstanding the pro-
found molecular profiling of DSRCT, its findings have not
resulted in useful salvage therapeutic strategies, and the 5-
year OS rate remains lower than 15% [76].

Morphologically, DSRCTs are characterized by
polyphenotypic different ia t ion, as evidenced by

immunohistochemical staining for epithelial, mesenchymal,
and neural markers, including cytokeratins, desmin and
vimentin, and neuron-specific enolase, respectively [77].
These tumors are distinguished by a pathognomonic chromo-
somal translocation that pairs the ES gene (EWSR1) with the
Wilm’s tumor suppressor gene (WT1) (EWSR1-WT1
t(11;22)(p13:q12)) [73].

The treatment for DSRCT comprises neoadjuvant and adju-
vant chemotherapy using regimens that are typically reserved
for ES [73]. Combinations such as VDC/IE (vincristine, doxo-
rubicin, cyclophosphamide/ifosfamide, and etoposide), VIT
(vincristine, irinotecan, and temozolomide), and VAI (vincris-
tine, doxorubicin, and ifosfamide) have resulted in favorable
yet short-lived responses [72, 73, 75]. High-dose chemothera-
py, followed by autologous hematopoietic stem cell rescue, has
not been associated with improved outcomes [73]. Complete
surgical cytoreduction followed by consolidative whole-
abdomen radiotherapy at a dose of 30 Gy, with or without a
focal boost, are frequently used in an attempt to reduce the
frequency of intra-abdominal recurrence [72, 73, 74•, 75, 78].
The role of hyperthermic intraperitoneal chemotherapy is still
under clinical investigation [73]. Cytoreductive surgery and
hyperthermic intraperitoneal chemotherapy with heated cisplat-
in (given at a dose of 100 to 150mg/m2) may provide benefit to
a limited number of patients; however, it does not seem to
improve survival in DSRCT patients with hepatic or portal
metastasis [74•]. Novel therapies such as [90Y]Yttrium micro-
sphere radioembolotherapy could have a role in patients with
hepatic disease [79].

Multi-targeted receptor tyrosine kinase inhibitors of vascu-
lar endothelial growth factor receptor, platelet-derived growth
factor receptor, and c-KIT, such as pazopanib, sunitinib, and
apatinib, have shown positive responses in selected cases [72,
80, 81]. Lurbinectedin, a synthetic DNA binder that leads to
the formation of DNA double-strand breaks, was recently re-
vea led to have pre l imina ry ac t iv i ty in DSRCT
(NCT02448537) [82].

Immunotherapy for DSRCT is being explored. Advanced
immune landscape profiling is being used to identify innova-
t i ve the r apeu t i c s t r a t eg i e s fo r t he se sa r comas
(NCT03967834). A phase I/II trial is evaluating the check-
point kinase 1 inhibitor prexasertib in combination with
irinotecan and temozolomide after prexasertib was found to
have a robust antitumor effect with complete regression in two
DSRCT patient-derived xenografts (NCT04095221).
Targeting the immunomodulatory molecule B7H3 through
the monoclonal antibody 8H9 is another targeted therapy un-
der evaluation. A phase II trial of intraperitoneal radio-
immunotherapy with 131I-8H9 is presently taking place
(NCT04022213). DSRCT is a rare orphan tumor with limited
therapeutic opportunities. Longitudinal profiling could help us
discover prospective targets that could improve patient
survival.
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Challenges in Immunotherapy

Immunotherapy remains an attractive therapeutic option to
evaluate in pediatric sarcomas, especially adoptive cell thera-
py such as CAR T cells. Unfortunately, the degree of benefit
seen with this treatment modality in hematologic malignan-
cies has not yet been translated to pediatric sarcomas likely
related to multiple inherent challenges of using this therapy in
solid tumors. The identification of suitable target antigens that
ensure the effective elimination of tumor cells while avoiding
the off-tumor or on-target toxicity that is caused by T cells
attacking healthy tissues remains a significant challenge in
solid tumors. In addition, target antigens expressed in sarco-
mas tend to be heterogeneous, differing not only from each
other but also from the primary and metastatic stages of the
same tumor.

One strategy to avoid the off-tumor and on-target toxicity
that is observed with CAR T cell therapy for sarcomas is to
use tumor-associated antigens that elicit immune responses
that are strictly tumor-specific such as viral antigens, antigens
that result from a mutation or a rearrangement of a gene-
coding sequence, or antigens that are specifically encoded
by cancer-germline genes [83]. An example of tumor-
associated antigens are neoantigens, which are short amino
acid peptides that are created by cancer cell genomemutations
and have been identified in ovarian and gastrointestinal can-
cers, as well as in melanoma [84, 85]. There is preclinical
and clinical evidence that confirms neoantigens as potential
targets for adoptive T cell therapy in solid tumors [86–88].
Recently, a first-in-humans trial showed that tumor-
associated antigen cytotoxic T cells that targeted WT1,
PRAME, and survivin safely induced disease stabilization,
prolonged time to disease progression, and decreased levels
of circulating tumor antigen DNA [89]. A separate chal-
lenge facing immunotherapy strategies in sarcomas is the
tumor microenvironment, which is complex in pediatric
sarcomas and contributes to tumorigenesis and metastasis
in and of itself by limiting immune responses to cancer cells
and preventing the eradication of tumors potentiated by
tumor-associated macrophages, fibroblasts, and myeloid-
derived suppressor cells. Immunomodulatory strategies to
counteract the tumor microenvironment are urgently need-
ed, as are approaches to improve T cell trafficking and per-
sistence. Other immunotherapy strategies to consider in pe-
diatric sarcomas include utilizing highly tumor-specific T
cell treatments that can be generated for any patient with T
cells that recognize tumor mutations. This can be achieved
by using genetically modified polyclonal T cells to express
T cell receptors that recognize neoantigens in the context of
the major histocompatibility complex [85]. Adoptive cell
therapy with gamma delta cells are another tentative option
in which the TCR recognizes unprocessed antigens inde-
pendent of the MHC complex.

Conclusions

Pediatric sarcomas are in many cases curable with frontline
standard of care therapy, however, several challenges remain,
and the outcomes for patients who present with metastatic
disease or suffer disease recurrence remain poor. Identifying
novel treatments—such as targeted therapies as well as
immunotherapies—will be needed to improve outcomes for
patients with high-risk or recurrent pediatric sarcomas and is
an area of active research.
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