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ABSTRACT
Purpose of Review Aside from a characteristic SS18–SSX translocation identified in almost all cases, no genetic anomalies have
been reliably isolated yet to drive the pathogenesis of synovial sarcoma. In the following review, we explore the structural units of
wild-type SS18 and SSX, particularly as they relate to the transcriptional alterations and cellular pathway changes imposed by
SS18–SSX.
Recent Findings Native SS18 and SSX contribute recognizable domains to the SS18–SSX chimeric proteins, which inflict
transcriptional and epigenetic changes through selective protein interactions involving the SWI/SNF and Polycomb chromatin
remodeling complexes. Multiple oncogenic and developmental pathways become altered, collectively reprogramming the cel-
lular origin of synovial sarcoma and promoting its malignant transformation.
Summary Synovial sarcoma is characterized by complex epigenetic and signaling landscapes. Identifying the operational path-
ways and concomitant genetic changes induced by SS18–SSX fusions could help develop tailored therapeutic strategies to
ultimately improve disease control and patient survivorship.

Keywords Synovial sarcoma . neoplastic pathways . SS18–SSX . SWI/SNF complex . Polycomb complex . chromatin
modulation

Introduction

Synovial sarcoma is a rare soft-tissue malignancy that grows
predominantly in the lower limbs of young adults [1, 2]. In

spite of its name, it does not stem from the synovium and
cumulative evidence points towards a mesenchymal origin
for the disease [3–8]. The tumor harbors a stable karyotype
with few secondary cytogenetic alterations [9, 10, 11•, 12••].
It is driven by a unique genetic exchange that fuses the SS18
gene with an SSX partner [13, 14]. The ensuing SS18–SSX
translocation is the only recurring genetic event reliably iso-
lated in almost all cases and encodes chimeric proteins that
modulate transcriptional and epigenetic pathways through
precise protein interactions [13, 15–20].

Current therapeutic protocols for synovial sarcoma are
guided by the disease’s location and stage. Wide resection
with negative surgical margins is the mainstay of therapy for
primary disease, may suffice for small (< 5 cm) localized tu-
mors, but is insufficient for more advanced ones [21, 22].
Radiation as a surgical adjuvant can be beneficial for local
control of larger tumors. While systemic chemotherapy has
been employed for large, high grade tumors, it has limited
therapeutic benefit in patients with metastatic disease who still
exhibit a dismal prognosis [23]. The dearth of effective ther-
apeutic strategies in synovial sarcoma imposes a need to
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identify functional oncogenic networks as means to discover
new biologic targets and potential therapeutic avenues.

The following review examines the structural units of wild-
type SS18 and SSX, and discusses the transcriptional alter-
ations imposed by the SS18–SSX fusion proteins. It uncovers
operational neoplastic events and pathways in synovial sarco-
ma and highlights treatment modalities that could ultimately
help improve disease control and patient survivorship.

Functional Domains of SS18 and SSX

SS18 maps to the long arm of chromosome 18 and encodes a
conserved protein with ubiquitous expression [20, 24, 25]. It
contains three moieties, none of which is capable of direct
DNA binding [14, 15, 17–19, 26–28] (Fig. 1). The SNH do-
main is located on the amino-terminal tail of SS18 and medi-
ates some of its transcriptional regulation. The NLS sequence
contains the protein’s nuclear translocation signal, whereas
the carboxy-terminal QPGY motif has transactivating proper-
ties. The latter is rich in glutamine, proline, glycine, and tyro-
sine residues, mirroring sequences of integral subunits of the
SWI/SNF chromatin-remodeling complex [18, 29–31]. SS18
carries one SH3 and three SH2 modules directly implicated in
transduction signaling pathways [32–34].

The SSX family comprises nine fully delineated homolo-
gous genes (SSX1 through SSX9), contiguously confined to
the short arm of chromosome X [35, 36]. Owing to their

restricted expression to the normal testis and some neoplastic
diseases, the translated SSX peptides are classified as cancer-
testis antigens [35–37]. Sequence alignment and structural
region analyses outlined two shared regions among these pro-
teins [14, 18, 26, 35, 38, 39] (Fig. 1). They include an amino-
terminal KRAB and a carboxy-terminal SSXRD domains,
both involved in transcriptional repression. Aside from its
potent repressive properties, SSXRD facilitates the proteins’
nuclear localization. SSX peptides display minor discrepan-
cies within a sequence in close vicinity of SSXRD, designated
SSXDD.

