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Abstract Pneumococcal disease leads to considerable mor-
tality, morbidity and healthcare cost worldwide, and disease
rates are predicted to increase due to an aging population.
There are over 90 different pneumococcal serotypes identified
to date, each with unique capsular characteristics capable of
eliciting serotype-specific immunity in its host. Several recent
studies have demonstrated important differences in invasive-
ness, disease severity, complications from disease and antibi-
otic resistance patterns that are specific to individual sero-
types. This knowledge is particularly pertinent given the on-
going seroepidemiological changes worldwide, partly due to
the introduction of pneumococcal conjugate vaccination to
childhood immunization schedules. Further characterization
of pneumococcal serotype-specific clinical features, and con-
tinued surveillance of serotypes in nasopharyngeal carriage
and disease, will help guide treatment and prevention strate-
gies in pneumococcal disease.
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Introduction

Streptococcus pneumoniae is estimated to cause around 14
million episodes of serious illness and over 800,000 deaths
amongst children under the age of 5 years annually across the
world [1•]. In the adult population, it is the most frequent
pathogen responsible for community-acquired pneumonia
(CAP) (about 40 %), which leads to the hospitalization of 2

– 3 per 1,000 adults each year in Europe, with an associated
mortality of 10 – 25 % [2–5]. Annual estimates in the US of
adults aged ≥50 years show over half a million episodes of
pneumococcal disease with attributed healthcare costs of $5.5
billion [6]. Given the current demographic transition due to an
aging population, rates due to pneumococcal pneumonia are
predicted to double by 2040 [7].

Dissemination of this human-restricted, gram-positive, ex-
tracellular bacterial pathogen occurs via droplet infection [8].
Following establishment of nasopharyngeal colonization, ei-
ther immune-mediated clearance or asymptomatic coloniza-
tion occurs in the majority of individuals. However, a minority
may go on to develop disease [8–10]. Local spread or
microaspiration of organisms can lead to sinusitis, otitis media
or nonbacteraemic pneumonia (noninvasive pneumococcal
disease), whereas direct invasion of the bloodstream results
in bacteraemia and/or meningitis (invasive pneumococcal dis-
ease, IPD) [10]. The reservoir for pneumococcal infection in
the community is young children; nasopharyngeal coloniza-
tion rates in the developed world peak during early childhood
(43 – 52 %) and decline to <10 % in adults [11, 12]. Carriage
rates can be considerably higher amongst all age groups in
developing countries [13, 14]. Acquisition of homologous
pneumococcal serotypes from children has been demonstrated
in adults living in the same household in nasopharyngeal
carriage studies, and close contact with children is an inde-
pendent risk factor for IPD and pneumonia in adults [11, 15,
16].

Among its armoury of virulence factors, the polysaccharide
capsule surrounding the pneumococcus is by far the most
important. It is covalently attached to the underlying bacterial
cell wall and highly charged, enabling the pathogen to evade
mucus-mediated clearance, complement-mediated phagocy-
tosis, neutrophil extracellular traps and direct exposure to
antibiotics [17, 18, 19•, 20]. Defined by the differences in
the immunochemistry of the polysaccharide capsule, over 90
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different pneumococcal serotypes have been identified to date
[21].

Several recent studies have emphasized the importance of
better understanding the disease characteristics of specific
pneumococcal serotypes with regard to invasive disease po-
tential, severity of disease, mortality, complications of disease
and treatment failure. There is considerable geographic varia-
tion in the distribution of pneumococcal serotypes (Table 1)
[22•]. Worldwide pneumococcal serotype distribution has un-
dergone significant changes in the recent past, in part due to
the introduction of limited valency pneumococcal conjugate
vaccination (PCV), which has affected implicated serotypes in
nasopharyngeal carriage and disease, in both vaccinated and
unvaccinated groups through herd protection [23–31]. The
aims of this article were to (a) provide an overview of impor-
tant differences in pneumococcal serotype-specific clinical
features, and (b) highlight recent changes in worldwide pneu-
mococcal seroepidemiology.

