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Abstract
Purpose of Review  Misalignment between the endogenous biological timing system and behavioral activities (i.e., sleep/
wake, eating, activity) contributes to adverse cardiovascular health. In this review, we discuss the effects of recurring 
circadian misalignment on blood pressure regulation and the implications for hypertension development. Additionally, 
we highlight emerging therapeutic approaches designed to mitigate the negative cardiovascular consequences elicited by 
circadian disruption.
Recent Findings  Circadian misalignment elicited by work schedules that require individuals to be awake during the biological 
night (i.e., shift work) alters 24-h blood pressure rhythms. Mechanistically, circadian misalignment appears to alter blood 
pressure via changes in autonomic nervous system balance, variations to sodium retention, dysregulation of endothelial vaso-
dilatory responsiveness, and activation of proinflammatory mechanisms. Recurring circadian misalignment produced by a 
mismatch in sleep timing on free days vs. work days (i.e., social jetlag) appears to have no direct effects on prevailing blood 
pressure levels in healthy adults; though, circadian disruptions resulting from social jetlag may increase the risk of hyperten-
sion through enhanced sympathetic activation and/or obesity. Furthermore, social jetlag assessment may be a useful metric 
in shift work populations where the magnitude of circadian misalignment may be greater than in the general population.
Summary  Circadian misalignment promotes unfavorable changes to 24-h blood pressure rhythms, most notably in shift 
working populations. While light therapy, melatonin supplementation, and the timing of drug administration may improve 
cardiovascular outcomes, interventions designed to target the effects of circadian misalignment on blood pressure regulation 
are warranted.
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Introduction

Cardiovascular disease is the leading cause of morbidity and 
premature mortality worldwide, with hypertension being the 
most prevalent modifiable risk factor [1]. While estimates 
predict that approximately 1.5 billion people will develop 
hypertension by 2025, blood pressure control remains poor 
globally [2]. A clear understanding of both endogenous and 
exogenous influences on blood pressure is thus needed in 

order to combat hypertension incidence. Blood pressure 
exhibits an endogenous near 24-h circadian rhythmicity and 
diurnal blood pressure rhythms are characterized by pressure 
surges in the morning during typical waketime, stable pres-
sures across daytime/waking hours until an early evening 
peak, and then pressure falls or dips below waking values 
during typical sleep timing [3–6]. Moreover, attenuations in 
the blood pressure dipping magnitude during typical sleep 
timing appears to have implications for future cardiovascu-
lar risk. Specifically, individuals who do not decrease their 
overnight blood pressure by ≥ 10% from daytime blood pres-
sure levels (i.e., “non-dippers”) display stronger associations 
with increased risk of adverse cardiovascular events and 
mortality than those with only high office blood pressure 
measurements [7••]. Changes in overnight blood pressure 
dipping patterns may be driven by differences in circadian 
timing [8, 9•]; thus, not only is identifying factors that 
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negatively impact the circadian rhythm of blood pressure 
critical for cardiovascular health, but also developing and 
implementing strategies to mitigate circadian disturbances 
may be a target for improved blood pressure outcomes.

The daily rhythms in physiological processes and behav-
iors have evolved over time to anticipate environmental 
changes occurring within the 24-h light/dark cycles. These 
circadian (derived from Latin with “circa” meaning approxi-
mate and “dian” meaning a day) rhythms are generated from 
the suprachiasmatic nucleus (SCN) within the hypothalamus 
(i.e., the central circadian clock) which then communicates 
to peripheral circadian oscillators throughout the body. As 
such, the timing of autonomic neural and hormonal outputs 
governed by the SCN enables appropriate blood pressure 
responses throughout the circadian cycle [10, 11]. This 
endogenous circadian blood pressure rhythm is robust in 
humans [3]; however, anatomical alterations to the SCN 
have been observed in hypertensive patients [12] suggesting 
a link between the circadian clock and disease. Recurring 
circadian disruptions or desynchronization of the circadian 
system may be one mechanism promoting adverse cardio-
vascular function.

