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Abstract

Purpose of Review There is a growing body of evidence indicating the gut microbiota influence neurodevelopment and behavior.
The purposes of this review are to provide an overview of studies analyzing the microbiota and their metabolites in autism
spectrum disorders (ASD) and to discuss the possible mechanisms of action involved in microbial influence on the brain and
behavior.

Recent Findings The microbiota-gut-brain (MGB) axis has been extensively studied in animal models, and it is clear that
alterations in the composition of microbiota alter neurological and behavioral outcomes. However, findings in human studies
are less abundant. Although there are several studies so far showing altered microbiota (dysbiosis) in ASD, the results are
heterogeneous and often contradictory. Intervention studies such as fecal microbiota transplant therapies show promise and lend
credence to the involvement of the microbiota in ASD.

Summary A role for the microbiota in ASD is likely; however, further studies elucidating microbial or metabolomic signatures
and mechanisms of action are needed. Future research should focus on intervention studies that can identify specific metabolites

and immune mediators that improve with treatment to help identify etiologies and pathological mechanisms of ASD.

Keywords Autism - Microbiota - Dysbiosis - Dysregulation - Neurodevelopment - Behavior

Introduction

Autism spectrum disorders (ASD) are a heterogeneous group
of neurodevelopmental disorders characterized by deficits in
communication, social interaction, and cognition [1]. ASD
have increased significantly in prevalence since they were first
identified to a current rate of 1:59, with a preponderance to-
ward boys [1]. No single etiology of ASD has been identified,
with current theories suggesting both genetic and environmen-
tal contributions. Genetic mechanisms account for approxi-
mately 10-20% of ASD cases [2], leaving us with questions
about what might be driving etiology of these disorders.
Environmental factors that have been implicated in increased
risk for having a child with ASD include air pollution,
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pesticide exposure, maternal infections, and/or inflammatory
conditions, or antibiotics during pregnancy [3—5]. Immune
dysfunction and gastrointestinal (GI) inflammation are also
common in individuals with ASD and contribute to severity
of behaviors seen in the disorder [6—8]. New data on the role
of the gut microbiome in neurodevelopmental disorders has
prompted theories of the roles commensal bacteria may play
in ASD. The studies discussed in this review have identified
significant dysbiosis in children with ASD; however, it is un-
known whether the GI dysfunction and dysbiosis is sequelae
of the larger disorder or whether they directly contribute to
causing ASD.

The gut microbiota consists of the collection of microbes
present within the human GI tract, and their collective genome
is the gut microbiome [9]. It is generally understood that initial
colonization begins at birth through the acquisition of mater-
nal microbiota during vaginal delivery; however, recent re-
search suggests that there may be acquisition of maternal mi-
crobiota during gestation [10]. The infant microbiota are sup-
ported with breastmilk which is high in human oligosaccha-
rides; however, the composition of early-life microbiota can
be altered by delivery methods, hygiene, and feeding practices
such as formula feeding [10]. The healthy infant gut is initially
dominated by Bifidobacterium and Lactobacillus; however, it
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is unstable for the first several years of life, throughout
weaning and food introduction, then stabilizing to a more
“adult-like” composition around age 3 [10]. The dominant
phyla of bacteria in the healthy adult gut are Firmicutes and
Bacteroidetes, with a smaller portion of the microbiota made
up of Actinobacteria, Proteobacteria, and Verrucomicrobia
[9]. Within the last decade, our understanding of the microbi-
ota and its importance to health has blossomed, and we now
recognize that loss or alteration of microbiota may be leading
to chronic diseases [11]. Disturbances of the microbiota can
occur through antibiotic treatment, changes in diet, immune
challenges, and stress [10], and this can upset the balance
between beneficial commensals and potentially pathogenic
microbes in the gut. This broken balance is termed dysbiosis
[12].

