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Abstract Progressive multifocal leukoencephalopathy
(PML) is a demyelinating disease of the central nervous sys-
tem (CNS) caused by the human neurotropic polyomavirus JC
(JCV). The disease occurs virtually exclusively in immuno-
compromised individuals, and, prior to the introduction of
antiretroviral therapy, was seen most commonly in the setting
of HIV/AIDS. More recently, however, the incidence of PML
in HIV-uninfected persons has increased with broader use of
immunosuppressive and immunomodulatory medications uti-
lized in a variety of systemic and neurologic autoimmune
disorders. In this review, we discuss the epidemiology and
clinical characteristics of PML in HIV-uninfected individuals,
as well as diagnostic modalities and the limited treatment op-
tions. Moreover, we describe recent findings regarding the
neuropathogenesis of PML, with specific focus on the unique
association between PML and natalizumab, a monoclonal an-
tibody that prevents trafficking of activated leukocytes into
the CNS that is used for the treatment of multiple sclerosis.
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Introduction

Progressive multifocal leukoencephalopathy (PML) is an op-
portunistic demyelinating infection of the central nervous sys-
tem (CNS) caused by the JC virus (JCV), a ubiquitous
polyoma virus which is found in approximately 50–86 % of
the adult population worldwide [1–3]. In immunocompetent
individuals, JCV infection remains a latent asymptomatic in-
fection of the kidneys [1, 4]. However, in immunocompro-
mised individuals, it can cause a rapidly progressive and often
fatal CNS infection which was first described in the setting of
Hodgkin’s disease and chronic lymphocytic leukemia in 1958
[5]. PML remained rare until the human immunodeficiency
virus (HIV) epidemic when it was seen in the context of ac-
quired immunodeficiency syndrome (AIDS) with 1.3 cases
per 1000 HIV+ person-years [6]. In recent years, PML has
also increased in incidence in HIV-uninfected (HIV−) persons
with the rise of immunomodulatory and immunosuppressive
agents, including chemotherapies, rheumatologic disease-
modifying therapies, and multiple sclerosis (MS) treatments,
which result in decreased immune surveillance in the CNS
and increased risk of PML. Here, we review emerging evi-
dence regarding the neuropathogenesis, epidemiology, clini-
cal characteristics, diagnostic strategies, and empiric therapies
for PML with a focus on HIV− persons. We also review the
particular association of natalizumab treatment with increased
risk of PML among patients with MS.

Neuropathogenesis of PML

The pathological hallmarks of PML include the triad of multifo-
cal areas of demyelination, oligodendrocytes containing inclu-
sion bodies, and bizarre-appearing astrocytes. Both oligodendro-
cytes and astrocytes are immunopositive for the JCV capsid
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protein VP1 and contain virions that can be detected via electron
microscopy, indicating that JCV is capable of replicating in both
glial cell types [7, 8]. Evidence acquired over the past several
decades has suggested a model of neuropathogenesis in which
(1) virions from the environment enter via the oropharynx or the
gastrointestintestinal tract; (2) establishment of a primary viremia
ensues, with subsequent spread to the kidneys resulting in per-
sistent infection; (3) following persistence, the virus enters the
brain, potentially via hematogenous routes; and (4) reactivation
of the virus in glial cells results in PML [7]. However, the mo-
lecular and cell biology of many of these events, including JCV
persistence and reactivation, entry into the central nervous sys-
tem (CNS), and factors that result in initiation of glial infection
remains poorly understood. While a thorough review of JCV
neuropathogenesis is beyond the scope of the current review,
we will briefly describe several recent advances in our knowl-
edge of the pathogenesis of non-HIV PML, and in the
BNatalizumab-Associated PML^ section, wewill address specif-
ic mechanisms by which the drug natalizumab is postulated to
predispose to PML.