Invasive Disease Potential and Disease Severity

The polysaccharide capsule is a major virulence determinant
of a pneumococcus; isolates lacking a functional capsule
rarely cause invasive disease and have diminished virulence
in animal models, and all invasive clinical isolates are encap-
sulated [32–34]. Of the 94 pneumococcal serotypes identified
to date, 11 serotypes account for ≥70 % of IPD globally in
children <5 years of age, with serotypes 1, 5, 6A, 6B, 14, 19F
and 23F being the most common (Table 1) [22•]. By compar-
ing serotypes causing invasive disease with those predomi-
nantly found in nasopharyngeal carriage, ‘invasive odds ra-
tios’ can be determined for individual serotypes. Serotypes 1,
4, 14, 7F and 8 have high invasive odds ratios, whereas
serotypes 3, 6B, 19A, 19F and 23F are less invasive [35,
36]. Multiple clones of the same serotype also appear to differ
with regard to invasive disease potential suggesting that both
pneumococcal serotype and genotype are important determi-
nants of virulence [36, 37].

The invasive odds ratio calculation assumes a constant
duration of nasopharyngeal carriage of pneumococcal

serotypes. Using ‘serotype-specific attack rates’ (defined as
the ratio of the incidence of IPD to the incidence of acquisi-
tion) to compare the invasiveness of specific serotypes yields
broadly similar results, suggesting that the variation in dura-
tion of nasopharyngeal carriage between capsular serotypes is
small in comparison to their variation in the incidence of
invasive disease [38]. Furthermore, an inverse relationship
between duration of nasopharyngeal carriage and serotype-
specific attack rates has been reported. Future pneumococcal
vaccine formulationsmay need to take account of the differing
invasiveness of individual pneumococcal serotypes, in addi-
tion to serotype distribution.

Baseline characteristics of the host such as extremes of age,
presence of comorbid illnesses and immunosuppression are
established risk factors for the development of greater severity
pneumococcal pneumonia and associated complications [39,
40]. However, several pneumococcal serotypes also appear to
be independently associated with poorer outcomes (Table 2).
A Spanish study of IPD found serotypes 3, 19A and 19F to be
independently associated with a 2- to 3.5-fold greater risk of
respiratory failure [39]. Serotype 3 was also found to be an
independent risk factor for the development of septic shock in
two adult studies of IPD [41, 42]. In a US cohort study of
pediatric IPD, serotype 3 was associated with a greater odds of
necrotizing pneumococcal pneumonia [43].

In a study of adult IPD investigating baseline characteris-
tics, disease severity and mortality in affected individuals
according to serotype invasiveness, pneumococcal serotypes
3, 6A, 6B, 8, 19F and 23F affected older adults and individ-
uals with greater levels of comorbid illness, resulted in more
severe disease and led to higher mortality, in comparison to
serotypes 1 and 7F [44]. The latter group of serotypes was
described as ‘primary pathogens’ as disease occurred mainly
in healthy individuals, but disease severity and mortality was
lower in this group. In contrast, the former group of ‘oppor-
tunistic pathogens’ affected older, frailer adults and was asso-
ciated with higher mortality. In a systematic review and meta-
analysis of nine studies to specifically characterize serotype-
associated risk of death in individuals with IPD, serotypes 1,
7F and 8 were associated with a decreased risk of death in
comparison to serotype 14, while serotypes 3, 6A, 6B, 9N and

Table 1 Regional distribution of
the seven most prevalent pneu-
mococcal serotypes in invasive
pneumococcal disease amongst
children under 5 years of age prior
to the introduction of pneumo-
coccal conjugate vaccination (da-
ta adapted from Johnson et al.
[22•])

Country Serotype

1 4 5 6A 6B 9V 14 18C 19A 19F 23F

Africa X X X X X X X

Asia X X X X X X X

Australia X X X X X X X

Europe X X X X X X X

North America X X X X X X X

South America X X X X X X X
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19F were associated with a higher risk of death [45•]. The risk
ratio for death correlated with carriage prevalence and capsu-
lar thickness, but was inversely correlated with invasive dis-
ease potential. One hypothesis is that heavily encapsulated
serotypes are less likely to interact with the host efficiently and
cross the epithelial barrier to cause invasive disease; these
serotypes are therefore more likely to persist as carriage iso-
lates. However, when invasion does occur, these same sero-
types result in more severe outcomes. This hypothesis is
supported by experimental data from in vitro assays and
murine models of infection [46]. Estimated risk ratios for
death in the meta-analysis showed good correlation when
compared with cohorts with no comorbid illnesses, low levels
of antimicrobial resistance, and across different geographic
locations, suggesting that the risk of death is a stable serotype-
associated property.