Microbiota-Gut-Brain Axis

The gut microbiota play a critical role in the development of
the intestinal architecture and mucosal immune system and are
particularly important for regulation of the immune system in
the gut [reviewed in [13, 14]]. In germ-free (GF) mice, the
architecture of the mesenteric lymph nodes and Peyers patches
is smaller and disorganized, with reduced maturation of iso-
lated lymphoid follicles and fewer numbers of immune cells
present. These mice experience immune dysfunction and are
more susceptible to infections than mice kept in conventional
facilities [13, 15]. These deficits can be corrected by coloni-
zation with diverse commensal bacteria; however, this has
been shown to be age-dependent, suggesting that both com-
position and timing of colonization are critical for the educa-
tion of the immune system [16—18].

The microbiota also play important roles in digestion, nu-
trient assimilation, vitamin production, and metabolism [19,
20] and have recently been shown to have significant influ-
ence on the bi-directional signaling that takes place between
the gut and the nervous system, termed the microbiota-gut-
brain axis [21]. The gut microbiota can influence brain func-
tion and lead to changes in behaviors, as shown extensively in
animal models [22¢]. For example, GF rodent studies have
shown that microbiota can positively impact stress responses
through the hypothalamus-pituitary-adrenal axis (Fig. 1) [23],
such as decreased anxiety and increased exploratory behaviors
[24-27]. Probiotics have also been shown to increase explor-
atory behavior in rodents under varied conditions [28-30]
including probiotic treatment after dextran sodium sulfate
(DSS)-induced colitis [31]. Conversely, stress in early life
can induce dysbiosis and influence immune responses, as
shown in maternal separation models of stress [32]. Deficits
in working memory occur in GF mice [33], and emotional
behavior and memory can be modulated through the admin-
istration of probiotics [34]. The introduction of probiotics in-
fluences gene expression in the central nervous system,
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specifically altering expression of y-aminobutyric acid
(GABA) receptors in the hippocampus, mediated through
stimulation of the vagus nerve [34]. Microbiota have a pro-
found influence over the synthesis and metabolism of seroto-
nin [26, 35¢]. Microbiota produce other neuroactive metabo-
lites including GABA by Lactobacillus and Bifidobacteria
[36], acetylcholine by Lactobacillus, dopamine by Bacillus
and Serratia, and norepinephrine by Escherichia and
Saccharomyces, which could enter circulation and directly
affect neural processes throughout the body, including the
brain (Fig. 1) [37].

The microbiota can also alter the integrity of the intestinal
and the blood-brain barriers, specifically due to their produc-
tion of short-chain fatty acids [38<e, 39], and disrupted barrier
function could facilitate the translocation of bacterial metabo-
lites and immune mediators from the gut into circulation
(Fig. 1), which could lead to activation of microglia as seen
in an induced dysbiosis mouse model [40]. Through such
animal studies, evidence is mounting that dysbiosis or altered
microbiota composition has an impact on neurodevelopment
and behavior.

Dysbiosis and impaired intestinal barrier function were
seen in a maternal immune activation (MIA) model of autism,
with improvements in ASD relevant behavior after treatment
with Bacteriodes fragilis [41]. Recently, this model has been
shown to be dependent on microbiota that can induce a T
helper (Ty-)17 response—dams that lacked certain microbiota
could not mount this response, and their offspring did not
display the ASD-like behaviors [42¢, 43¢¢]. Other mouse
models of ASD such as the BTBR and Shank3 knock-out
mice have shown intrinsic dysbiosis that correlated with the
behavioral phenotypes seen in these models [44, 45]. The
latter study saw differences specifically in males, with signif-
icant alterations in GABA receptor gene expression in the
Shank3 KO mice that could be modulated with the introduc-
tion of the probiotic Lactobacillus reuteri [45]. In addition,
dysbiosis introduced in conventionally housed adult mice also
leads to abnormal behaviors, altered barrier functions, and
activation of the microglia, the resident immune cells of the
brain [40].