Development of a Neurotropic Strain The JCV genome
encodes early and late proteins that are transcribed in opposite
directions from a common noncoding control region (NCCR),
which contains the origin of viral DNA replication as well as
promoter and enhancer elements for transcription [9].
Production of the early proteins, small t and large T antigens,
results in initiation of viral DNA replication and a transcrip-
tional switch from early to late gene expression, while the late
region encodes the structural proteins VP1, VP2, and VP3
along with the agnoprotein which has been found to play
multiple functions that contribute to a productive viral life
cycle [10, 11]. The structure of the NCCR has received con-
siderable scrutiny, as it appears that two different forms exist:
the highly conserved archetype form and the variable proto-
type form. Several lines of evidence suggest that a switch from
the archetype to the prototype form within an individual may
play a role in initiation of PML. First, the prototype forms
have numerous deletions, duplications, and rearrangements
compared to the archetype, suggesting that they might arise
from the conserved archetype form. Second, the archetype
form has been shown to predominate in the environment and
in the urine of normal non-immunocompromised individuals,
while the prototype form appears to be enriched in the brains
of individuals with PML [12, 13]. Interestingly, a recent study
that reported on deep sequencing of JCVDNA from the urine,
plasma, and cerebrospinal fluid (CSF) of patients with non-
HIV PML demonstrated that the JCV composition in the CSF
and plasma represents a highly complex mixture comprised of
multiple rearranged viral variants that differs markedly from
the predominantly archetypal JCV composition in the urine
[14••]. These results support the notion that the rearrangement
of archetype JCV is associated with neurotropism and are in

line with in vitro studies demonstrating that rearrangements
enhance replication rates in glial cells [15]. However, the
study demonstrated that archetype JCV can also rarely be
detected in the plasma and CSF, and thus, NCCR rearrange-
ment may not be absolutely required for neurotropism [14••].

Mechanisms of Immune Evasion An intact cellular immune
response has long been recognized to play a role in preventing
PML, while reconstitution of an impaired cellular response has
been shown to enhance resolution of JCV infection in the brain.
While earlier studies had emphasized a major role for JCV-
specific CD8+ T cells in viral clearance and survival after PML
[16–18], a recent study that included individuals with persistent
JCV CNS infection in the setting of natalizumab demonstrated
that mutations in VP1 can result in reduced CD4+ T cell re-
sponses, thereby impacting CD8+ T cell-mediated viral clear-
ance [19•]. Thus, both CD4+ and CD8+ T cell responses may
be important for viral control, and JCV neuropathogenesis may
involve the acquisition of mutations that enable evasion of these
responses. Moreover, VP1 mutations have been found to be
associated with deficient CSF antibody responses against the
protein which, upon immune reconstitution, are improved, sug-
gesting an additional role for evasion of humoral immunity by
JCV in the pathogenesis of PML [20•, 21].

Epidemiology of PML

Prior to the introduction of combination antiretroviral therapy
(ART), PML was observed in 5–10 % of people with AIDS,
but this rate has declined significantly with the advent of ART
[22, 23]. However, the incidence of PML in HIV− persons has
increased significantly with broader use of immunosuppressive
and immunomodulatory medications. PML has now been re-
ported in association with a variety of such medications, includ-
ing alemtuzumab [24, 25], belatacept [26], dimethyl fumarate
[27–30], eculizumab [31], brentuximab [32], fingolimod [33],
fludaribine [34, 35], infliximab [36, 37], leflunomide [38], my-
cophenolate mofetil [39, 40], natalizumab (NTZ) [41–43], and
rituximab [44, 45], among others [46]. In addition, hematologic
malignancies, immunodeficiency disorders, idiopathic lympho-
penia, and autoimmune rheumatologic disorders seem to lead to
an increased risk of PML even in the absence of pharmacologic
therapies, likely due to the aberrant immune function associated
with these conditions. Based on these two distinct risk groups, a
classification system has been proposed to group drugs into three
classes based on conferred PML risk as follows: (1) Class 1—
drugs with a high PML risk, long latency to PML onset and use
in conditions that do not predispose to PML; (2) Class 2—drugs
used to treat conditions that predispose to PML and likely confer
additional PML risk; (3) Class 3—sporadic cases of PML report-
ed with the use of these agents but associated risk is very low or
not able to be quantified [47, 48].
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Among autoimmune diseases, systemic lupus erythemato-
sus (SLE), in particular, is associated with an increased risk of
PML even in the absence of immunosuppression [49••, 50]. A
retrospective review of a national admissions database found
that rates of PML among SLE patients were 4 per 100,000
admissions as opposed to rates of 0.4 for rheumatoid arthritis
patients and a rate of 2 for all other connective tissue disorders
[51]. Furthermore, 40 % of reported cases occurred in the
setting of minimal or no immunosuppressive medication use
raising the possibility that SLE-related lymphopenia may be
the major risk factor for PML in many of these cases [40, 52,
53]. Therefore, clinical suspicion for PML should be high in
SLE patients presenting with neurologic symptoms even in
the absence of significant immunosuppressive medications.