Functional Domains Retained in SS18–SSX

Among all SSX genes, only SSX1, SSX2, and SSX4 have hith-
erto been fused to SS18 in synovial sarcoma [40–43]. The
reason behind this selectivity remains a subject of constant
controversy but may involve privileged gene orientation
and/or accessibility. SS18 or SSX overexpression alone does
not generate tumors, implicating both partners of SS18–SSX in
synovial sarcomagenesis [20, 44]. Investigating the domains
retained in the final oncogenic fusions and their non-
transforming counterparts is paramount for a better under-
standing of the pathogenesis of the disease and the develop-
ment of potential therapeutic avenues.

SS18–SSX chimeras are generated by the substitution of
SS18 carboxy-terminal residues with an SSX carboxy-

Fig. 1 Functional domains of SS18, SSX, and SS18-SSX. Wild-type
SS18 is 387 amino acids long and contains an SNH domain (amino
acids 20 to 53), an NLS motif (amino acids 51 to 99), and a QPGY
sequence (amino acids 187 to 387). Wild-type SSX is a 188 amino acid
protein that includes a KRAB domain (amino acids 20 to 83), an SSXDD
sequence (amino acids 119 to 154), and an SSXRD motif (amino acids

155 to 188). The SS18-SSX oncoprotein encompasses 456 amino acids
and preserves the amino-terminal 379 amino acids of SS18 as well as the
carboxy-terminal 111 amino acids of SSX. The generated translocation
retains the entire SNH, NLS, SSXDD, and SSXRD domains of the wild-
type peptides, as well as most of the QPGY motif
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terminal tail (Fig. 1). Their secondary and tertiary protein
structures do not entirely recapitulate the domains predicted
by their wild-type components [14, 28, 45–50]. SNH, NLS,
and SSXDD are invariably retained, as well as most of the
SS18 QPGY activation motif. Although seldomly reported,
truncated fusion variants lacking SSXRD argue against a ma-
jor role for this module in synovial sarcomagenesis [44, 51].
Most divergences between transforming (SS18–SSX1, SS18–
SSX2, and SS18–SSX4) and laboratory-constructed non-onco-
genic fusions (SS18–SSX3 and SS18–SSX5) are mapped to a
region composed of two amino acids within their SSXDD
domain [20]. The involvement of SH2, SH3, and KRAB do-
mains in the final protein hybrids is inconsistent, and their
contribution to the development of synovial sarcoma remains
inconclusive.

Regulatory Mechanisms Mobilized
by SS18–SSX

Contrastingwith conventional translocations, SS18–SSX pep-
tides do not generate specific transcription factors but rather
combine chromatin modifiers with novel properties [19, 52].
They are preferentially sequestered in nuclear bodies, where
they interact with histones and core regulatory proteins [15,
17, 20, 26, 53–55] (Fig. 2).

SS18–SSX hybrids associate with constitutional members
of the SWI/SNF chromatin-remodeling complex, including
SMARCA2, SMARCA4, and SMARCA5 [17, 19, 44, 56].

Cells carrying SS18–SSX demonstrate significant variations in
SMARC genes expression, including SMARCB1, a tumor sup-
pressor [19, 57, 58]. Specific to synovial sarcoma is the com-
petition between SS18 and SS18–SSX for assembly within
SWI/SNF, expelling SMARCB1 for degradation, and leading
to a biochemically aberrant complex that disrupts gene expres-
sion [12, 20].