Microbiota in ASD

Evidence of microbial dysbiosis in ASD has been growing in
recent years (Table 1). In addition to immune and GI dysfunc-
tion that may be linked to dysbiosis, there is some evidence
that altering the microbiota in ASD can improve behaviors
[46, 79¢]. The earliest studies investigating the relationship
of the microbiota and children with ASD proposed that exces-
sive antibiotic use led to an overgrowth of spore-forming
Clostridium, which researchers hypothesized might be expos-
ing these children to high levels of microbial metabolites that
were neurotoxic. This hypothesis was based on an index case
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Fig. 1 Mechanisms of the microbiota-gut-brain axis. Possible
mechanisms of the MGB-axis are being actively investigated and
include neuroimmune pathways, neural communication through the
vagus nerve, influence of metabolites produced by the microbiota,
microbial-derived neurotransmitters, and the significant influence the
microbiota have on tryptophan, kynurenine, and serotonin metabolism.
Short-chain fatty acids (SCFA) can promote peripheral T regulatory
(Treg) cell expansion as well as influence tight junction (TJ) proteins
and intestinal barrier function. Microbiota regulate tryptophan (Trp)
metabolites by degrading Trp to indole-derivatives or through
kynurenine and serotonin pathways, such as increasing expression of

where regressive autism appeared to coincide with several
rounds of antibiotic use, and subsequent vancomycin treat-
ment significantly improved aspects of behavior. A small pilot
study included 11 children with a regressive form of ASD and
who had GI symptoms of diarrhea that were treated with oral
vancomycin for 8§ weeks, followed by 4 weeks of probiotics.
Eight of these children (~73%) experienced significantly im-
proved impairments in social behavior and communication.
However, these improvements did not endure, with most chil-
dren reverting to their starting behavioral impairments upon
removal of the treatment [46]. Assessment of the microbiota in
this study found increased Clostridia (supporting the hypoth-
esis) as well as overgrowth of other spore-forming anerobes,
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tryptophan hydroxylase (Tph)l in enterochromaffin (EC) cells.
Dysbiosis can promote activation of immune cells, including
macrophages that produce quinolinic acid (QA) through an alternative
kynurenine pathway, a known excitotoxic N-methyl-D-aspartate
(NMDA) receptor agonist. Activated immune cells also produce
proinflammatory cytokines which can further disrupt microflora and
impact intestinal barrier function. Neural communication can also occur
through the vagus nerve via signaling from hormones and
neurotransmitters release by gut endocrine cells and immune cells.
Breech of the intestinal barrier would also allow direct pattern
recognition sensing due to Toll-like receptor expression on afferent fibers

microaerophilic bacteria, and several Clostridia species within
the gastric and duodenal secretions not seen in controls [47].
Further classification of the microbiota identified increased
Clostridia clusters I/IX and C. bolteae (46-fold increase) [48].

These early findings, coupled with the noteworthy numbers
of ASD children with gastrointestinal complaints and immune
dysfunction, prompted additional research to determine if the
microbiota were consistently altered in ASD. Using fluores-
cence in situ hybridization (FISH) techniques to identify bac-
teria present in stool samples, Parracho et al. confirmed in-
creased Clostridia, and its presence highly correlated with GI
symptoms in ASD children [49]. However, as studies de-
signed to use more in-depth techniques were published, other
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bacterial species were identified as having differential abun-
dance in ASD. Increased Desulfovibrio and Bacteroides
vulgatus were identified in children with ASD and were cor-
related to autism severity [50]. Desulfovibrio was also elevat-
ed in a small cohort of Slovakian children with ASD and GI
dysfunction compared to healthy controls [76]. Desulfovibrio
could be an important contributor to GI inflammation, as its
major metabolic byproduct—hydrogen sulfide—is cytotoxic
to colonic epithelial cells [81]. Moreover, when given to ro-
dents, Desulfovibrio decreased working memory [82].

