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Abstract
Purpose of Review After decades of hype, cell-based therapies are emerging into the clinical arena for the purposes of promoting
recovery after stroke. In this review, we discuss the most recent science behind the role of cell-based therapies in ischemic stroke
and the efforts to translate these therapies into human clinical trials.
Recent Findings Preclinical data support numerous beneficial effects of cell-based therapies in both small and large animal
models of ischemic stroke. These benefits are driven by multifaceted mechanisms promoting brain repair through
immunomodulation, trophic support, circuit reorganization, and cell replacement.
Summary Cell-based therapies offer tremendous potential for improving outcomes after stroke through multimodal support of
brain repair. Based on recent clinical trials, cell-based therapies appear both feasible and safe in all phases of stroke. Ongoing
translational research and clinical trials will further refine these therapies and have the potential to transform the approach to
stroke recovery and rehabilitation.
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Introduction

Stem cell therapies are emerging in the clinical arena, and
bringing with them renewed hope for novel therapeutic ap-
proaches to promoting brain repair after stroke. The concept of
regenerative medicine in central nervous system injury dates
back more than a century, when Santiago Ramon y Cajal
observed, “In adult centers the nerve paths are something
fixed, ended, immutable. Everything may die, nothing may
be regenerated. It is key for the science of the future to change,
if possible, this decree.” [1] Over several decades, we have
learned much about the potential for regeneration in the CNS,
with the recognition of neural stem and progenitor cells
(NSPs) persisting in the brain throughout life. Reynolds and
Weiss first demonstrated the ability to isolate multipotential
progenitors from the brains of adult rodents [2]. Animal

models then demonstrated increased neurogenesis from these
progenitors after stroke in both the immature and aged brain.
Attention has more recently turned toward transplantation of
exogenous cells to support and augment endogenous repair
mechanisms. Originally stymied by ethical considerations sur-
rounding the use of embryonic stem cells (ESCs), the brakes
have been released by a plethora of mechanisms for generat-
ing neural progenitors from adult tissues. These include most
notably induced pluripotent stem cells (iPSCs) which can be
generated from an individual’s own somatic cells. Today we
have tremendous capabilities to generate many different spe-
cific cell types. In many ways, this has outpaced our ability to
study the effects of different cell types as means of therapy. In
this review article, we will discuss the variety of cell-based
therapies under investigation, possible mechanisms of action,
and the current evidence available from human clinical trials.
Finally, we propose a roadmap for future research to accelerate
the development and optimization of cell-based therapies as
critical treatments for stroke recovery.

Pathways for Cell-Based Therapies

The term “stem cell” has existed in the literature for more than
a century, and by strict definition necessitates the
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characteristic capacities for self-renewal and differentiation
into other cell types [3]. Stem cells range from pluripotent
ESCs from which entire organisms arise, to more restricted
organ-specific stem cells. Experimental observations also sug-
gest that stem cells and their progeny exist on a continuum,
with at least some potential of bidirectional phenotypic lability
[4]. As applied to regenerative medicine, the key characteris-
tics of stem cells present a double-edged sword. The expan-
sion and multipotential differentiation capacities are therapeu-
tically promising, but also present the feared possibility of
tumorigenicity [5–7]. Many of the cell types that have been
investigated in stroke have been either more restricted progen-
itors or stem cells that have beenmodified to limit this risk, but
nonetheless are commonly referred to collectively as stem cell
therapy.

Exogenous Cell Administration

ESCs are derived from blastocysts and represent the most
pluripotent cell state available for potential therapeutic pur-
poses [8–10]. This pluripotency also raises concerns regarding
tumorigenicity following transplantation [5, 11]. These cells
can be directed in vitro toward neural lineages, as reviewed
elsewhere [12–14]. Most experimental approaches have used
such directed differentiation prior to transplantation to reduce
the risk of uncontrolled expansion. After transplantation in
preclinical stroke models, ESCs can engraft and survive for
up to 12 weeks [15–18]. Some studies have demonstrated
migration of transplanted cells whether transplanted
ipsilesionally or contralesionally [16], but others have not ob-
served significant migration [15]. These cells can differentiate
into multiple neuronal subtypes as well as glia [16, 17], de-
velop electrophysiological properties of mature neurons [16],
and form structural connections within the host brain [18].

