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Abstract
Purpose of Review Recent advances in the machine learning field, especially in deep learning, provide the opportunity for
automated, detailed, and unbiased analysis of motor behavior. Although there has not yet been wide use of these techniques in
the motor rehabilitation field, they have great potential. In this review, I describe how the current state of machine learning can be
applied to 3D kinematic analysis, and how this will have an impact on neurorehabilitation.
Recent Findings Applications of deep learning methods, in the form of convolutional neural networks, have been revolutionary
for image analysis such as face recognition and object detection in images, exceeding human level performance. Recent studies
have shown applicability of these deep learning approaches to human posture and movement classification. It is to be expected
that portable stereo-camera systems will bring 3D pose estimation into the clinical setting and allow the assessment of movement
quality in response to interventions.
Summary Advances in machine learning can help automate the process of obtaining 3D kinematics of human movements and to
identify/classify patterns of movement.
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Introduction

Machine learning methods are increasingly popular in almost
all fields of the life sciences [1]. This is in part due to the
advances in deep learning. Deep learning is a form of feature
learning with multiple layers of representations. Each layer
performs a nonlinear transformation of the previous layer,
starting with the raw data, eventually leading to learning of
very complex representations [2]. This becomes very useful
for the analysis of large datasets as the algorithm does not
require an initial feature extraction step and learns from raw
data. Applications of this method have exceeded human per-
formance in image recognition, object detection, speech

translation, and natural language understanding [2–6]. They
are also increasingly being used in image analysis in many
fields of medicine [7–9].

In the motor neurorehabilitation field, one major challenge
is measurement of movement quality [10–13]. The current
standard clinical methods are composed of simple ordinal
grading scales (for example, giving 0 points for no perfor-
mance, 1 for partial performance, and 2 for “normal” perfor-
mance of the task) [14, 15]. This is problematic in many ways.
For example, even a simple reaching task can be performed in
an infinite number of ways, and thus comprises a rich dataset
that needs to be analyzed properly. Kinematic analysis of
movement has the potential to give very fine-grained informa-
tion about the quality of the movement [16••]. Thus, kinematic
analysis should be measured to assess the quality of the move-
ments in neurorehabilitation [17••].

Quantification of Motor Behavior

What makes a series of movements during a task “good” or
“normal”? Is it its speed and smoothness, or whether it is
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“successful” or not? How can the quality of the movement be
quantified? Most experienced clinicians can distinguish a
“high-quality” movement from a “low-quality” movement
(similarly, an experienced sports coach or music teacher can
also recognize high-quality movements). A detailed verbal
and/or pictorial description of abnormal movements can be
useful in identifying critical patterns of movements at various
stages of a disease [18, 19]. However, even that kind of detailed
description may not be objective and can miss the elements of
movement that might be important but are not easily detected.

The current standard clinical motor impairment measure-
ment tools are mostly based on scoring of the movements with
an ordinal scale based onwhether the tasks are completed only
partially, or not accomplished at all [14, 15]. While these tools
can be standardized, validated, reliable, and allow statistical
analysis, such scales are crude and cannot adequately capture
movement quality [11, 16], with the implication that they
cannot distinguish between the “compensatory” mechanisms
and a return to more natural movement patterns [13].

For example, during a skilled reach, healthy subjects can sit
back in a chair and elevate their arm, extend it, and then grasp
with their hand. After stroke, patients often move their trunk
up and forwards to overcome their limitations in arm control
(i.e., compensation). It is important to distinguish between the
compensation and true recovery, which can best be done via
kinematic analysis [16••] of the motor behavior, as it is “true
recovery” that will most accurately reflect biological repair
mechanisms [20]. Kinematic analysis of the movement pro-
vides most quantitative detail about the quality of the move-
ments and detects compensatory actions [16••]. However,
performing kinematic analysis can be challenging. Recent ad-
vances in machine learning hold promise to make kinematic
analysis more feasible at the bedside.

Machine Learning Methods

Machine learning is the study of algorithms that can learn
from data without the need for overt directives or specifica-
tion, but rather do so by detecting patterns inherent to the data.
As defined by Mitchell: “A computer program is said to learn
from experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T, as
measured by P, improves with experience E.” [21]. The most
commonly used machine learning algorithms can be divided
into three categories: supervised learning, unsupervised learn-
ing, and reinforcement learning. In a supervised learning al-
gorithm, when given a set of input and outputs (training
dataset), the model learns a function that can predict the output
when given new input data (test dataset), by iterative optimi-
zation of the objective function. In unsupervised learning, the
goal is to identify the patterns or the structure in a given
dataset. So, there are no input-output pairs of data, but rather

there is only a single dataset. Based on the similarity metrics
used, the algorithm tries to identify commonalities between
each piece of data and creates patterns based on how similar
the pieces are. In the third type of algorithm, reinforcement
learning, the agent takes actions to maximize a notion of cu-
mulative reward. Using machine learning methods can be
very useful in detecting inherent structure in complex datasets.