Changes in Pneumococcal Seroepidemiology
as a Consequence of the Introduction of Pneumococcal
Vaccination

A 23-valent pneumococcal plain polysaccharide vaccine
(PPV23) was first licensed for use in 1983 (Table 3), and
has been shown to be effective in reducing the risk of IPD in
adults [47, 48]. However, as it induces T-cell-independent
immunity, it has little impact on the nasopharyngeal carriage
of S. pneumoniae, and is poorly immunogenic in young
children and immunocompromised adults [49, 50]. A 7-
valent protein-polysaccharide pneumococcal conjugate vac-
cine (PCV) capable of inducing T-cell-dependent immunity
was first introduced to the child immunization schedule in the
US in 2000 and the UK in 2006 (Table 3). PCV7 does not
offer coverage for some common serotypes such as serotype
1, 5 and 6A which were commonly seen in Africa, Asia and
Latin America in the pre-vaccine era (Table 1) [22•]. As a
consequence of this and widespread serotype replacement,
PCV7 has been broadly replaced by higher valency pneumo-
coccal conjugate vaccines across the world (PCV10 and
PCV13) based on World Health Organization (WHO) recom-
mendations [51].

Nasopharyngeal carriage studies in the era following the
introduction of PCV showed significant reductions in vaccine-
type serotypes in vaccinated children, with similar changes
observed in unvaccinated age groups, most likely due to herd
protection [30, 31, 52]. Reductions were also seen in IPD in
individuals of all age groups during this period. National data
from the US Active Bacterial Core Surveillance comparing
the prevaccination period to 2007 (7 years following the
introduction of PCV7) showed a 45 % reduction in overall
IPD incidence from 24.4 to 13.5 cases per 100,000 popula-
tion, and a 94 % reduction from 15.5 to 1.0 cases per 100,000
population in IPD due to PCV7 serotypes, and UK national
IPD data from Public Health England comparing the
prevaccination era to 2009 – 2010 (3 to 4 years following
the introduction of PCV7) showed a 34% reduction in overall
IPD from 16.1 per 100,000 population to 10.6 per 100,000
population [23, 24, 53]. The benefits of PCV also appear to
extend to noninvasive disease, which forms the largest burden
of pneumococcal disease in adults. Analysis of the US
Nationwide Inpatient Sample database demonstrated an age
adjusted annual reduction of 54.8 per 100,000 admissions for
pneumonia in the 2007 – 2009 period (7 to 9 years after the
introduction of PCV) in comparison to the prevaccine era
(1997 – 99), which translates to 168,000 fewer hospitaliza-
tions annually [54].

Whilst reductions in pneumococcal disease due to sero-
types included in the vaccines (vaccine-type serotypes) have
been encouraging, the insidious rise in nonvaccine-type sero-
types has raised concerns. Whereas Australia, Brazil, Israel,
The Netherlands, Norway, UK and the US have reported
overall declines in IPD rates despite increases in
nonvaccine-type serotypes [23–27, 29, 55], Belgium and
Spain have reported an increase in overall IPD rates in the
post-vaccination period owing to the expansion of
nonvaccine-serotype IPD [28, 56]. The non-PCV7 serotypes
that have increased in IPD during the post-PCV7 era include
1, 7F, 12F, 19A, 22F and 24 [23, 24, 28, 56]. Studies of
nasopharyngeal carriage in the US and Europe have also
shown an increase in non-PCV7 serotypes, especially sero-
type 19A, in the post-PCV7 era [30, 57–59]. Apart from the
introduction of PCV7, other factors that may be contributing

Table 3 Serotypes covered in specific pneumococcal vaccines

Vaccine Serotype coverage

23-valent pneumococcal polysaccharide vaccine
(PPV23)

1, 2, 3, 4, 5, 6B, 7F, 8, 9N, 9V, 10A, 11A, 12F, 14, 15B, 17F, 18C, 19A, 19F, 20, 22F, 23F, 33F

7-valent pneumococcal conjugate vaccine (PCV7) 4, 6B, 9V, 14, 18C, 19F, and 23F

10-valent pneumococcal conjugate vaccine (PCV10) 1, 4, 5, 6B, 7F, 9V, 14, 18C, 19F, 23F

13-valent pneumococcal conjugate vaccine (PCV13) 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19, 23F

15-valent pneumococcal conjugate vaccine (PCV15) 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, 22F, 23F, 33F

PPV pneumococcal polysaccharide vaccine, PCV pneumococcal conjugate vaccine
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to the increase in non-PCV7 serotypes include underlying
secular trends in serotypes, clonal expansion of specific pneu-
mococcal genotypes, changes in patterns of antibiotic use and
consequently antibiotic resistance, and changes in the baseline
characteristics of populations studied [28]. Whatever the rea-
sons, these increases in non-PCV7-serotypes underline the
rationale for higher valency vaccines as recommended by
the WHO in 2012, and the need for continued monitoring of
pneumococcal serotypes in carriage and disease globally [51,
60].