SS18–SSX oncoproteins also aggregate with core subunits
of the Polycomb repressive complexes (BMI1 and RING1A
within PRC1, as well as SUZ12, EZH2, and EED within
PRC2), and the histone deacetylase HDAC1 [16, 18, 19, 26,
59–61]. They partially regulate transcription through BMI1
depletion and protein recruitment to specific DNA regions
enriched with H3K27me3, a PRC2-related epigenetic marker
that correlates with Polycomb gene silencing [20, 59, 60,
62–67]. Genetic repression may also relate to the activity of
EZH2, the transcription of which is enhanced by SMARCB1
depletion, explaining the overlap between downregulated
genes in synovial sarcoma cell lines with the ones repressed
by the PRC2 components [68–70]. Upregulated genes in this
disease, however, display an increased H3K4me3 epigenetic
signal in their promoters, which antagonizes H3K27me3 and
promotes transcriptional activation [12••, 19].

SS18–SSX indirectly regulates several proteins with his-
tone acetylase/deacetylase activity. SIN3A, a transcriptional
repressor that associates with SMARCA2, SMARCA4, and
HDAC1/2, activates its downstream effectors by binding
SS18–SSX peptides [71–74]. The latter serve as scaffold pro-
teins that combine the transcription activator ATF2 with the

Fig. 2 Mechanisms of synovial sarcomagenesis. Blunted arrows (┴)
indicate inhibition, whereas pointed arrows (➔) imply induction. The
generated SS18-SSX oncoprotein competes with wild-type SS18 for
assembly within the SWI/SNF activator complex, ejecting the tumor
suppressor SMARCB1 for degradation. The latter can also inhibit the
Polycomb repressor complex (through EZH2 depletion) and associate

with both the wild-type SS18 and the transcription factor AF10 to
modulate gene expression. The fused peptide can also remodel
chromatin and alter gene transcription through its interaction with co-
effectors (SIN3A, TLE1, and P300), transcription factors (ATF2 and
LHX4), and histone deacetylases (HDAC1/2)
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corepressor TLE1, generating a multimeric silencing complex
that inhibits ATF2 target promoters via TLE1-mediated
HDAC1 recruitment and H3K27me3 labeling [56, 59].
These constructs bind and mitigate the activating properties
of COAA, a cofactor that interacts with the P300 histone ace-
tyltransferase and participates in post-transcriptional RNA
splicing [75–78]. They modulate several microRNAs
overexpressed in synovial sarcoma compared with other
soft-tissue malignancies [79–82]. HDAC2 protects SS18–
SSX oncopeptides degradation, allowing them to tether
P300 and inhibit fibronectin matrix adhesion while increasing
cellular motility and invasiveness [32, 83, 84]. SS18–SSX
may also associate with transcription factors, such as AF10
and LHX4, to promote the development of synovial sarcoma
[27, 39]. Of those, AF10 requires SMARCB1 to interact with
other proteins and regulate transcription [85].

Models of Synovial Sarcomagenesis

Evidence pertaining to the potential mechanisms exploited by
SS18–SSX constructs to reprogram the cell of origin of syno-
vial sarcoma and promote malignant transformation is still
preliminary (Fig. 2). A dynamic equilibrium between both
SWI/SNF- and Polycomb-mediated epigenetic alterations as
well as H3K27me3 and H3K4me3 signaling marks at native
and de novo gene targets seems to be important for tumor
formation. SS18–SSX peptides possess RNA splicing and
modulatory properties and may interact with yet unidentified
transcription factors and coeffectors [75, 76]. Because of the
different mechanisms affected by these oncoproteins, multiple
cellular functions and signaling networks are markedly
disrupted in synovial sarcoma.

Neoplastic Events

Cell-Cycle Disruption

Synovial sarcoma is characterized by an aberrant cell-cycle
activity. Cyclin (CCN) and cyclin-dependent kinase (CDK)
genes are upregulated in the disease, whereas cyclin-
dependent kinase inhibitors (CDKNs) are repressed, resulting
in an overall enhanced cellular proliferation [8, 19, 57, 58, 70,
86]. To date, only one CCND1 pathologic mutation has been
reported in synovial sarcoma [10]. SS18–SSX peptides pre-
vent cyclin D1 proteasomal degradation in serum-starved
monolayer cultures and repress CDKN2A transcription [56,
87, 88]. Nuclear immunoreactivity for cyclins A, D1, and E
is noted in synovial sarcoma but is not associated with patient
survivorship [86, 89–94].