Deep Learning Methods

A subset of machine learning algorithms based on the use of
artificial neural networks is called deep learning [2, 22••].
Artificial neural networks constitute of layers of nodes
(neurons) where each neuron is a mathematical function that
takes the sum of the outputs of each node from the previous
layer, applies that function, and outputs the result to each node
of the next layer. The input data is provided to the first layer,
and the final layers spit out the output. There can be many
layers (hence “deep”) and many nodes in each layer. When
given a dataset consisting of matched input-output data, by
using iterative optimization, the algorithm optimizes the
weights between each node until the algorithm (network)
learns the input-output relationship (predicting the output ac-
curately when given a new input). The performance of deep
neural networks increases with the increasing amount of train-
ing datasets, thus requiring a large set of labeled data initially
[2]. Also, the training of the networks becomes much faster
when graphics processing units (GPUs) are used [4].

A subtype of neural network architecture, convolutional
neural networks (CNNs), are particularly good for image anal-
ysis [23]. CNNs are a special type of artificial neural networks
combining modification of three architectural ideas: local re-
ceptive fields, shared weights, and sub-sampling (spatial or
temporal) [23]. This becomes very useful in the processing of
images. When given a training dataset with input “raw” images
and pre-labeled outputs, CNNs perform extraordinarily well
with image classification and object detection [2, 24]. Thus,
when the labeled outputs of an image are, for example, the
joints of the arm, the network can be trained to detect them.
In fact, there have been several such network architectures de-
veloped to detect human body postures [25–36]. All of these
algorithms, using slightly different network architectures, detect
joint positions in two-dimensional (2D) images. To obtain
three-dimensional (3D) positions, usually a multi-camera setup
is required [37••, 38] (there are, however, algorithms that can
estimate 3D poses directly from single 2D videos [39]).

Obtaining 3D Kinematics of Human Upper
Extremity Movements Using Deep Learning

Although it is the case that ordinal scales and 2D kinematics
can capture differences between normal and impaired
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movements [14, 15, 40], natural motor behaviors are per-
formed in 3D and so are best evaluated in 3D [10, 17].
Kinematic analysis in 3D, however, has proven challenging
to date. It has been mostly performed by either placing reflec-
tive markers on select joints (bony structures), by using robot-
ics, or wearable sensors [40–42]. These are not practical for
routine use, are mostly expensive, time-consuming, and chal-
lenging to calibrate or standardize. Thus, there is a need for
inexpensive user-friendly marker-less solution. This is where
deep learning tools come to the fore: markerless detection of
3D joint positions during naturalistic behaviors for clinical use
has been shown to be possible [37••]. The authors first created
a portable two-camera stereo system to record the movements.
Then, by using one of the available network architectures to
detect 2D human joint positions, they analyzed the videos and
created 3D models of the subjects performing movements
[37••]. This kind of system provides a desirable solution for
clinical 3Dmotion capture. Such systems will almost certainly
improve over time as analysis methods become more sophis-
ticated. Moreover, reliability and validity studies are still
needed before standard use of these systems in clinical trials
and settings.

Why Machine Learning Is Needed for 3D
Kinematic Analysis

There are two main reasons how machine learning methods
can help with the 3D kinematic analysis of human move-
ments. The first one is in obtaining the 3D data. As described
in the previous section, obtaining 3D kinematic data can be
challenging. However, it is important to analyze the move-
ments in the most naturalistic way possible that is 3D,
marker-less kinematics. This would require no external de-
vices or markers attached to the body. Deep learning offers
great opportunities for this purpose. The advanced methods
for image recognition and object detection can be utilized to
detect the joint positions of the human subjects in standard
video recordings, and multiple camera views can be combined
to obtain 3D positions of joints [37••].

The second reason how machine learning methods can be
very useful is in the analysis of the 3D kinematic data.
Machine learning methods are instrumental in recognizing
the patterns inherent to the data. This is very important in
3D kinematic analysis. For example, identifying different pat-
terns of movements in normal subjects itself is a challenging
task. However, the movements are complex and highly vari-
able. Moreover, this variability increases after a nervous sys-
tem injury and especially during the recovery phase from the
injury. It is important to identify movement patterns that are
unique to certain types of injuries and compare these directly
with those of healthy individuals. This would also be critically
important in assessing whether a patient’s movements

returned back to “normal” pattern of movements, or have
evolved into a bizarre state mathematically. Using machine
learning to identify different patterns of movements can be
very important in assessing the state of the quality of the
movements.