Disease-Specific Serotype Associations

Pneumonia and Parapneumonic Effusion

In the adult population, noninvasive pneumococcal pneu-
monia accounts for the largest burden of pneumococcal
disease in patients requiring hospitalization, with IPD
accounting for less than 25 % [61]. Although there is
overlap in the pneumococcal serotype distribution be-
tween adults with IPD and noninvasive CAP, several
recent cohort studies of pneumococcal pneumonia that
have used urine antigen detection techniques to identify
pneumococcal serotypes have demonstrated important
differences in comparison to contemporary IPD data. A
UK study of adult pneumococcal CAP for the period
2008 – 2010 (2 to 4 years following the introduction of
PCV7) found serotypes 14, 1, 8, 3 and 19A to be the
most prevalent. In contrast, contemporary UK national
IPD cohort data show serotypes 19A, 3 and 22F as the
most prevalent in those older than 65 years, with sero-
type 14 being relatively underrepresented [23, 62]. IPD
data from elsewhere in Europe for this period also show
relatively low numbers of serotype 14 [63]. Similarly, a
US study in adults aged ≥50 years admitted to hospital
with pneumococcal CAP during the period 2010 – 2011
(10 to 11 years following the introduction of PCV7)
found serotypes 19A, 7F/A, 3 and 5 to be the most
prevalent, although serotype 5 has been rarely observed
in contemporary US IPD cohorts [64].

Parapneumonic effusions (PPE) occur in 20 – 57 % of all
individuals hospitalized with CAP, with empyema (compli-
cated PPE) occurring in 5 – 10 % of that proportion [65]. PPE
leads to excess mortality, longer length of hospital stay and the
need for surgical intervention in some individuals [63, 66].
Streptococcus species account for complicated PPE in over
half of all those affected [67, 68]. Pneumococcal serotypes 1,
3, 7F and 19Awere independently associated with the devel-
opment of complicated PPEs in cohorts of pediatric patients
with empyema in the US and Europe [68–70]. A similar
association was reported in an adult study of pneumococcal
CAP in the UK [71]. An increase in the incidence of pediatric

empyema rates was reported in some countries following the
introduction of PCV7 to the child immunization schedule [72,
73]. Serotype replacement by non-PCV7 serotypes such as 1,
3, 7F and 19A in the post-PCV7 era may partly explain the
observed increase in empyema incidence in these countries,
although in the UK, childhood empyema rates decreased
following the introduction of PCV7 [74].

The exact pathogenic mechanisms leading to complicated
pneumonia with some pneumococcal serotypes are unclear.
The ability of the more heavily encapsulated serotypes such as
3 and 19F to resist neutrophil-mediated killing may lead to the
rapid accumulation of capsular polysaccharide; the resulting
antigen load then generates a vigorous inflammatory response
with tissue necrosis [43, 45•]. In contrast, serotype 1 has a thin
polysaccharide capsule, and its high prevalence in pneumo-
coccal empyema may be due to the presence of zwitterionic
capsule polysaccharides, which, unlike the majority of pneu-
mococcal serotype capsules, can directly activate T-helper
cells [75]. In support of this hypothesis, the presence of
zwitterionic polysaccharide capsules has been shown to aid
the formation of intraabdominal abscesses in murine models
[76].

Meningitis

Streptococcus pneumoniae is the leading cause of bacterial
meningitis in children across the world; over 100,000 cases
of pneumococcal meningitis leading to about 60,000 deaths
per annum are estimated to occur globally [1•]. In a US
population-based surveillance of isolates from individuals
of all age groups with pneumococcal meningitis between
1998 and 2005, declines of 30 % and 73 % in the incidence
of overall and PCV7-serotype meningitis, respectively, were
observed following the introduction of PCV7 to the child
immunization schedule [77]. Concurrently, the incidence of
meningitis due to non-PCV7 serotypes increased by 60 % in
the post-vaccination period, specifically due to serotypes
19A, 22F and 35B. A major concern was the increase in
the proportion of isolates not susceptible to penicillin in this
study.