NSPs are more restricted stem cells. They are able to self-
replicate, but differentiation is restricted to neuronal and glial
subtypes [19, 20]. In addition to ESCs and iPSCs, NSPs can
be derived from fetal and adult tissue [21, 22]. Adult NSPs
reside in the subventricular zone (SVZ) in the wall of the
lateral ventrical and the subgranular zone (SGZ) of the dentate
gyrus in the hippocampus [23]. While in general considered
multipotential, NSPs may actually have region-specific line-
age restriction [24••]. NSPs have been administered directly
into the brain either through stereotactic neurosurgery or intra-
arterially in preclinical animal models of stroke, and a recent
meta-analysis found many pleiotropic benefits on behavioral
and structural outcomes [25, 26].

Mesenchymal stem cells (MSCs) reside in tissue of meso-
dermal lineage such as adipose tissue, bone marrow, umbilical
cord blood, and others [27]. The first identified and most com-
monly used MSCs are bone marrow-derived MSCs, a subset
of bone marrow mononuclear cells (BMMNCs) [28]. Along
with the ability to differentiate into a range of mesenchymal

tissue, MSCs can also differentiate into ectodermal and endo-
dermal lineages, including neural cells [29, 30]. This is possi-
bly due to an even more specific subset of MSCs, the recently
described multilineage-differentiating stress enduring (Muse)
cells that comprise a small portion of bone marrow-derived
MSCs [31]. These cells may also play a role in the unique
ability of MSCs to migrate towards areas of injury and spon-
taneously differentiate and integrate with damaged tissue [31,
32, 33•]. MSCs can be isolated and expanded from patients as
an autologous source of cells, thus reducing the risk of im-
mune system activation [34–36]. MSCs have both anti-
inflammatory and neurotrophic effect with the ability to se-
crete multiple factors including BDNF, NGF, FGF, and VEFG
[37].

Induced pluripotent stem cells (iPSCs) are dedifferentiated
somatic cells, most commonly fibroblasts, transformed via
induction of defined transcription factors [38–40]. Similar to
ESCs, iPSCs are returned to their pluripotent state and have
the ability to differentiate into different neuronal cell types,
including NSCs [41, 42]. Unlike ESCs, however, autologous
iPSCs have less immunogenicity due to their derivation from
the patient’s own tissue, avoid the moral and legal issues sur-
rounding the cultivation and use of ESCs, and afford nearly
limitless customization [43, 44, 45•]. Transplantation of iPSC-
derived NSPs leads to regeneration of mature and functional
neurons and axonal projections. They also enhance
neurogenesis and angiogenesis following ischemic stroke
through trophic support, promoting improved neurologic out-
comes [46–48, 49••].