The misalignment of behaviors with the internal biologi-
cal timing system, such as with rotating and/or overnight 
shift work, is one such mechanism that may deteriorate 
cardiovascular health over time [13••]. Shift workers com-
pose ~ 20% of the US workforce [14] and have up to a 40% 
increased risk of CVD and increased risk of hypertension 
development [15, 16, 17••, 18]. Shift work, however, is only 
one drastic form of circadian misalignment. Almost every 
individual worldwide experiences some form of circadian 
misalignment or disruptions in their lifetime, from time zone 
travel to early school start times to differences in sleep/wake 
times between work days and work free days (i.e., social 
jet lag); therefore, understanding how acute but potentially 
recurring circadian disruptions impact blood pressure has 
important health implications as well. While the circadian 
effects on hypertension and cardiovascular disease have been 
excellently examined by others [19••, 20, 21], this review 
will highlight recent findings relevant to the effects of circa-
dian misalignment on blood pressure regulation, the evolv-
ing potential implications for hypertension development, and 
emerging therapeutic strategies designed to mitigate nega-
tive cardiovascular outcomes.

Shift Work, Circadian Misalignment, 
and Blood Pressure

Shift work is a common cause of circadian disruption, as 
being awake and working outside of traditional daytime 
hours elicits changes to light exposure and behavioral activi-
ties such as sleep/wake, rest/activity, and fasting/eating [22]. 

Evidence suggests that a low percentage of permanent night 
workers experience partial or complete circadian entrain-
ment (or synchronization of the biological clock with a new 
light/dark cycle) to nightshift work [23]; hence, a majority 
of shift workers experience recurrent rapid circadian rhythm 
desynchronization when shifting their sleep/wake cycles to 
being awake and working at night and sleeping during the 
day, then reverting back to a diurnal schedule on non-work 
days [23, 24]. This circadian rhythm desynchronization is 
similar to what is experienced when traveling rapidly across 
time zones. Entrainment to new external environmental cues 
(i.e., zeitgebers) occurs slowly [25], and greater shifts in tim-
ing correspond to a greater magnitude/duration of circadian 
misalignment. Moreover, exposure to zeitgebers promot-
ing a day-time schedule (i.e., light exposure in the morn-
ing) interferes with or prevents circadian entrainment to a 
shift work schedule. The resulting circadian misalignment 
also increases the prevalence of impaired sleep quality and 
decreased sleep duration when individuals attempt to initi-
ate sleep during the biological day [26–28]. As shown in 
Fig. 1, the circadian rhythm of melatonin (the gold-standard 
marker of circadian phase) is characterized by low levels 
during the circadian day, a sharp rise in the evening (i.e., 
dim-light melatonin onset [DLMO]), followed by a peak in 
the middle of the circadian night [29]. Amongst shift work-
ers, however, behaviors become misaligned with circadian 
phase and sleep is typically initiated to occur during a time 
of low melatonin production [30]. Thus, daytime sleep ini-
tiation competes with the circadian promotion of alertness 
and thereby inhibits sleep onset and impairs consolidated 
sleep [31]. Consequently, individuals often revert back to 
sleeping during the circadian night on work-free days to 
recover from the insufficient sleep that accumulates dur-
ing shift-working days [24, 28]. These recurring bouts of 
circadian misalignment elicited from abrupt circadian phase 
shifts is thought to be one underlying mechanism promoting 
poor health outcomes amongst shift workers [18, 22, 32, 33].

Shift Work and 24‑h Blood Pressure Rhythms

The prevalence of hypertension in shift workers is equivo-
cal, with evidence indicating either a 12–18% increase in 
hypertension incidence or no association between high 
blood pressure and shift work [33–37]; though age, years 
of shift work, and sleep duration may play a role in disease 
pathophysiology [38–40]. However, across various profes-
sions that include some form of shift work schedule, applied 
research has shown alterations to blood pressure regulation 
and rhythmicity elicited by circadian misalignment [9•, 41, 
42•, 43–47], which may have greater implications for over-
all cardiovascular health rather than hypertension develop-
ment, per se. Chau and colleagues were the first to report 
that shift workers not only had higher systolic and diastolic 
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pressures during their circadian-misaligned work shifts, but 
also exhibited higher pressures for a longer duration across 
a 24-h circadian cycle compared to day shift workers [48]. 
This has also been reported by others [41, 43, 49, 50•], 
though not supported by all [51, 52]. However, augmented 
working blood pressure and a blunted circadian rhythm of 
blood pressure has been observed within rotating shift work-
ers when individuals worked the circadian misaligned night 
shifts as compared to the circadian aligned day-work sched-
ule [44, 46]. These data provide compelling evidence that 
shift work combined with circadian misalignment uniquely 
affects blood pressure control, though the independent effect 
of circadian misalignment cannot be interpreted from these 
field study designs.