Clinical Characteristics of PML

The clinical presentation of PML in both HIV+ and HIV−
individuals is quite variable as it is a multifocal process that
can affect almost any area of the CNS and, thus, can cause a
variety of neurological symptoms. One quarter to one half of
patients develop visual field deficits, often at the time of initial
presentation; deficits are primarily due to involvement of vi-
sual pathways within the brain rather than to optic neuritis
[54]. Seizures are also common in PML. Approximately one
third of patients develop seizures during their acute presenta-
tion, nearly half of those who survive 1 year after diagnosis
have seizures, and management often requires multiple anti-
epileptic drugs to obtain adequate seizure control [55•, 56]. In
long-term PML survivors, seizure onset occurs an average of
5.4 months after initial presentation, and seizures are nearly all
focal with the majority originating from the frontal lobes [56].
Finally, patients with juxtacortical lesions and lesions associ-
ated with hyperintense cortical signal on T1-weighted pre-
contrast magnetic resonance imaging (MRI) were at higher
risk of seizures than those without lesions with these charac-
teristics [55•, 56]. Other common symptoms of PML include
difficulty with ambulation, weakness, sensory symptoms,
cognitive impairment, and headaches [57].

As the populations at risk for PML have expanded in recent
decades, so has the clinical spectrum of PML. As a result,
clinicians have become increasingly aware that the term
BPML^ can be misleading as the clinical presentation is not
always progressive, multifocal, or limited to white matter [3].
Initially thought to be exclusively a white matter disease
caused by infection of oligodendrocytes and astrocytes, it is
now recognized that JCV can cause several other clinical syn-
dromes due to infection of neurons and meningeal cells, in-
cluding granule cell neuronopathy (GCN) [58–60], encepha-
lopathy [61], and meningitis [62•]. GCN results in cerebellar
atrophy from loss of cerebellar granule cells without MRI or
pathologic evidence of demyelination [60]. Clinically, it

presents with a cerebellar syndrome often consisting of dys-
arthria, dysdiadochokinesia, and gait and appendicular ataxia
[59, 60]. While initially reported in the context of HIV infec-
tion, GCN has now also been reported in patients with sar-
coidosis [63], rituximab-treated non-Hodgkin’s lymphoma
[64], and NTZ-treated MS [65, 66]. JCV encephalopathy has
been reported in only one patient who presented with aphasia,
cognitive decline, and seizures and was found to have lesions
restricted to the cortical gray matter on MRI. Cerebrospinal
fluid (CSF) and biopsy both confirmed the presence of JCV
[61]. JCV meningitis, presenting with headaches, stiff neck,
and altered mental status without concomitant MRI abnormal-
ities, has been reported in several patients with detectable CSF
JCV titers and in one patient who presented clinically with the
classic triad of normal pressure hydrocephalus and had path-
ologically confirmed JCV infection of meningeal and choroid
plexus cells [62•, 67, 68]. The true prevalence of JCV menin-
gitis is likely under-appreciated as JCV is rarely tested in pre-
sentations of aseptic meningitis.