Endogenous Neurogenesis

Once considered to be a static organ, we now know that
the brain has the capacity to generate new cells during
postnatal neurodevelopment and long after. Joseph
Altman first demonstrated new cells being born in the
adult rodent brain using 3H-thymidine incorporation as-
says [50]. Kaplan and Hinds later confirmed similar
results demonstrating newly born neurons in the rat den-
tate gyrus and olfactory bulb using electron microscopy
[51]. Adult neurogenesis is now a well-established fea-
ture of the rodent brain, occurring in discrete neurogenic
niches: the subventricular zone of the lateral ventricles
and the subgranular zone of the dentate gyrus [52, 53].
Despite these early findings, the issue of adult
neurogenesis remained contentious due to the unknown
source of these cells and primate research that suggested
that adult neurogenesis may be limited to rodents [54].
Postnatal neurogenesis has since been confirmed in the
human hippocampus, taking advantage of patients who
had received the thymidine analog bromodeoxyuridine
(BrdU) as chemotherapy and thus labeled newborn cells
at the time of treatment [55]. More recent studies
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suggest that basal levels of endogenous neurogenesis in
humans are very low, with the possible exception of the
perinatal period [56, 57•]. Animal models have repeat-
edly demonstrated increased neurogenesis after stroke,
both in immature and adult rodents [58–63]. Key ques-
tions remain as to the functional importance of this ap-
parent regenerative response, but numerous studies have
demonstrated correlations with behavioral recovery after
stroke [64]. In humans, evidence is much more sparse
given technical limitations, but some studies hint that a
similar phenomenon may occur [65, 66].

Other Avenues for Promoting Cell-Based Therapy

In addition to stem cells themselves, a number of adjunctive
technologies are emerging with the potential to further ad-
vance these therapies. The use of bioscaffolds such as biolog-
ically derived and synthetic hydrogels greatly aid in the trans-
plantation and subsequent survivability of exogenous stem
cells in the stroke cavity [67, 68]. These substances allow
for in situ tissue regeneration and provide a non-reactive ma-
trix that can act both as structural support system for stem cells
as well as a vehicle for drug delivery [69••, 70]. Imaging
techniques including optical imaging, magnetic resonance im-
aging (MRI), and positron emission tomography (PET) offer
the ability to track and monitor cells from the point of admin-
istration [71–73]. Cells to be transplanted are labeled with
magnetic markers, typically superparamagnetic iron oxide
(SPIO) nanoparticles. In addition to the primary function as
MRI markers, SPIO-labeled cells can be physically manipu-
lated via an external magnet through fluid compartments, po-
tentially indicating a method of manual direction through the
ventricular system [74]. These technologies may open even
further avenues for the application of cell-based therapies in
stroke.

Mechanisms of Action

The holy grail of stem cell therapy is to replace cells that are
lost or damaged as a consequence of disease or injury. In the
context of stroke, this is an enormous task given that a stroke
indiscriminately destroys all brain tissue, often leaving behind
a region devoid of the infrastructure that was laid down during
development. In order to achieve cell replacement, therapies
will have to accomplish (i) delivery of cells to the infarct
territory; (ii) allowing or promoting the differentiation of those
cells into a diverse population including various types of neu-
rons, glia, and blood vessels; and (iii) re-establishment of
complex connections and networks both locally and remotely.
Fortunately, cell-based therapies provide numerous mecha-
nisms for enhancing repair of the brain following injury, inde-
pendently of actual cell replacement [75].

Modulation of Neuroinflammation

Stroke represents an evolution of injury over time, from acute
necrosis during ischemia to secondary cell death due to in-
flammation [76]. An overly simplistic view of inflammation
would suggest that proinflammatory cytokines and the cellular
immune response aggravate injury, impair neurogenesis, and
impede neural repair after stroke [77, 78]. The true interaction
between inflammation and the regenerative response to the
brain is likely much more complex, and some inflammatory
mediators may actually help to promote repair [79, 80].
Microglia play a biphasic role in ischemic stroke with shifting
polarization between pro-inflammatory and anti-
inflammatory phenotypes, a phenomenon that can be targeted
therapeutically with cell-based therapy in preclinical models
[81, 82•, 83]. Accumulating evidence in both humans and
animals support a significant role for immunomodulation as
one pillar of stem cell therapies in enhancing recovery after
stroke [84, 85••, 86–88]. This mechanism of action is partic-
ularly applicable to peripherally administered stem cells be-
cause they can exert their effects through the systemic immune
system rather than requiring direct localization near the stroke.