Apoptosis Escape

Apoptosis evasion allows synovial sarcoma cells to survive
and proliferate, despite the upregulation of both pro- and anti-
apoptotic genes [41, 58, 60, 70, 86, 95]. In murine embryonic
fibroblasts transfected with SS18–SSX, Bcl2 is increased,
whereas Mcl1 and Bcl2a1 expression is significantly re-
pressed through mechanisms involving the ATF2/TLE1 in-
hibitory complex [95]. Synovial sarcoma specimens stain pos-
itive for most apoptotic inducers and inhibitors, of which
BCL2 is detected in virtually all cases [41, 86, 96–102].
Bcl2 induction in SS18–SSX-positive Myf5 myoblasts accel-
erates synovial sarcomagenesis, but its inhibition, combined
with doxorubicin, results in minimal synergistic effect on
transformed cells and generated tumors [95, 103, 104].
Conversely, specific BCL2L1 repression hampers in vitro
and in vivo tumoral growth [104]. Although BCL2 and
BAX levels do not specifically predict survival in synovial
sarcoma patients, multivariate analyses identified apoptosis
as an independent indicator of worse prognosis [97, 101].
This might be explained by the complexity of apoptosis, as
well as its tight association with cell proliferation, propelling
synovial sarcoma cells into a more aggressive pro-survival
state.

Cell Contact Inhibition

Synovial sarcoma cells circumvent contact inhibition, and
genes involved in the cadherin–catenin adhesion system are
upregulated in the disease [57, 105–107]. Sequencing and
single-strand conformation polymorphism analyses revealed
some tumor specimens to harbor mutations of undetermined
significance inCDH1 and CTNNB1, respectively encoding E-
cadherin and β-catenin, contrary to most synovial sarcoma
cell lines devoid of any activating aberrations within these
genes [9, 94, 108–113]. Albeit displaying a peripheral immu-
noreactivity, the expression of cadherins and catenins (α, β,
and γ) is reduced in the disease [92, 99, 105, 108, 111, 114,
115]. Their nuclear relocation may, at least partially, explain
the scarcity of intercellular junctions on synovial sarcoma cell
periphery, an event that promotes the tumor’s invasion and
correlates with worse patient survivorship [108].

Chemotaxis Modulation

The functional significance of chemotaxis in synovial sarco-
ma is yet to be fully explored. Human specimens and SS18–
SSX-positive cells variably express several genes involved in
chemotaxis regulation, CXCL12 and CXCR4 in particular [8,
19, 57, 58, 61, 107, 116]. Transcripts of the latter have been
less frequently detected in monolayer tumoral cells than in
spheroid cultures, possibly leading to cellular acquisition of
anchorage-independent growth properties [116, 117].
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Oncogenic Pathways

Receptor Tyrosine Kinase Pathways

Ephrin Pathway

Albeit preliminary, recent reports imply a role for the ephrin
(Eph) pathway in synovial sarcoma migration. Gene microar-
ray and phosphoproteomic analyses revealed an abundant up-
regulation of genes encoding ephrin ligands and receptors in
the disease [57, 58, 106, 107, 118, 119]. A significant dereg-
ulation of several genetic components of the Eph signaling
pathway is documented in cells carrying SS18–SSX transcripts
[8, 19, 60, 61, 84, 120]. Such cells are positive for ephrin B1
and several receptors, of which, only EphA2 and EphB2 are
phosphorylated [84, 119]. NIH3T3 murine fibroblasts disso-
ciate and retract their neurite processes upon SS18–SSX ex-
pression, a repulsion phenotype that was promoted by EphB2
stimulation [84]. Clinically, both EphB2 and EphB4 are de-
tected in synovial sarcoma specimens [84, 107].