Furthermore, PML has recently been reported to present as
an extrapyramidal syndrome due to bilateral periventricular and
basal ganglia involvement [69], to present acutely with symp-
toms mirroring a cerebellar stroke [70], and to present with
multiple small round contrast-enhancing lesions mimicking
military tuberculosis [71]. Demyelinating lesions of the spinal
cord have also been reported on MRI and confirmed to be
related to JCV infection on post-mortem pathology [72, 73].
Mounting reports of varied clinical entities associated with JCV
suggests that PML-spectrum disorders and JCV-related disease
should be included in the differential diagnosis of a wide array
of clinical presentations in immunosuppressed patients.

Diagnosis of PML

Diagnosis of PML requires clinical, radiographic and virolog-
ic evidence compatible with JCV infection [74]. Virologic
evidence consists either of laboratory data or histopathology.
Laboratory diagnosis can be established with a positive cere-
brospinal fluid (CSF) JCV polymerase chain reaction (PCR).
Viable JCV genomes contain a region within the T protein
coding nucleotide sequence that is conserved for JC viruses
but not other human polyomaviruses [75]. CSF PCR assays
developed to recognize this region have been shown to be
highly specific, though sensitivity can vary between labs and
there are a number of reports of false-negative CSF PCR in the
setting of confirmed PML [76]. For a definitive histopatho-
logic diagnosis, two of three of the following are required: (1)
brain biopsy specimen demonstrating the classic histopatho-
logic triad of demyelination, bizarre astrocytes, and enlarged
oligodendroglial nuclei; (2) immunohistochemistry or elec-
tron microscopy revealing JCV; or (3) tissue PCR positive
for JCV. However, a recent review of pathologically
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confirmed PML cases found that biopsy specimens are often
small and that relying on only the typical morphologic fea-
tures of PML in combination with immunohistochemistry can
result in high rates of false-negative results [77]. These authors
found that the addition of in situ hybridization and/or real-time
PCR to the standard approach led to increased sensitivity of
histopathologic diagnoses. These results suggest that further
testing should be completed for pathologic specimens that do
not show typical morphologic or immunohistochemical fea-
tures if clinical suspicion for PML is high. In addition, with
the rapidly expanding use of metagenomic deep sequencing in
microbiological diagnosis of CNS infections, these techniques
may also be useful in improving the sensitivity of JCV-related
disease diagnoses [78–80].

Classic MRI findings of PML include hyperintense lesions
on T2-weighted and fluid-attenuated inversion recovery
(FLAIR)-weighted imaging with corresponding hypointense
lesions on T1-weighted imaging. PML lesions tend to predom-
inantly and asymmetrically affect subcortical and
periventricular white matter in the frontal and parieto-
occipital regions, often involve the subcortical U-fibers, and
usually have no associatedmass effect [81, 82]. However, cases
of PML limited to the brainstem and cerebellum have also been
reported, and this may be even more common in patients with
lupus as an underlying risk factor for PML [83–86]. While the
classical teaching is that PML lesions do not show gadolinium
enhancement, retrospective studies have identified enhance-
ment in 5–10 % of AIDS-related PML cases, 40–50 % of
NTZ-associated PML cases, and ≥50 % of PML-immune re-
constitution inflammatory syndrome (IRIS) cases [57, 82, 87,
88]. Similarly, PML lesions are classically described as
hypometabolic on positron emission topography (PET) imag-
ing but, in practice, are often hypermetabolic [89, 90].

Additional MRI characteristics may be useful in
distinguishing PML from other demyelinating disorders. For
example, Miyagawa et al. reported that susceptibility weighted
imaging (SWI) reveals low signal intensity of the U-fibers in
juxtacortical PML lesions, a finding which was corroborated
by several other groups [91•, 92, 93]. However, this same group
performed a retrospective review of other MRI studies with
FLAIR-hyperintense juxtacortical lesions due to etiologies oth-
er than PML and found that 7 % of these lesions had an asso-
ciated low signal intensity rim involving the U-fibers on SWI
sequences. All of the identified MRI studies were obtained
from patients with either stroke or encephalitis [94]. These
findings suggest that SWI low signal intensity may be a sensi-
tive but non-specific radiographic finding in PML.