Ileal and cecal biopsies from children with ASD and GI
dysfunction showed increased Firmicutes and decreased
Bacteroidetes [51]. As part of this study, the researchers
looked at gene expression associated with carbohydrate diges-
tion and transport and found impaired expression of these
genes correlated with dysbiosis in ASD [51]. Dysfunctional
carbohydrate digestion could alter the fermentation
byproducts of the microbiota present, and undigested carbo-
hydrate could preferentially select for certain bacteria [51].
Kang et al. found that children with ASD and GI dysfunction
had decreased in commensals important for carbohydrate fer-
mentation including Prevotella, Coprococcus, and unclassi-
fied Veillonellaceae [74]. A more recent biopsy study exam-
ined duodenal samples of ASD children with GI dysfunction
to determine if disaccharidase activity was altered compared
to controls, similar to the previous study. Although they did
not see overall differences in diversity, they identified eleva-
tions in Burkholderia and reduced Prevotella and Neisseria in
the duodenum of ASD children. Overall, they did not see the
same reductions in disaccharidases; however, they found a
correlation between disaccharidase activity with the presence
of Clostridium [77).

Increased Sutterella, a mucosa-associated microbe, was
found in significant numbers in intestinal biopsies of ASD
children with GI dysfunction [56]. Sutterella was also in-
creased in stool samples of ASD children, irrespective of GI
issues [80]. Increased Ruminococcus torques [80] was also
seen in ASD and is similar to dysbiosis noted in inflammatory
bowel disorders (IBD) [71]. As well as increases in some
species, reductions in important commensals Bifidobacteria
and the mucin-degrading Akkermansia muciniphila [52] have
been shown in ASD. One of the largest of recent studies that
looked at 40 ASD (36 severe) and 40 typically developing
control children found decreased abundance of the Alistipes,
Bilophila, Dialister, Parabacteroides, and Veillonella families
but increased Collinsella, Corynebacterium, Dorea, and
Lactobacillus, suggesting major changes in the microbiota
composition in ASD. The authors also found that constipation
in ASD correlated with increases in Escherichia/Shigella and
Clostridium cluster XVIII, a cluster known to produce exo-
toxins that are pro-inflammatory [78].

Two recent studies have provided evidence to support the
hypothesis that children with ASD and GI dysfunction have

elevated inflammatory immune responses and associated
dysbiosis [57, 83]. Notably, the balance of inflammatory cy-
tokines was skewed in children with ASD and GI dysfunction
when compared with regulatory cytokines such as
transforming growth factor (TGF) beta 1 [57]. However,
whether it is the push towards an inflammatory environment
that influences the microbiota composition in ASD or a bac-
terial composition that elicits inflammation needs further
study. Inflammatory conditions in the GI tract are known to
exacerbate dysbiosis, for example, during antibiotic-
associated inflammation, increases in host-derived nitrate en-
courage Proteobacteria such as Escherichia colito bloom [84,
85]. Differences in microbiota diversity, both at the family
level and when comparing functional KEGG pathways, were
also seen in children with ASD compared to typically devel-
oping controls. Interestingly, altered zonulin levels were seen
in ASD children with GI dysfunction and may suggest in-
creased intestinal permeability [57]. Luna et al. also showed
that increased cytokines associated with mucosal immunity,
including interleukin [IL]6, IL-1, IL-17A, and interferon
(IFN)-gamma, were associated with abdominal pain and in-
creased Clostridiales in ASD [83]. A recent clinical trial which
involved fecal microbiota transplant (FMT) in 18 ASD chil-
dren led to significantly improved GI symptoms and ASD-
relevant behaviors, with increases in Bifidobacterium,
Prevotella, and Desulfovibrio. These changes persisted at the
8-week follow-up [79¢]. Since immune dysfunction and cyto-
kine dysregulation are so prominent in ASD [reviewed in [6, 8§,
86]], measuring immune responses and inflammatory cyto-
kines in future probiotic and FMT clinical trials could help
identify the role that dysbiosis plays in this dysfunction.
Overall, there does not seem to be consensus for differ-
ences in microbiota in ASD, and a meta-analysis of 15 studies
could not amalgamate the often contradictory results [87].
Some studies found increased diversity of the microbiota in
ASD [47, 64], whereas other studies show the opposite trend
towards decreased diversity and richness [73, 74], or no dif-
ferences in diversity [75, 77]. Several studies found an in-
creased Firmicutes/Bacteroidetes ratio in both stool and biop-
sy samples, including one study that showed probiotic treat-
ment reversed this trend [51, 76, 78]. However, other studies
noted an opposite trend in stool [50, 64]. Tissue/specimen type
and sample site may account for the differences in studies. For
example, when fecal samples are analyzed, this will only de-
tect what has moved through the GI tract, not necessarily the
dominant colonizers of the varied regions throughout the GI
tract. This may skew results to those species that have diffi-
culty adhering to the intestinal epithelium or species that are
not surviving well within the GI tract and may explain some of
the opposing trends seen when comparing studies using stools
versus biopsy specimens [51]. Other technical issues may re-
late to comparing profiles to siblings who may also exhibit
broader behavioral impairments rather than typically
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developing controls. Siblings are also more likely to have
shared a common environment that would alter the microbiota
[55, 75]. Additional sources of error include differing tech-
niques; for example, sequencing can vary in error profile,
and results can vary based on read length and sequencing
depth [88]. Heterogeneity in age of subjects and sex may also
reduce comparability across studies. Future studies should in-
vestigate microbiota profiles at earlier time points pre-
diagnoses of ASD to help determine if there are differences
between microbiota and how that relates to ASD outcome or
broader neurodevelopmental concerns such as anxiety and
cognition. Note that the composition of microbiota is very
sensitive to changes diet, fiber composition, etc., and can also
be altered by stress and other compounding factors [10].
Children with ASD are known to have feeding problems, food
sensitivities/aversions, and extremely restricted diets [89],
which could also be contributing to differences in microbiota
but not to an ASD diagnosis. A preliminary study showed that
despite no differences in the composition of microbiota, early-
life probiotic treatment and presence of Bifidobacterium dur-
ing infancy reduced the risk of neurodevelopmental disorders
[90]. This early period of colonization is an area needing fur-
ther research with larger studies and advanced technological
tools.