Epidermal Growth Factor Pathway

Despite being dysregulated in synovial sarcoma, the epider-
mal growth factor (EGF) pathway does not seem to be rele-
vant for the disease’s pathogenesis. A single investigation of
17 patients with synovial sarcoma isolated TGFA mRNAs in
all tumors analyzed [92]. Mutations and amplifications of
ERBB1 (EGFR, HER1), ERBB2 (HER2), and ERBB3
(HER3) failed to correlate with their corresponding proteins’
expression in the disease [57, 58, 92, 98, 107, 121–125].
Sequencing analyses revealed sporadic missense mutations
of ERBB1 and ERBB4 in synovial sarcoma [10, 126, 127].
Encoded ERBB peptides are identified in SS18–SSX-positive
cell lines and lysates, as well as synovial sarcoma specimens
[92, 98, 100, 119, 121, 124–132]. In this disease, ERBB1 or
ERBB2 expression does not correlate with patient survivor-
ship, and their inhibition does not block the growth of syno-
vial sarcoma cultures in vitro [98, 100, 119, 124].

Fibroblast Growth Factor Pathway

Fibroblast growth factor (FGF) signaling is critical for syno-
vial sarcoma growth. Human and murine cells transfected
with SS18–SSX are enriched with genes of the FGF signaling
system [8, 19, 61, 84, 120]. Beside occasional alterations in
the levels of FGFs and FGFRs, FGF18, FGFR2, and FGFR3
are constantly upregulated in the disease [57, 58, 106, 107,
118, 121, 133]. SS18–SSX targets FGFR2 and hampers
BMI1-mediated transcriptional repression [8]. Synovial sarco-
ma tissues and cell lines stain positive for FGF8, FGF18, and
multiple FGFRs, some of which are also retrieved from cul-
tured SS18–SSX-positive cell lysates [123, 129, 133]. The

addition of recombinant FGF8 or FGF2 enhanced the growth
of serum-deprived synovial sarcoma cultures [133]. FGFR
inhibition seems to impede the proliferation of synovial sar-
coma cells and others expressing SS18–SSX in vivo and
in vitro [8, 123, 133].

Hepatocyte Growth Factor Pathway

The hepatocyte growth factor (HGF) pathway may be poten-
tially important in the tumorigenesis of a small number of
synovial sarcomas at best. Indeed, aside from one study, all
gene expression microarray investigations of synovial sarco-
ma and SS18–SSX-positive cells revealed downregulated
HGF and HGFR compared with other soft-tissue malignan-
cies and SS18–SSX-negative cells [8, 19, 58, 61]. HGF and
HGFR mRNAs are isolated in 53.3% and 66.7% of synovial
sarcoma specimens, respectively [43, 134]. A recent sequenc-
ing profiling analysis identified HGFR gene amplification in
one of 19 (5.3%) cases [135]. HGF is immunoreactive in
31.9% to 68.4% of tumor specimens and associates with
worse survival [134, 136–138]. Despite lacking a prognostic
value in the disease, HGFR expression is highly variable,
ranging between 0 and 90.5% [43, 119, 134–139]. At base-
line, few SS18–SSX-positive cells are positive for phosphory-
lated HGFR, secrete HGF in their culture medium, and de-
pend on the HGF/HGFR circuit to enhance their in vitro pro-
liferation, invasion, and chemoresistance, as well as their com-
plete transformation in xenografted mice [119, 130, 139, 140].
Albeit specific to select synovial sarcoma cells, this aggressive
phenotype is largely reversed upon HGFR inhibition [139].

Insulin Growth Factor Pathway

Translational investigations report a functional insulin growth
factor (IGF) network in synovial sarcoma, which is yet to be
corroborated clinically. In contrast to the variable expression
of most IGFRs and IGFBPs, IGF1, IGF1R, IGF2, and
IGFBP2 are consistently upregulated in SS18–SSX-positive
cells [8, 19, 57, 58, 61, 84, 120, 121, 141–144, 145•].
Apoptosis of serum-depleted synovial sarcoma cell lines is
prevented with IGF1 addition to monolayer cultures [88].
SS18–SSX peptides promote tumor formation by inducing
IGF2 transcription through mechanisms that involve
SMARCA2 and SMARCA4 [19, 142]. Synovial sarcoma
specimens and cell lines overexpress IGF2, the supplementa-
tion of which activates IGF1R and accelerates cellular growth
in vitro [144, 145•, 146, 147]. Similarly, IGF1R is upregulated
in synovial sarcoma samples and its expression is associated
with an aggressive phenotype [128, 141, 144, 148]. IGF2 or
IGF1R inhibition induced apoptosis, reduced migration, and
delayed proliferation of SS18–SSX-positive rat cells and syno-
vial sarcoma cell lines [142, 144]. Compared with other soft-
tissue tumors, synovial sarcoma displays high IGFBP2 and
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IGFBP7 immunoreactivity, the latter strongly predicting me-
tastases [121, 149].