Remodeling of Neural Networks and Cell
Replacement

Data from animal models and human patients suggest that
after ischemic stroke, neural circuitry in areas surrounding
damaged tissue reorganizes to regain previously lost function
[89]. These changes include axon sprouting, dendritic remod-
eling, and new synapse formation and can be facilitated by
functionally directed rehabilitation [90–94]. Expanding evi-
dence suggests that stem cells promote neural circuit regener-
ation through multiple intertwined mechanisms, promoting
repair and reorganization of existing cells as well as limited
incorporation of new cells into the regenerating circuit.

One important mechanism through which stem cells pro-
mote neural circuit remodeling is secretion of neurotrophic
factors. Infusion of mesenchymal stem cells engineered to
express brain-derived neurotrophic factor (BDNF), placental
growth factor (PGF), glial cell-line-derived neurotrophic fac-
tor (GDNF), or vascular endothelial growth factor (VEGF)
and angiopoietin into rodent models of ischemic stroke im-
proved functional outcomes [95–98]. The functional improve-
ment in these experiments correlated with decreased infarct
volume and improved vascular regrowth into the injured pa-
renchyma. Although cells can be engineered to overexpress
neurotrophic factors, MSCs exposed to the ischemic post-
stroke environment also appear to inherently upregulate pro-
duction of neurotrophic factors [99]. Neurotrophic factors are
known to be crucial to neural circuit development at sequen-
tial stages of development, from promoting neurogenesis,
through dendrite and axon growth, to synaptogenesis and
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synaptic refinement [100]. Cell-based therapies may act in
part by re-inducing developmental programs of neural circuit
formation [101]. Emerging evidence also suggests that
exosomes may provide a critical mechanism by which stem
cells exert their effects in promoting remodeling after injury
[102•].

Indeed, all of the anticipated effects of neurotrophic sig-
naling in the stroke-damaged brain have been observed
after stem cell transplant. When transplanted into the ische-
mic brain, exogenous NSPs can augment neurogenesis and
angiogenesis from resident precursors thus increasing the
population of cells that may potentially be integrated into
the recovering circuit [103–105]. Transplanting human
NSPs into stroke-injured brain also promotes remodeling
of both neuronal axons and dendrites, with increased con-
nectivity within damaged circuits and improved axon func-
tion as evidenced by increased cargo transport along the
length of axons [106]. Accompanying in vitro studies sug-
gest that these effects were at least in part mediated by
VEGF and thrombospondin.

Bystander or paracrine effects are clearly important
factors underlying the efficacy of stem cells in promoting
repair and regeneration, but cell replacement likely has a
role as well. Arvidsson and colleagues observed that less
than 20% of newly generated cells survived and matured
into NeuN-expressing neurons [59]. Despite this sobering
fact, a minority of cells do survive, migrate into sites of
injury, and even functionally integrates into local circuit-
ry, developing similar electrophyiological signatures com-
pared to pre-existing neighbors [107]. There is evidence
that stem cells can generate mature neurons that form
functional afferent and efferent connections. Neural pre-
cursor cells derived from explants of immature medial
ganglionic eminence (which developmentally is the
source of inhibitory interneurons) were directly implanted
into stroke-damaged brain, and found to differentiate into
neurons [108, 109]. These explant-derived neurons re-
ceived functional synaptic connections, as measured elec-
trophysiologically by postsynaptic potentials, and were
able to generate action potentials, although the target of
their connectivity was not defined. Following transplanta-
tion, iPSCs that had been primed toward cortical neuronal
phenotypes also functionally integrate into damaged cir-
cuitry following transplantation [49]. These cells differen-
tiated into both excitatory and inhibitory mature neurons
(as assessed both immunohistochemically and electro-
physiologically) and received functional synaptic inputs
from native cortex. While most effort has emphasized
neuronal production, some investigators have also ob-
served oligodendrogenesis [110]. Understanding the role
of glia in both promoting and limiting regeneration in the
brain will be critical for further promotion of cell-based
therapy [111, 112].