Treatment of PML

To date, no curative treatment for JCV is known, and no treat-
ment has been shown to improve PML survival in a

randomized controlled trial [95]. Therefore, the current stan-
dard of care is to reconstitute the immune system as quickly
as possible. In the setting of HIV infection, this is achieved with
prompt initiation of ART. In cases associated with immunosup-
pressive medications, measures include cessation of the
offending drug and plasma exchange to remove any remaining
drug in the circulation (if the medication is amenable to clear-
ance via plasma exchange), in addition to supportive care [96].
However, anecdotal reports purporting improved PML out-
comes associated with off-label use of several different medi-
cations have been published. For example, mirtazapine has
been shown in vitro to inhibit JC virus entry into glial cells
by blocking the serotonin 2A receptor [97]. It has been associ-
ated with improved outcomes in individual cases of PML in
both HIV+ and HIV− individuals but has never been system-
atically evaluated in a clinical trial [98, 99]. In vitro studies also
suggested that the anti-malarial drug mefloquine may inhibit
JCV replication within glial cells [100]. However, a random-
ized double-blind placebo-controlled trial of mefloquine in ad-
dition to ART in HIV+ patients with PML failed to show a
reduction in CSF JCV DNA copy number and was terminated
early [101]. The topoisomerase inhibitor, topotecan, was re-
cently reported to inhibit JCV replication in in vitro studies
[102], and a phase 2 trial of 12 HIV+ patients showed a trend
toward decreased PML lesion size and increased survival
[103]. However, a phase 3 trial has not been performed to
confirm these findings.

Other off-label therapeutic approaches to treat PML have
aimed to facilitate immune restoration. Interleukin-7 (IL-7),
an important cytokine in T cell function and homeostasis, has
been proposed as a potential treatment for PML that may aug-
ment the immune response to JCV. Several cases of favorable
outcomes in HIV− patients treated with recombinant human
IL-7 have now been published [104–106]. Recently, maraviroc,
an approved HIVART medication that acts by blocking che-
mokine receptor type 5 (CCR5), was associated with better
than expected outcomes among three HIV− patients with
PML (two with sarcoidosis and one with idiopathic lymphope-
nia) [107•]. However, neither of these agents have been tested
in prospective randomized controlled trials, and multiple drugs
which were reported to be effective in case reports of HIV-
associated PML later failed to show any effect in prospective
clinical trials, including cytarabine [108], cidofovir [109], and
alpha-interferon [110]. As a result, these findings should be
interpreted with caution until stronger evidence is available.

Natalizumab-Associated PML

NTZ, a monoclonal antibody against alpha-4-integrin used in
the treatment ofMS, is likely themost well-knownmedication
associated with an increased PML risk and one of two Class 1
drugs in the classification scheme described above [47]. NTZ
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received initial Food and Drug Administration approval in
2004 but was withdrawn from the market in 2005 after several
cases of PML were reported. It was re-approved in 2006 at
which time the risk of PML was estimated at 1:1000 over
18 months of treatment [111].

Epidemiology Post-marketing surveillance following reintro-
duction of NTZ revealed three primary risk factors for NTZ-
associated PML: (1) duration of therapy >24 months, (2) his-
tory of prior immunosuppression, and (3) JCVantibody sero-
positivity. Based on these factors, in 2012, PML risk ranged
from <1:50,000 in JCVantibody seronegative persons with no
prior history of immunosuppression and <24 months of NTZ
treatment to 1:85 in JCVantibody seropositive persons with a
history of prior immunosuppression treated with NTZ for
more than 24 months [112]. However, many new cases of
NTZ-associated PML have occurred since the development
of these initial estimates. A total of 566 cases of PML were
reported to the manufacturer as of July 2015, and estimates of
the overall risk of PML have increased from 2.13 per 1000
patients in 2011 to 3.96 per 1000 patients [113, 114]. The
more recent analysis revealed that estimates for PML risk
within the first 2 years of NTZ treatment have remained es-
sentially unchanged. However, in persons treated for
>24 months, estimates have nearly doubled from 3.85 per
1000 patients to 6.22 per 1000 patients overall and from
1:85 to 1:44 in the highest risk group [115].