Laboratory experiments have been developed to pre-
cisely identify the circadian influence on various bio-
logical processes. By using controlled in-laboratory tech-
niques, such as a rapid inversion of sleep/wake timing 
(i.e., a “slam-shift” protocol) or equally spreading behav-
iors across the 24-h day by utilizing daylengths that differ 
from the 24-h day (i.e., a “forced desynchrony” protocol), 
the underlying mechanisms that govern blood pressure 
responses to circadian alignment vs. misalignment can be 
investigated to better understand how circadian disruption 
contributes to cardiovascular risk. Short term, in-laboratory 

circadian misalignment protocols have been shown to 
elicit acute increases in arterial pressures and inflamma-
tory markers in healthy, non-shift working adults [8, 53]. 
To expand upon these findings, Morris and colleagues 
sought to determine if similar effects occurred in chronic 
nightshift workers [54]. Participants underwent two 3-day 
laboratory protocols: a circadian aligned visit and a simu-
lated nightshift schedule visit whereby a rapid 12-h shift in 
behavioral activity was implemented. Circadian misalign-
ment elicited a modest yet meaningful increase in 24-h 
systolic (+ 1.4 mmHg) and diastolic (+ 0.8 mmHg) blood 
pressure, which was mediated by elevated systolic pressure 
during wakefulness (+ 1.7 mmHg) and increased diastolic 
pressure during sleep (+ 1.8 mmHg). Additionally, 24-h 
levels of C-reactive protein, a marker of systemic inflam-
mation, were significantly elevated with misalignment 
[54]. Moreover, evidence suggests that circadian misalign-
ment, particularly when accompanied by sleep restriction, 
may further promote the dysregulation of arterial pres-
sures via changes in autonomic nervous system balance 
[4, 8, 55–57] and/or sodium retention [58•]. Investigations 
directly measuring basal muscle sympathetic nerve activity 
amongst shift workers, however, is lacking. Taken together, 
these findings highlight the cardiovascular consequences 
of shift work induced circadian misalignment.

Fig. 1   Blood pressure rhythms with circadian alignment vs. circa-
dian misalignment (left to right). When behaviors are aligned with 
the internal biological timing system (illustrated by the melatonin 
rhythm), diurnal blood pressure fluctuations are characterized by 
morning pressure surges, stable pressures across daytime/waking 
hours, a second evening peak, followed by overnight blood pressure 

dipping during sleep (≥ 10% from daytime values). Circadian mis-
alignment, such as that experienced with shift work, results in attenu-
ated blood pressure dipping during daytime sleep episodes, higher 
pressures during working hours, and blunted melatonin rhythms 
resulting from artificial light exposure
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Shift Work and Blood Pressure Dipping

Impaired blood pressure recovery following a night shift 
[44, 46] and increased prevalence of non-dipping overnight 
blood pressure patterns [43, 44, 46–48, 50•, 59, 60], particu-
larly amongst African Americans [45], further contributes 
to the diminished circadian blood pressure rhythm observed 
in shift workers (Fig. 1). Importantly, McHill and colleagues 
demonstrated that changes to overnight blood pressure dip-
ping occurs rapidly (within 90 days) when transitioning into 
a shift working schedule [42•] and this attenuated overnight 
blood pressure dipping profile persists amongst chronic shift 
workers (average of 9 years of working a shift work sched-
ule) [9•]. In shift workers with hypertension, the diurnal 
blood pressure rhythm changes from a dipper to a non-dip-
per pattern within the first day of nightshift work, though 
the rhythm returns to a dipping pattern after a few days of 
nightshift work [43]. Taken together, these findings suggest 
that alterations to the overnight blood pressure dipping pat-
tern changes rapidly and that individuals with existing co-
morbidities may be more acutely vulnerable to the adverse 
cardiovascular effects of shift work.

While mechanisms driving overnight blood pressure dip-
ping remain poorly understood, evidence suggests that the 
degree of overnight blood pressure dipping better predicts 
adverse cardiovascular events independent of average day-
time blood pressure levels [61–63]. Adverse overnight blood 
pressure dipping profiles accompanying the transition into 
shift work has been shown to be associated with increased 
sleep onset timing variability [9•, 42•], potentially implicat-
ing the role of increased circadian disruption on vascular 
function. Sleep disturbances and reductions in total sleep 
time appear to alter neurocirculatory mechanisms that likely 
underlie the changes to overnight blood pressure dipping 
observed. Generally, integrative mechanisms balance auto-
nomic nervous system output with vascular endothelium 
derived vasodilatory factors to maintain vascular tone [64]. 
However, evidence suggests that sleep restriction (i.e., < 6 h 
per night) combined with circadian misalignment disrupts 
overall sympathovagal balance, whereby parasympathetic 
tone is diminished and sympathetic nervous system influ-
ence appears enhanced [55, 65]. Additionally, arousals 
during sleep are associated with transient changes in auto-
nomic outflow, resulting in brief blood pressure surges [66]. 
Thus, sympathetically mediated peripheral vasoconstriction 
and transient increases in blood pressure could constrain 
blood pressure dipping magnitude further. Finally, func-
tional impairments of the vascular endothelium elicited by 
sleep restriction and circadian misalignment may promote 
increased peripheral resistance via attenuated vasodilatory 
capacity and activation of proinflammatory mechanisms [8, 
53, 54, 67, 68]. In summary, augmented sympathetic activ-
ity, blunted parasympathetic tone, and early indicators of 