Bacteria are not the only microbes to make up the micro-
biota. New techniques are identifying the fungal microbiota
and its role in human health [91]. GI overgrowth of fungal
species such as Candida may have deleterious immune con-
sequences and have been linked to IBD and celiac disease
[92-94]. Fungal commensals can bloom after antibiotic ad-
ministration, and the presence of Candida can interfere with
reassembly of the microbiota after antibiotic perturbation,
contributing to dysbiosis [95]. The immune system responds
to fungal infections with a Ty-17 response, producing IL-17, a
cytokine recently implicated in ASD etiology in the MIA
mouse model [42e, 43<¢]. So far, fungal microbiota studies
in ASD are scant; however, one culture-based study showed
significant presence of Candida species in the feces of chil-
dren with ASD, the majority of which were Candida albicans.
Fluconozole-resistant species were also found in significant
numbers of cultures, including C. krusei and C. glabrata
[96]. A separate study found Candida present in nearly 60%
of ASD samples, with none present in controls. They also
identified hyphae formation, suggesting that the dimorphic
yeast had switched to its invasive and adhesive form [97].
However, one culture-based study looked for the presence of
yeast in ASD children and did not see an over-representation
compared to control samples [53]. Newer studies that utilize
sequencing techniques may be more reliable and have shown
that Candida is the most abundant taxa of mycobiota seen in
children with ASD, found at nearly twice the rate of typically
developed children [78]. Elevated ratios of the urinary metab-
olites D-arabinitol/L-arabinitol (DA/LA) have been used for

@ Springer

early identification of invasive candidiasis, as d-arabinitol is a
major metabolite of pathogenic fungal species [98]. A prelim-
inary study of 22 children with ASD and GI dysfunction
found that DA concentrations and DA/LA ratios were signif-
icantly reduced with daily administration of probiotics, and
improvements were seen in certain ASD behaviors including
ability to concentrate [62]. Elevated DA (listed as D-arabitol)
was also found in a 2014 study of 21 Italian children with
ASD [67]. This group also saw elevated glycolic acid, which
may also be associated with overgrowth of yeast in the GI tract
[67].