Platelet-Derived Growth Factor Pathway

The platelet-derived growth factor (PDGF) pathway is constantly
activated in synovial sarcoma. Mutational anomalies affecting
PDGFs and PDGFRs are rarely documented in the disease [92,
128, 150]. RT-PCR and gene expression profiling of SS18–SSX-
positive cells revealed a unique and consistent overexpression of
PDGFRA, PDGFA, and PDGFB, with a concomitant downreg-
ulation ofPGDFRB [8, 57, 58, 60, 61, 92, 107, 120, 128, 151]. In
almost all synovial sarcoma cases and cell lines, immunohisto-
chemistry, immunoprecipitation, Western Blot, and
phosphoproteomic array analyses were frequently positive for
either one of the phosphorylated PDGFRs and their respective
cognate ligands, PDGFRA and PDGFA most frequently [92,
119, 128–130, 135, 150, 151]. A potential link between SS18–
SSX oncofusions and PDGFRA has been suggested, but its clin-
ical implications are still preliminary [119, 128, 139].

Stem Cell Factor Pathway

The activity of the stem cell factor (SCF) pathway is variable
in synovial sarcoma and may be fundamental in a subset of
tumors. Although gene expression profiling reported SCFR
repression as characteristic for this tumor, both SCF and
SCFR mRNAs are found in at least 80% of cases [43, 58,
151]. Sanger DNA sequencing identified an SCFR mutation
in at least 5% of cases [135]. SCF expression has not been
assessed in synovial sarcoma, whereas SCFR staining varied
broadly, with some studies showing a complete absence of
this marker and others reporting positive rates as high as
100% [43, 92, 99, 100, 150–153]. Protein extracts retrieved
from 40 synovial sarcomas were only positive for the phos-
phorylated isoform of SCFR in 18 (45%) tumors [151].

Vascular Endothelial Growth Factor Pathway

Emerging evidence suggests an active vascular endothelial
growth factor (VEGF) pathway in synovial sarcoma, the signif-
icance of which remains a subject of debate. Except for VEGFA,
VEGFs are downregulated in synovial sarcoma samples and
SS18–SSX-expressing cells [8, 19, 57, 58, 116]. To date, few
mutations involving only VEGFR2 have been reported in the
disease [10, 135]. At the protein level, both VEGFA and
VEGFR2 are detected in cellular cultures and tumors derived
from mice injected with synovial sarcoma cells [116, 129].
Clinically, 23 of 25 (92%) specimens stained positive for
VEGFA, which correlated with spheroid formation in soft-agar
assays [116].

Developmental Pathways

Hippo Pathway

Data regarding the Hippo network in synovial sarcoma is still
emerging, but current evidence advocates a nuclear accumu-
lation of the transcriptional coactivators YAP and TAZ as a
result of a repressed signaling pathway in the disease. Despite
being consistently reduced in human specimens and SS18–
SSX-positive cells, YAP, TAZ, TEAD3, and TEAD4 seem se-
questered within the nuclei of at least 75% of synovial sarco-
ma tissues and cell lines [19, 58, 145•]. A functional link has
been even suggested between SS18–SSX and the nuclear relo-
cation of these peptides, the inhibition of which prohibited
cellular growth by apoptosis induction [112, 145•].