compromised cardiovascular function may pathologically 
drive higher arterial pressures during daytime sleep in shift 
workers and increase the risk of cardiovascular disease.

Social Jetlag and Blood Pressure

In humans, the average circadian period is slightly longer 
than the 24-h day [69]; therefore, most individuals must 
entrain their biological clocks daily. Entrainment character-
istics are influenced by genetics, age, sex, and environmental 
factors like light exposure, creating a range of individual 
diurnal preferences or chronotype [70]. The three primary 
chronotypes are morning-, neither-, or evening-types, with 
roughly 40% of the adult population being classified as 
either a “morning” or “evening” person [71]. In general, 
males are more likely to be evenings types, though a shift 
towards a morningness preferences is associated with age 
regardless of sex [72, 73]. In recent decades, there has been 
a growing interest in assessing the potential health outcomes 
associated with chronotype and recurring small circadian 
disruptions leading to a phenomenon known as social jet-
lag. The term social jetlag refers to discrepancy between 
the sleep timing imposed by the social clock (i.e., work/
school schedules) and the biologically driven sleep timing 
occurring on work-free days, causing an effect akin to fly-
ing rapidly across time zones (i.e., jetlag). It is proposed 
that evening chronotypes experience greater social jetlag as 
they have a preference to sleep and wake later on work-free 
days but have to adjust to early hours on working/school 
days [74]. As such, social jetlag could be viewed as an acute 
but chronically occurring form of circadian misalignment.

There is limited information regarding global prevalence 
rates of social jetlag, though estimates range from 30 to 
70% of individuals experiencing at least 1 h of social jetlag 
per week [74–77, 78•] and roughly one third of individuals 
experiences ≥ 2 h of social jetlag in the general adult popu-
lation [74, 77]. Some evidence suggests that social jetlag is 
associated with adverse cardiometabolic risk factors such 
as abnormal lipid profile, insulin resistance, increased waist 
circumference, adiposity, and body mass index [74, 79–81]; 
though this is not a universal finding [77, 78•] and social 
jetlag may only be related to increased body mass index 
amongst already overweight/obese individuals [74]. How-
ever, few studies have examined how social jetlag impacts 
blood pressure and risk of hypertension development.

To date, there have been no reported effects of social jet-
lag on systolic or diastolic blood pressure in adults younger 
than 30 years [77, 78•]. Rutters and colleagues were the 
first to examine the role of social jetlag on endocrine and 
cardiovascular risk profiles in a healthy population [77]. 
Participants were classified as experiencing either ≤ 1 h 
(n = 55), > 1  h and < 2  h (n = 53), or ≥ 2-h social jetlag 
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(n = 37). While there were no differences in blood pres-
sure measures between social jetlag groups, social jetlag 
was associated with elevated heart rates and cortisol lev-
els (a hormone mediating the body’s stress response), sug-
gesting a shift towards greater sympathetic influence [77]. 
McMahon and colleagues also reported no effect of social 
jetlag on cardiovascular outcomes in a young (21–35 years), 
ostensibly healthy population of males and females [78•]. 
Rather, sleep disruptions amongst morning types were asso-
ciated with increased odds of obesity and elevated blood 
pressures [78•]. Finally, in healthy but overweight midlife 
adults (average age 43 years; body mass index 27 kg/m2), 
neither chronotype nor social jetlag was shown to be cor-
related with resting heart rate or blood pressure [79]. Taken 
together, these findings would suggest that circadian dis-
turbances play a more profound role on obesity and ulti-
mately obesity-related increases in arterial pressure, rather 
than direct effects of social jetlag on blood pressure, per 
se [82]. Nonetheless, the effects of circadian misalignment 
elicited by social jetlag on hypertension-promoting mecha-
nisms, such as changes in autonomic balance and endothelial 
function, remain to be investigated. Furthermore, the extent 
to which these mechanisms may vary by sex warrants fur-
ther exploration. Indeed, evidence suggests that males and 
females maintain normal arterial pressures through different 
physiological pathways [83–87]. Female sex hormones have 
been implicated in β-adrenergic receptor mediated vasodi-
lation with sympathetic activation, rather than the typical 
α-adrenergic receptor mediated vasoconstrictive response 
[87]. If circadian disruptions resulting from social jetlag and/
or chronotype do, in fact, elicit an increase in systemic sym-
pathetic activation, increases in peripheral resistance and 
blood pressure would likely be offset by these protective 
mechanisms, at least in pre-menopausal females. However, 
the combined effects of a greater reliance on autonomic sup-
port of blood pressure with age and the loss of sex hormones 
post-menopause [87, 88] may exacerbate the autonomic and 
vascular effects of circadian disturbances in females later in 
life, when the risk of hypertension is increased.