Analyzing 3D Kinematic Data: Feature
Engineering

Obtaining 3D kinematics is the first challenge for measuring
the quality of the movements. However, once obtained, the
next, and likely the more important, challenge is to determine
how the data should be analyzed. The main question is “How
does one assess the “quality” of the movement?” The conven-
tional approach to kinematic data analysis is to obtain pre-
specified kinematic parameters such as the peak and average
velocities, joint angles, trajectory smoothness, and endpoint
error (see recent systematic review of more than 150 kinemat-
ic parameters [43•]). Moreover, one may apply unsupervised
machine learning techniques [44•] to these numerous kinemat-
ic parameters to identify patterns. Here, the goal would be to
find a set of parameters that can explain the highest variability.
This approach can be useful in distinguishing a particular type
of movement (e.g., the one with certain joint angles) than
another (when these angles are different). A limitation to this
approach is that one can end up with a hard-to-summarize list
of kinematic variables, some of which may be important for
assessing the movement quality but others may be compensa-
tory. For example, in reaching task, when arm movement is
impaired (with limited shoulder and elbow extension), a com-
pensatory mechanism is to first do a shoulder abduction, and
then trunk flexion in order to get the hand closer to the target.
Thus, in this example, if only these two parameters (shoulder
abduction and trunk flexion angles) are measured, they will
probably show differences between normal and impaired sub-
ject but are just indicative of a compensatory response and
thus are only indirectly related to movement quality.

Analyzing 3D Kinematic Data: a Holistic
Approach

An alternative analysis to the conventional kinematic analysis
discussed above is studying the movement as a whole, for
example, the trajectories of the end effector during a reach.
Impaired reaching after stroke can be compared to a reference
population of normal reaches. The main advantage of this
approach is that it examines the movement trajectory in its
entirety and makes no assumptions about particular kinematic
features. This approach can first generate a distribution of
“normal”movements” and then provide a scalar distancemea-
sure for a given abnormal movement from this reference
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distribution. This kind of approachwas successfully applied to
2D kinematic data using functional principal component anal-
ysis [45•, 46•, 47•]. However, this type of analysis needs to
now be applied to 3D trajectories. Based on these distances
between different trajectories (i.e., movements), one may use
unsupervised machine learning techniques to identify clusters
of trajectories that are similar to each other. These similar
trajectories can form different clusters that are unique and
different from each other. Thus, eventually, this type of anal-
ysis may result in clusters of “normal movements”, “low-qual-
ity” movements in a patient, “movements with compensatory
actions”, “truly recovered movements” that are similar to
“normal movements” etc.

Perspectives for Future

Machine learning algorithms hold strong promise in both gen-
eration and analysis of 3D kinematic data. 3D kinematic anal-
ysis of the movements is important for assessing the quality of
movements in neurorehabilitation [17••]. Obtaining 3D kine-
matics can be challenging, however, doing this in the most
natural way, i.e., marker-less, is the ideal method. Recent ad-
vances in deep learning techniques now make this possible
[37••]. Furthermore, machine learning algorithms such as un-
supervised learning methods can help with identification of
patterns of movements the patients exhibit throughout their
disease course. It is likely this kind of analysis has the greatest
potential for the clinical movement science. For example, the
patients can first be recorded while performing certain tasks.
Then, an automated analysis would be able to identify the
pattern of their movements and the algorithm can put together
a score or document that shows the current state of the pa-
tient’s condition clinically. This may range from the extent of
recovery after a stroke vs how much compensatory strategies
the patient is using, to how advanced the diseases (such as
Parkinson’s disease, Huntington’s disease, or certain genetic
ataxias or other movement disorders) are. Alternatively, this
kind of analysis can provide a guidance whether a treatment is
effective, and if so, how much it has benefited the patient. The
assessment of motor behavioral state of patients with this
method is akin to revealing brain structure by obtaining a
magnetic resonance imaging.

Computational models can provide great insight into how
the movements are executed [48–52]. These theories could
also be very useful in explaining how the movements would
be affected after a neural injury. Combining detailed motor
behavior analysis with neural data might be helpful in formu-
lating such theories [53–55]. The movements are created by
coordinated work of the cerebral cortex, subcortical circuitry,
spinal cord, nerves, muscles, skeletal structures, and joints.
Thus, a theory should be able to explain how this “machinery”
works at the algorithmic level to generate the movements.

Advanced machine learning algorithms can help identify pat-
terns of movements, which when combined with the neural
data, can help form new theories on motor control.

Conclusions

Kinematic analysis, preferably 3D, is important in measuring
the quality of movements. Machine learning algorithms are
useful tools for obtaining 3D movement kinematics and then
analyzing them. These analyses can help distinguish compen-
satory actions vs behavior restitution.
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