Microbial Metabolites in ASD

Due to the many limitations of microbiota analysis, some re-
searchers have turned to metabolomic tools to identify how
byproducts of microbial fermentation and metabolism might
be interacting with human health or influencing disease. These
tools identify altered patterns of metabolites within urine,
stool, and blood samples that may provide a biochemical sig-
nature of ASD and supportive evidence of dysbiotic gut mi-
crobiota [99]. A summary of metabolomics studies specific to
the microbiota and ASD are listed in Table 2.

Altered patterns of bacterial metabolites were seen in a
large number of children with ASD compared to healthy con-
trol children. These metabolites included elevated 3-(3-
hydroxyphenyl)-3-hydroxypropionic acid (HPHPA), a cata-
bolic byproduct of Clostridia [59]. Increased HPHPA was
found more recently in study of Italian children with ASD
[67], and a 2016 intervention study showed that
Vancomycin treatment could reverse increases of HPHPA
and two associated metabolites [69]. Reduced hippurate,
phenyacetylglutamine, and p-cresylsulfate were seen in ASD
children, indicating alterations in gut microbiota [58]. P-cre-
sol, another microbial metabolite produced by Clostridium
species, was significantly elevated in children with ASD, es-
pecially females with severe autism [60]. Further studies
showed that elevations of urinary p-cresol and other derivative
metabolites of Clostridia were associated with repetitive be-
haviors [65] and constipation in ASD [70]. In animal models
of ASD, elevations of microbial metabolite 4-
ethylphenylsulfate (4EPS) correlated with altered behaviors
in mice, and probiotic therapy reduced its concentration and
improved behaviors in MIA model of ASD [41]. 4EPS is
chemically related to p-cresol, the uremic toxin seen elevated
in ASD children [41, 60, 65].

Short-chain fatty acids (SCFA) are microbial metabolites of
fiber fermentation and can be found in high concentrations in
the colon. SCFA metabolites of commensal microbiota are
generally beneficial to the host; however, some SCFAs such
as propionic acid (PPA) can be neurotoxic in higher concen-
trations and have been shown to cause behavioral
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abnormalities in rodent models [100, 101] (Fig. 1). SCFA
influence gene expression epigenetically through histone
deacetylase (HDAC) inhibition. For example, butyrate-
producing bacteria promote peripheral regulatory T cell
(Tregs) expansion, altering gut immunity by promoting toler-
ance. This occurs through HDAC inhibition leading to in-
creased acetylation at the Foxp3 promotor and expansion of
CD4" Foxp3™ Tiegs [102¢¢]. Therefore, shifts in SCFA produc-
tion could potentially contribute to altered immune regulation
in the gut and lead to peripheral inflammation (Fig. 1). Several
studies found lower levels of fecal SCFA, including butyrate
in feces of ASD children [53, 64], while a 2012 study found
increased ammonia and SCFA including acetic, butyric,
isobutyric, valeric, and isovaleric acids in ASD [61]. Lower
SCFA occurred alongside elevated phenol, 4-(1,1-
dimethylethyl)-phenol and p-cresol, and correlated with in-
creased Bacteroides and Clostridia and decreased
Ruminococcoceae [64]. These children also had elevations
in free amino acids, indicating increases in proteolytic bacteria
[64].