The incidence and mortality associated with pneumococcal
meningitis is significantly greater in Africa than in the rest of
the world [1•]. Nasopharyngeal carriage rates are significantly
higher across all age groups in Africa [14]. In contrast to data
from the US, 60 – 80% of cases in the African meningitis belt
were attributed to serotype 1 in a recent systematic review
[78]. The incidence of meningitis due to serotype 1 was
highest amongst children aged over 5 years, which differs
from the bimodal age distribution observed in the developed
world [14, 78]. These differences highlight the importance of
vaccine policy that is targeted to the specific needs of a
population.

Curr Infect Dis Rep (2014) 16:403 Page 5 of 9, 403



Antimicrobial Resistance

Serotype 19A is by the far the most widely reported serotype
associated with antimicrobial resistance. The prevalence of
serotype 19A, a non-PCV7 serotype, has increased in studies
of both nasopharyngeal carriage and IPD since the introduc-
tion of PCV7 across the world [23–25, 28, 30, 56, 79, 80]. For
example, IPD data from Spain for the period 2007–9 (1 to
3 years following the introduction of PCV7) found serotype
19A to be the most frequent serotype in children under 5 years
of age [80]. Similarly, prospective surveillance of IPD in
children from eight centers in the US found that 46 % of
non-PCV7 serotypes during the period 2007 – 2008 (7 to
8 years following the introduction of PCV7) were serotype
19A. Of the serotype 19A isolates in the US study, 34 % were
reported to have intermediate sensitivity or resistance to pen-
icillin, and were more likely to be resistant to clindamycin,
erythromycin, cotrimoxazole, and three or more classes of
antibiotics in comparison to non-serotype 19A isolates [81•].

Although the increase in IPD due to serotype 19A in the
post-CV7 era has stabilized, a continued increase in the pro-
portion of antimicrobial resistance amongst serotype 19A
isolates has been observed. Expansion of specific drug resis-
tance clonal complexes comprising serotype 19A may ac-
count for this. Genotyping of serotype 19A isolates causing
IPD, identified through Centers for Disease Control Active
Bacterial Core surveillance in the US during the period 2004 –
2008, found an increase in the resistant clonal complex 320/
271 from 20.9 % to 32.9 % during the period 2005 – 2007,
which paralleled the increase in penicillin resistance among
serotype 19A isolates during this period [82]. A study of
pediatric IPD isolates collected from 1993 to 2011 in the US
found that clonal complex 320 predominated among serotype
19A isolates [83].

Injudicious antibiotic use may favor the selective expan-
sion of antibiotic-resistant pneumococcal strains. In a study of
pediatric pneumococcal isolates in South Korea, the propor-
tion of serotype 19A increased from 0 % to 26 % in the 12-
year period prior to the introduction of PCV, and remained
stable following the introduction of PCV [84]. The expansion
of sequence type 320, belonging to the clonal complex 320/
271, was largely responsible for the observed increase in
serotype 19A in this study. Surveillance of pneumococcal
isolates collected from 11 Asian countries by the Asian
Network for Surveillance of Resistant Pathogens (ANSORP)
during the period 2008 – 2009 showed that serotype 19Awas
the most prevalent non-PCV7 serotype; 86 % and 80 % of
serotype 19A isolates showed erythromycin resistance and
multidrug resistance, respectively [79]. Very few countries
included in the study had introduced PCV7 to the national
immunization program, and overall vaccine coverage
remained low, suggesting that factors other than serotype
replacement due to PCV7 are likely to explain the high

prevalence of serotype 19A. Increases in serotypes 6C and
6D with associated drug resistance have also been reported
[85, 86].

Conclusion

Despite widespread availability of effective antimicrobial
therapy and vaccine-led preventative strategies, pneumococ-
cal disease remains a challenge to healthcare systems around
the world due to its substantial morbidity, mortality and cost
burden. Recent studies, largely based on IPD data, have
increased our understanding of the pathogenesis, complica-
tions and outcomes of pneumococcal disease with regard to
specific pneumococcal serotypes. Worldwide pneumococcal
seroepidemiology is currently undergoing significant changes,
in part due to the introduction of PCVs to national immuni-
zation schedules. Continued surveillance of pneumococcal
serotypes in nasopharyngeal carriage noninvasive disease
and invasive disease is required. This is especially pertinent
given the increasingly described associations between specific
serotypes and different clinical phenotypes of disease, includ-
ing disease severity.
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