Clinical Trials of Cell-Based Therapy in Stroke

Based upon encouraging results from preclinical studies of
cell-based therapies in animal models of stroke, investigators
have embarked on pioneering human studies over the past two
decades. Most of these have been small, open-label, single
arm studies. Table 1 summarizes many of the published trials
to date. The majority of these clinical trials have been initial
phase I/II trials of feasibility and safety, with small numbers of
patients and often not randomized or controlled.

In one of the earliest efforts, Kondziolka and colleagues
investigated the effects of stereotactic transplantation of hu-
man embryonic carcinoma-derived precursor cells (termed
LBS-neurons) in chronic basal ganglia stroke. In their first
study, they found slight improvements in the European
Stroke Scale at 6 months compared to the patients’ baseline,
but in their follow-up phase II study, there were no significant
differences between transplanted patients and control patients
[113, 114]. In both studies, there were no adverse cell-related
events, although procedure-related complications did occur.
One of the major criticisms of these studies was the use of a
cancer-derived cell line and the risk for tumorigenicity given
limited follow-up of only 1 year. This led to a pilot study of
porcine embryonic precursor cells derived from the lateral
ganglionic eminence, but this study was terminated by the
FDA after 2/5 patients developed adverse events [116].

An alternative approach has utilized an immortalized hu-
man neural stem cell line derived from fetal cortical brain
tissue (CTX0E03 cell line). These cells have been engineered
with a retrovirally delivered c-mycERTAM transgene to allow
large-scale expansion and banking [133]. In vivo models have
demonstrated rapid epigenetic silencing of this transgene
within the first week after transplantation, supporting a low
risk of uncontrolled expansion and tumorigenicity [134]. In a
phase I safety trial (PISCES), Kalladka and colleagues
transplanted increasing doses of these cells into the
ipsilesional putamen of 11 men with ischemic stroke 14–
51 months prior to enrollment [130]. Importantly, their trial
did not include immunosuppression as preclinical models sug-
gested that low immunogenic responses to the CTX0E03
cells. The primary outcome of this phase I trial was safety,
and they saw no significant adverse events that they attributed
to the cell therapy, but several related to the neurosurgical
procedure. While not powered or designed for efficacy, sev-
eral patients did experience improvements in multiple mea-
surement scales including the modified Rankin scale. While
typically patients are not expected to make significant im-
provements at the timepoints in this study, it is not possible
to attribute causality to the cell therapy in the absence of a
control group. An important caveat to this study is that only
men were included to reduce the risk of incidental exposure to
tamoxifen, a commonly used treatment for breast cancer, be-
cause the transgene is under control of a tamoxifen-inducible
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promoter. Whether the safety of this treatment will be gener-
alizable to women remains to be seen. A phase II has recently
been completed, but not yet published. The company’s
website indicates that although the primary endpoint was not
met, enough benefits were observed in some subjects to
prompt planning of a definitive trial.

The previously described studies used neuronal precursors,
but MSC transplantation has also been explored in clinical
trials. Steinberg and colleagues used bone marrow-derived
MSCs that had been transiently transfected with Notch1 to
promote differentiation to a neuronal lineage [131••]. These
cells were stereotactically implanted to multiple locations in
the peri-infarct tissue under MRI guidance, with a goal of
bracketing the stroke with stem cells. Transplantations were
performed in the chronic phase at a mean of 22 months after
stroke (range 7–36). Similar to prior studies, adverse events
were rare and largely attributable to the neurosurgical proce-
dure rather than the cells. In 18 patients, there were only four
treatment-emergent adverse events that were possibly related
to cell therapy and none that were probably or definitely
deemed attributable to cell therapy, but there were 22 adverse
events with a possible/probable/definite relationship to the
neurosurgical procedure (most commonly headache). Similar
to the PISCES trial, it is difficult to draw strong conclusions
on efficacy in the absence of a control group, but the investi-
gators observed statistically significant improvements in the
European Stroke Scale, the NIH Stroke Scale, and the Fugl-
Meyer at timepoints when substantial improvement would
typically be unexpected.