Notch Pathway

Multiple effectors of the Notch signaling network are differen-
tially upregulated in synovial sarcoma, but data is currently lack-
ing to suggest a causative role for this pathway in the growth or
maintenance of the disease. Apart from one study showing a
repressed JAG2, all investigations found an induction of the ex-
pression of NOTCH1, NOTCH3, JAG1, JAG2, DLL1, HEY1,
andHES1 in murine and human myofibroblasts transfected with
SS18–SSX2 [8, 19, 60, 61]. Similar findings have been docu-
mented in human specimens of synovial sarcoma using oligonu-
cleotide and gene array analyses [8, 57, 58, 154].

Sonic Hedgehog Pathway

Preliminary findings support a role for the Sonic Hedgehog
signaling pathway in synovial sarcomagenesis. Mediators of
this network, including SHH, PTCH1, SMO, and GLI2, have
been regularly overexpressed in murine and human mesen-
chymal cells expressing SS18–SSX2, as well as synovial sar-
coma specimens and xenografts [8, 57, 58, 112]. Chromatin
immunoprecipitation sequencing revealed both Gli2 and Shh
loci to be highly enriched for SS18–SSX2 in transfected
C2C12 murine myoblasts, but no specific consensus sequence
that predicts SS18–SSX binding has been isolated to date [8].

Wnt Pathway

There is a substantial body of evidence to implicate the Wnt
network in the pathogenesis of synovial sarcoma. This disease
harbors rare sporadic mutations in Wnt-related genes, including
APC, AXIN, CTNNB1, and TLE2 [9, 92, 94, 108, 109, 111, 112,
115, 155, 156]. Genome-wide profiling and mRNA analyses of
surgical specimens and SS18–SSX-positive cells revealed an up-
regulation of WNTs, FZDs, LRPs, AXINs, TLEs, TCFs, and
LEFs, encoding some of the proteins that comigrated with the
synovial sarcoma fusions to specific promoter loci [8, 19, 54, 57,
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58, 60, 61, 107, 112, 118, 120, 154, 157, 158]. At least half of
synovial sarcoma samples and SS18–SSX-expressing cells dis-
play evidence of nuclear β-catenin expression, which oftentimes
predicted worse patient outcomes [54, 61, 91, 94, 108, 112, 114,
115, 159]. In this disease, Wnt effectors and antagonists are
predominantly overexpressed and repressed, respectively [94,
107, 118, 135, 157, 160, 161].

A partial transcriptomic overlap was detected between mu-
rine fibroblasts expressing SS18–SSX1 and their controls stim-
ulated byWnt3a [61]. CTNNB1 depletion resulted in cell pro-
liferation arrest and apoptosis induction in synovial sarcoma
cell lines, complete sarcomagenesis abrogation in mice
injected with SS18–SSX2Myf5 myoblasts, and size reduction
of generated tumors [94, 112]. This behavior correlated with a
membranous relocation ofβ-catenin and subsequent cytoplas-
mic protrusions, phenotypes reminiscent of adhesion proper-
ties acquisition [112]. Similar findings were obtained with
FZD10 and TLE1 inhibition, which hinder anchorage-
dependent and independent growth while promoting apopto-
sis in synovial sarcoma [56, 118, 158, 160].

Therapeutic Challenges and Perspectives

Despite substantial advancements in the understanding of syno-
vial sarcoma, much remains to be elucidated. The tumor-
initiating cell of this disease is still undetermined, but mounting
evidence suggests a mesenchymal origin [4–8]. However, aside
from one conditional mouse model claiming a myoblastic line-
age for synovial sarcoma, details regarding the exact type of the
mesenchymal cell are still lacking, as this cellular subgroup is
highly heterogeneous, and identical experiments in different cell
types could yield divergent results [8, 120, 162]. Moreover,
in vitro studies utilize genetically altered and immortalized cells
that do not really reflect the human cellular pathophysiology,
making the translation of the molecular results into clinical prac-
tice at least partially compromised [163]. Most in vivo analyses
investigate the disease at a specific time during its course, without
evaluating its progression. Addressing the latter question might
elucidate the role of each dysregulated gene in synovial sarcoma

(primary or secondary event for early sarcomagenesis or tumor
maintenance, respectively).