Pathogenic Mechanisms By binding to alpha-4-integrin,
NTZ prevents trafficking of activated leukocytes across the
blood-brain barrier into the CNS. One mechanism by which
NTZ may facilitate development of PML is via its effects on
blocking extravasation of T cells into the CNS, thus limiting
immune surveillance in the brain [116]. However, this would
not specifically account for the increased association of PML
with NTZ compared to other immunosuppressants, as well as
the relative lack of other CNS opportunistic infections seen in
the setting of NTZ treatment. Thus, it appears that there may
be additional direct mechanisms by which the drug interacts
with JCV. The well-recognized ability of NTZ to promote the
peripheral mobilization of certain mononuclear populations
from the bone marrow [117] has raised the question as to
whether such mobilization may contribute to PML. Serial
sampling of peripheral blood cells from MS patients treated
with NTZ demonstrated substantial numbers of patients who
were viremic in CD34+ cells and fewer in CD19+ cells, with
JCV copy numbers correlating positively with duration of
treatment [118]. Another study of 32 JCV-seropositive MS
patients treated with NTZ also found that JCV DNAviral load
was higher in CD34+ cells compared to other subpopulations
[65]. These and other studies suggest that CD34+ cells from
the bone marrow may be latently infected with JCV and

mobilize to the periphery during treatment with NTZ, thus
potentially representing a route of entry of the virus into the
CNS.

Treatment with NTZ has also been associated with altered
gene expression in peripheral mononuclear cells
[119]. Increased expression of the transcription factor Spi-B
[120], a protein required for B cell receptor maturation and
signaling, has received considerable attention since it can bind
to target sites in neurotropic JCV NCCR but not archetype
NCCR and increase viral gene expression [121, 122].
Moreover, in individuals with MS treated with NTZ, Spi-B
is markedly upregulated in CD34+ cells [123••]. Thus, NTZ
treatment may both result in increased JCV DNA-harboring
CD34+ cells in the periphery and result in upregulation of
transcription factors that promote viral gene expression within
these cells. Despite these provocative data, however, there has
been no direct evidence of a productive infection or presence
of viral gene expression products in blood cells, raising ques-
tions as to the role of blood cells in PML pathogenesis.

Risk Stratification in Clinical Practice JCVantibody testing
has become a routine part of clinical care in those MS patients
treated with NTZ as seropositivity has been shown to increase
risk of PML by nearly 40-fold [114]. Furthermore, JCV anti-
body titers seem to correlate with PML risk with index values
>1.5 associated with a significantly higher risk of PML than
lower index values [124]. However, whereas JCV antibody
seropositivity was once thought to be 100 % sensitive for
PML risk, 1 % of cases with JCV antibody testing within the
6 months prior to PML diagnosis were JCVantibody seroneg-
ative, including one case in which JCV antibody testing was
negative just 2 weeks prior to PML diagnosis [113]. Delbue
et al. also recently reported that 3/42 NTZ-treated MS patients
who were JCV antibody seronegative had detectable JCV
DNA in their urine, potentially suggesting that the serological
test is not 100 % sensitive [125]. A recent cohort study of
French and German NTZ-treated MS patients also revealed
high rates of JCV antibody seroconversion—up to 10 % per
year—and increasing JCV antibody index values of nearly
13 % per year in seropositive patients [126]. As such, current
recommendations are to obtain JCV antibody serology every
6 months for the duration of NTZ treatment in order to facil-
itate discussions of a patient’s ongoing and possibly changing
PML risk [47, 113]. However, it should also be emphasized
that a negative JCV antibody testing does not eliminate the
possibility of developing PML in the future.