Amongst shift workers experiencing a greater degree 
of social jetlag (≥ 4 h), high prevalence rates of hyperten-
sion (25%) have been reported; though, it is unclear to what 
extent confounding factors such as smoking (~ 79% preva-
lence) contribute to disease pathophysiology in this popula-
tion [89•]. Recent work from Vieira and colleagues exam-
ined the relationship between social jetlag and melatonin 
production amongst shift workers [90]. While blood pressure 
outcomes were not assessed, findings from this investigation 
may provide insight into mechanisms underlying disturbed 
cardiovascular regulation. Authors report that, expectedly, 
nightshift workers had lower sleep durations compared to 
dayshift workers. However, nightshift workers experienced 
a 13-fold higher degree of social jetlag (Δ9.8 h), which was 

associated with greater inhibition of nocturnal melatonin 
production [90]. Indeed, evidence suggests that melatonin 
rhythms are disrupted by nightshift work [30], likely con-
tributing to overall social jetlag severity and potentially pro-
moting adverse blood pressure consequences via impaired 
antioxidant and anti-inflammatory effects of melatonin [91, 
92]. While more research is needed, social jetlag could be 
a useful metric when considering the magnitude of circa-
dian misalignment, particularly in shift working populations 
where individuals may be at higher risk for negative cardio-
vascular health outcomes.

Circadian Clock Mechanisms  
and Blood Pressure

Circadian rhythms are driven by molecular circadian clocks 
located in nearly every tissue and organ in the body that 
oscillate autonomously across a ~ 24-h period, even when 
external environmental cues (i.e., zeitgeber) are absent [69]. 
The central circadian clock located in the SCN is entrained 
by light and is the internal pacemaker synchronizing 
peripheral clock mechanisms to align downstream clock-
dependent gene expression with the daily light/dark cycle. 
These molecular clock mechanisms consist of a series of 
transcription-translation feedback loops that drive circadian 
variation in tissue specific gene synthesis that ultimately 
facilitate physiological processes, including blood pressure 
regulation [19••]. Indeed, circadian misalignment in healthy 
men has been shown to upregulate proteins and signaling 
pathways that promote poor cardiovascular outcomes [93]. 
The circadian rhythm of blood pressure is likely governed by 
numerous integrative mechanisms including but not limited 
to diurnal changes in circulating levels of catecholamines, 
baroreflex sensitivity, autonomic balance, sodium reten-
tion, endothelial function, and sympathetically-mediated 
α-adrenergic receptor responsiveness [4, 6, 58•, 94–96], 
with evidence from animal models directly implicating the 
role of clock proteins in the normal functioning of these 
processes [97–99].

Clock mechanisms not only affect targeted gene expres-
sion, but emerging evidence also implicates the role of spe-
cific clock genes in prevailing blood pressure in humans. 
Briefly, the core clock proteins consist of two activator pro-
teins BMAL1 (brain and muscle aryl-hydrocarbon receptor) 
and CLOCK (circadian locomotor output cycles kaput) and 
two repressor proteins PER (period) and CRY (cryptochrome) 
[19••]. Toffoli and colleagues recently reported that rotating 
shift work is associated with increased arterial pressures and 
heart rate values during working hours and reduced blood pres-
sure dipping during sleep, similar to what has been reported 
previously [50•]. However, nightshift work elicited a signifi-
cant upregulation in the expression of most clock genes, with 
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an independent association between nightshift blood pressure 
and PER2-3 gene expression being observed [50•]. Indeed, 
outside of core molecular clock mechanisms, evidence sug-
gests that PER plays a critical role in blood pressure regula-
tion and sodium handling [100, 101], though other clock genes 
have been implicated [19••]. Yet, light exposure stimulates a 
rapid increase in Per mRNA expression within the SCN and 
clock gene rhythm resetting [102]; thus, PER may provide 
a distinct mechanistic link between light-induced circadian 
misalignment and poor blood pressure outcomes, particularly 
amongst shift workers. Proposed mechanisms contributing to 
elevated blood pressures elicited by circadian disturbances are 
illustrated in Fig. 2.