Deciphering the operational mechanisms by which SS18–
SSX oncoproteins promote sarcoma formation is challenging.
Onemay speculate that the functions of the preserved domains
in the final translocation recapitulate those of its native com-
ponents; however, this may not always hold true. Genetic
anomalies do not always explain proteomic alterations, as ev-
idenced by most molecules being overexpressed despite their
respective genes’ wild-type status [9, 10, 92, 94, 108–113,
115, 126–128, 135, 150, 155, 156]. Also, pooled expression
level is not an inevitable direct measure of a network’s activity
and susceptibility and may not seem as important as the com-
partment in which the protein is localized, as shown by the
nuclear accumulation of YAP/TAZ (Hippo) and β-catenin
(Wnt) [54, 61, 94, 112, 145].

As with other translocation-associated soft-tissue malignan-
cies, the optimal therapeutic approach in synovial sarcoma con-
sists of selectively targeting the initiating driver fusion, which
consistently affects multiple functional oncogenic signaling net-
works in the disease [8, 20, 54, 56, 59, 61, 70, 87, 88, 94, 95, 104,
112, 116, 128, 142, 145, 158]. While short interfering RNAs
hold the promise to nullify the translocation, this strategy seems
limited with regard to delivery and stability [164]. SS18–SSX
peptides could be also potentially dismantled using proteolysis-
targeting chimeras (PROTACs), a proteasomal degradation tech-
nology that has been associated with some success inmurine and
human preclinical tumoral models [165•]. Alternatively, emerg-
ing preclinical evidence suggests that inhibition of SWI/SNF and
Polycomb complexes via depletion or tagging of critical compo-
nents for ubiquitination may be an attractive therapeutic strategy
in synovial sarcoma [56, 59, 70, 158, 165•, 166, 167•, 168••,
169]. Clinical trials employing these therapeutic avenues are
summarized in Table 1.

Tailored therapies in synovial sarcoma are also challenged
by the tumor’s resistance and escape mechanisms, stemming
from the redundancy of its operational pathways (Fig. 3). To
optimize the chances for positive treatment response in the
future, it may be beneficial to perform a tumoral gene profiling

Table 1 Investigational trials exploring inhibitors of the SWI/SNF and Polycomb complexes in recurrent or metastatic synovial sarcoma

Clinical trial Trial phase Status Drug tested Drug class Condition Results

NCT02601937 Phase 1 Recruiting Tazemetostat EZH2 inhibitor Relapsed or refractory SMARCB1-negative
tumors or synovial sarcoma

Not available

NCT02875548 Phase 2 Recruiting Tazemetostat EZH2 inhibitor Advanced synovial sarcoma Not available

NCT00112463 Phase 2 Complete Romidepsin HDAC inhibitor Metastatic or unresectable synovial sarcoma Not available

NCT01136499 Phase 2 Complete Panobinostat HDAC inhibitor Advanced metastatic or unresectable
synovial sarcoma

No responses in six patients

NCT01879085 Phase 2 Recruiting Vorinostat HDAC inhibitor Metastatic or unresectable synovial sarcoma Not available

NCT00937495 Phase 2 Complete Vorinostat HDAC inhibitor Advanced, unresectable, or metastatic
synovial sarcoma

Not available
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at diagnosis, followed by a simultaneous depletion of active
networks, key complexes, and compensatory nodal proteins.
This might explain, at least partially, the therapeutic benefit
associated with pazopanib, a multi-receptor tyrosine kinase
(RTK) inhibitor, in improving the survival of patients with
advanced synovial sarcoma [170–172].

Conclusions

Synovial sarcoma is a karyotype-stable soft-tissue malignancy
that carries few additional genetic anomalies. This disease is
driven by an SS18–SSX translocation and seems to originate
from a complicated, yet delicate, equilibrium between epige-
netic activating and repressing multicomplexes that redirect
the tumor’s cellular machinery while charting a new neoplas-
tic signaling landscape. Most recent advances stem from in
silico or in vitro experiments, preventing a comprehensive
adoption of the findings in clinical practice. Individual path-
way repression has not proven effective in the disease, and
therefore, a synergistical approach that targets multiple key
pathways, complexes, and proteins, seems warranted.
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