New Biomarkers The need to improve PML risk stratification
among NTZ-treated MS patients has led to research to identify
new biomarkers of PML risk in this patient group. One emerg-
ing candidate is L-selectin, which is also known as CD62-li-
gand, and is an adhesion molecule on CD4+ T lymphocytes.
Low levels of L-selectin expression have been associated with
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increased PML risk in the setting of both HIV infection and
NTZ treatment [127, 128]. Retrospective analysis of interna-
tional multi-center cohorts of NTZ-treated MS patients found
that low L-selectin levels demonstrated 86 % sensitivity and
91 % specificity for PML while JCV antibody seropositivity
was 100 % sensitive and 59 % specific [129]. The authors
suggest that incorporating both JCV antibody and L-selectin
into a risk stratification and treatment decision algorithm could
improve risk stratification and ultimately reduce PML inci-
dence among NTZ-treated MS patients up to tenfold [129].
However, a recent well-controlled study of 21 NTZ-treated
patients with MS who developed PML and 104 matched treat-
ed patients who did not develop PML did not find the percent-
age of L-selectin-positive cells in peripheral blood mononucle-
ar cells to be a useful biomarker of PML risk [130]. Thus, there
continues to be a need to develop biomarkers in those MS
patients whose PML risk is intermediate and who desire further
information before making a decision regarding NTZ therapy.

Diagnosis Diagnosis of NTZ-associated PML does not differ
from diagnosis of PML in other risk groups. However, several
recent reports have found additional MRI characteristics that
may be suggestive of NTZ-associated PML. In addition to low
signal intensity on SWI sequences, Hodel and colleagues also
identified low signal intensity on T2* sequences in NTZ-
associated PML [92]. A punctate pattern, which refers to multi-
ple T2-hyperintense punctate brain lesions, was recently studied
in the context of NTZ-associated PML and found to be 78 %
sensitive and 100 % specific in these cases [131•]. In addition,
the punctate pattern was often present in the pre-symptomatic
stage of PML, suggesting that it might be one of the earliest
imaging findings that can be identified, and punctate pattern with
contrast enhancement highly correlated to PML-IRIS. Because
identification of PML in asymptomatic stages may be associated
with improved outcomes, routine MRI surveillance is recom-
mended in all NTZ-treated MS patients with the frequency of
MRI based on JCVantibody serostatus. In seronegative patients,
MRI is recommended on an annual basis with the interval de-
creasing to at least every 6 months in JCVantibody seropositive
patients with an index of <1.5 and to every 3–4 months in sero-
positive patients with an index value >1.5 [113].

Treatment After PML is diagnosed in the setting of NTZ
therapy, NTZ infusions should be discontinued, and plasma
exchange should be initiated in order to facilitate clearance of
NTZ from circulation and hasten recovery of immune func-
tion [132]. However, even with this standard of care, mortality
remains quite high, reaching approximately 20 %, with two
thirds of survivors experiencingmoderate to severe permanent
disability [96, 133•]. Improved outcomes are associated with
younger age, higher pre-PML functional status, lower CSF JC
viral loads at the time of diagnosis, and lower PML MRI
lesion volumes [133•]. Of note, the empirical rationale for

maraviroc use has been extended by Stork, et al. to include
its use in NTZ-associated PML-IRIS after histopathologic ex-
amination of NTZ-associated PML-IRIS lesions showed very
high numbers of CCR5+ lymphocytes within inflammatory
PML lesions [134]. This suggests that CCR5 blockade using
maraviroc may at least partially decrease the inflammatory
component of PML-IRIS in these patients.
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Conclusions

The incidence of non-HIV PML is likely to continue to increase
with more widespread adoption of newer immunosuppressive
treatments that impact leukocyte trafficking and function.
Clinicians will need to be familiar with the changing epidemi-
ology and the clinical characteristics of PML in order to remain
vigilant for emergence of the disease in patients. An active area
of investigation is the development of better biomarkers of
disease emergence and activity, which would in turn help cli-
nicians manage affected individuals. Treatment options are lim-
ited, in part because fundamental questions regarding the
neuropathogenesis of PML remain unanswered. Although
progress has been made in characterizing different viral forms
that inhabit distinct in vivo environments, a broader under-
standing of the JCV life cycle and the impact of immunosup-
pressive medications on aspects such as establishment of viral
persistence, entry into the CNS, reactivation, and lytic infection
of glial cells is needed in order to develop immunosuppressive
medications with limited potential to lead to PML and, if PML
develops, specific therapies for the disease.
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