Tryptophan (Trp) metabolites directly influence host phys-
iology including immune and gut homeostasis [reviewed in:
[103]]. The gut microbiota are critical for regulating Trp me-
tabolism, either directly by degrading Trp to indole-
derivatives or indirectly through mammalian kynurenine and
serotonin pathways. GF mice have increased levels of circu-
lating Trp, adding evidence to the importance of the microbi-
ota for Trp metabolism [26, 104]. Metabolome studies have
repeatedly shown evidence of alterations in tryptophan,
kynurenine, and serotonin pathways in children with ASD,
including reports of increased urinary excretion of tryptophan
and associated metabolites [63, 67, 68, 72, 105]. The primary
metabolic pathway of tryptophan is the kynurenine pathway,
leading to production of kynurenic acid. Increases in an alter-
native branch of the kynurenine pathway led to reduced
kynurenic acid and elevated quinolinic acid (QA), a com-
pound known to be an excitotoxic N-methyl-D-aspartate
(NMDA) receptor agonist, in children with ASD [68]
(Fig. 1). Immune activation may be responsible for this eleva-
tion, as activated macrophages and microglia are the main
producers of QA [106]. Bacterial degradation of tryptophan,
yielding increased indolyl 3-acetic acid, indolyl lactate, and
other indole derivatives were also shown in ASD and these
shifts were associated with reduced urinary melatonin, down-
stream of serotonin production that may be the result of bac-
terial metabolism of available tryptophan [68]. In 2014, a
meta-analysis of 22 studies that measured alterations in blood
serotonin concluded that there was significantly elevated
blood and platelet-rich plasma 5-HT in ASD individuals com-
pared to controls [66]. Serotonergic metabolites were also in-
creased with a decrease in Trp in mucosal biopsies of children
with ASD and functional GI disorders, and these findings
strongly correlated with several specific bacteria (Table 2)

[83]. Spore-forming gut microbiota mediate the production
of peripheral serotonin (5-HT) from Trp through the produc-
tion of metabolites that increase expression of tryptophan hy-
droxylase (Tph)l in enterochromaffin (EC) cells of the gut
which in turn increases colonic and circulating levels of 5-
HT [35¢]. Serotonin expressed in enteric neurons early in de-
velopment can also contribute to the 5-HT pool and motility of
the GI tract [107]. GF mouse models have shown that the
serotonergic system in the brain is also influenced by the mi-
crobiota [24, 26], whereby excess peripheral Trp may cross
the BBB to influence the rate serotonin synthesis in the brain
[108]. Serotonin plays important neurotrophic roles during
carly development, and elevations of 5-HT during critical time
periods can alter cognition and sensory processing [109].

Microbial metabolites and inflammatory mediators are ca-
pable of signaling through the vagus nerve [110] (Fig. 1). As
the major nerve of the parasympathetic nervous system, it has
a bidirectional role in enervating organs throughout the body
including the gut. The majority of the fibers of the vagus nerve
are afferent sensory fibers, delivering sensory information
from the periphery, including the GI tract, to the brain [110].
It is understood that neural communication between the brain
and the microbiota may be occurring indirectly through hor-
mones or neurotransmitter release by gut endocrine cells in
presence of the microbiota and metabolites, or perhaps
through direct pattern recognition sensing due to Toll-like re-
ceptor expression on afferent fibers [110]. Vagal activation by
the microbiota has been shown in several animal models: va-
gotomy caused reversal of probiotic effects on memory and
hippocampal GABA receptor gene expression [34], and also
attenuated anxiety in mice with DSS-induced colitis.
Administration of Bifidobacterium longum also reduced anx-
iety; however, vagotomy prevented this probiotic effect [111].
Although vagal involvement has been identified in some stud-
ies, others show independence of vagal communication. For
example, alteration of the microbiota increased exploratory
behavior in mice and increased brain-derived neurotrophic
factor in the hippocampus. These effects were not influenced
by vagotomy [112]. More research is needed to elucidate this
mechanism further.

Conclusion

Why do children with ASD have dysbiosis? Is this inherent to
the disorder, or perhaps causal? These significant questions
still remain to be determined. Immune system dysfunction is
a well-known issue in ASD, possibly driving the dysbiotic
microbiota, or alternatively created by it. The relationship be-
tween dysbiosis and the high incidence of co-morbid GI dys-
function in ASD is not well elucidated; however, these studies
reviewed here indicate that a relationship exists. Reports that
behaviors improve after modification of the microbiota
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support the hypothesis that dysbiotic microbiota, their influ-
ence on the immune system, and their metabolic byproducts
contribute directly to the development of these disorders.
More research to clarify mechanism(s) of the influence of
dysbiosis on brain and immune function and behavior are
needed.
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