Honmou and colleagues investigated IV infusion of autol-
ogous MSCs in the subacute to chronic phase of ischemic
stroke, and they observed no significant adverse effects
[121]. Interestingly, they did see an increased rate of improve-
ment in NIHSS in the first 1–2 weeks post-infusion, but there
was no control group and evaluators were not blinded.
Additionally, many of these patients received infusion within
3 months after stroke, a time window in which some sponta-
neous recovery of impairment is expected. They also saw
progressive reduction of lesion volumes, reaching a mean of
20% reduction at 1 week post-infusion compared to 1 day
after infusion, at a time when such lesion evolutions may not
be expected [135].

The application of cell-based therapies during the acute
phase of stroke has mostly been limited to systemic adminis-
tration of bone marrow-derived precursors (MSCs, MAPCs,
BMMCs). The MASTERS trial is one of the largest studies to
date and was performed in a multicenter, placebo-controlled,
double-blinded fashion [85••]. Bone marrow-derived
stem/progenitor cells were administered intravenously be-
tween 24 and 48 h after stroke onset. There was no difference
in the primary or secondary safety endpoints of dose-limiting
toxicity, neurological worsening due to the investigational
product, secondary infections, or laboratory/cardiac

abnormalities.While overall, the frequency of treatment emer-
gent adverse events was more common in the treatment group,
these were mostly deemed mild to moderate. The primary
efficacy endpoint was the multivariate global stroke recovery
at 90 days (mRS ≤ 2, 75% improvement in NIHSS, and
Barthel Index ≥ 95). Exploratory analyses suggested benefit
in terms of excellent outcome (defined as mRS ≤ 1, BI ≥ 95,
and NIHSS ≤ 1) at 1 year. Additionally when considering only
those patients treated within 24–36 h, mRS shift analysis and
excellent outcome at 90 days both favored MAPC treatment,
and the 1-year outcomes were even more strongly in favor of
MAPC treatment. The authors’ interpretation of these results
posited that MAPC treatment may ameliorate secondary in-
flammation after stroke, and that these benefits may take even
more time to become evident than our typical 90-day out-
comes. They also note the suggestion that time window of
treatment may be important.

Conclusions

The momentum behind cell-based therapies for stroke re-
covery remains substantial, but while early studies have
shown hints of promise true efficacy has not yet been
achieved. In 2007, investigators from academia, govern-
ment, and industry convened a consortium to lay a path
forward, and from this emerged the Stem Cells as an
Emerging Paradigm in Stroke (STEPS) series of guide-
lines [136, 137••, 138]. Preclinical studies show that stem
cells promote regeneration through multiple mechanisms:
supporting endogenous circuit remodeling, incorporating
new cells, and modulating immune responses. Whether
these mechanisms are independent or synergistically
bound requires further exploration. While the quality of
clinical evidence remains limited, safety and feasibility
have been demonstrated for multiple cell types, routes of
administration, and times of administration. Future studies
should establish biomarkers so that as clinical trials prog-
ress, we will be able to re-evaluate biological targets to
optimize efficacy. An iterative process between the clinic
and the laboratory is essential to refine the approach for
cell-based therapy and ultimately reach the desired end-
points. Bioengineering advances promise to allow cus-
tomization of both cells and scaffolds to enhance thera-
peutic benefits [139–141]. No therapies in current stan-
dard clinical practice improve outcomes beyond the pro-
portional recovery expected from spontaneous biological
repair mechanisms [142••]. Cell-based therapies offer the
potential to dramatically shift the paradigm of stroke re-
habilitation and recovery. It is imperative that we continue
to refine and drive these therapies toward the goal of
improving functional restoration in our patients.
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