Therapeutic Approaches to Mitigate 
Circadian Misalignment

There are significant health implications for developing 
strategies that prevent or alleviate the negative cardiovas-
cular consequences associated with shift work-induced 
circadian misalignment. While not all shift workers 
develop hypertension, abundant evidence shows a distinct 

impairment to circadian blood pressure rhythms which in 
turn promotes cardiovascular disease risk. Indeed, epide-
miological evidence shows that improvements in blood 
pressure, particularly systolic blood pressure, reduce the 
risk of cardiovascular disease and mortality even amongst 
individuals not meeting the threshold for clinical hyperten-
sion (i.e., ≥ 140/90 mmHg) [103, 104]. Complete circadian 
adaptation to shift work has been observed under some 
circumstances, particularly amongst offshore petroleum 
workers where 24-h operations are more standardized [105]; 
however, adequate circadian entrainment is not observed in 
a large percentage of shift workers [23]. Numerous interven-
tions have been employed to improve individual adaptations 
to shift work, though the applicability of “real world” imple-
mentation is unclear. Furthermore, evidence supporting the 
effectiveness of such circadian interventions on cardiovas-
cular outcome measures is limited.

Seminal studies have shown a greater tolerance to shift work 
and improved health when working schedules are adjusted to 
promote gradual circadian phase delays [106], with modest 
improvements to systolic blood pressure [107], yet additional 
research is needed to support these findings. Supplemental mel-
atonin appears to show some effectiveness in improving daytime 

Fig. 2   Cardiovascular responses to daytime, nighttime, and shift 
work. Blood pressure rhythms are affected by light, which directly 
increases neuronal activity in the suprachiasmatic nucleus (SCN). 
Environmental stimuli are communicated to autonomic nervous cent-
ers in the brain to alter autonomic outflow and trigger changes to 
circulating levels of catecholamines which contribute to increased 
peripheral vascular resistance and greater blood pressure during the 
day (left panel) and decreased peripheral vascular resistance and 
lower blood pressures at night (middle panel). Though not as bright 
as solar light, artificial light exposure at night can influence these 

regulatory pathways (right panel). With shift work, blood pressure 
elevations appear to be mediated by decreased cardiac vagal tone, 
increased sympathetic activity, and increased circulating catechola-
mines. Other potential mechanisms include increases in muscle sym-
pathetic nerve activity and changes in α-adrenergic receptor sensitiv-
ity promoting enhanced vasoconstriction and peripheral resistance; 
diurnal and/or circadian rhythms in baroreflex sensitivity; altered 
endothelial function resulting from upregulated inflammatory path-
ways; and changes in sodium handling. Created with icons from 
BioRender.com
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sleep episodes [108], which may directly or indirectly improve 
overnight blood pressure dipping patterns. Indeed, in healthy 
men, 1 mg of melatonin improved waking blood pressure meas-
ures via decreased pulsatility index and norepinephrine levels 
[109]. In men with essential hypertension, 3 weeks of mela-
tonin use improved daily blood pressure rhythms and increased 
blood pressure dipping magnitude [110]. While investigations in 
a shift working population are warranted, these data collectively 
suggest that melatonin could be a beneficial treatment strategy 
for mitigating the effects of circadian misalignment while con-
currently favorably supporting blood pressure. The use of light 
therapy to promote circadian shifts appears to yield promising 
results. Circadian entrainment to nightshift work has improved 
when individuals were exposed to bright light during their night 
shift and use dark goggles to shield from morning light on the 
commute home [111–113], with some discrepant findings 
from others [114••]. Despite light therapy showing no effect on 
melatonin rhythms in rotating shift workers, Hannemann and 
colleagues showed significant effects of light intervention on 
overnight blood pressure dipping [114••]. Not only did light 
therapy elicit a ~ 9 mmHg reduction in sleep blood pressure, but 
also the magnitude of blood pressure dipping persisted up to 
12 weeks post-intervention [114••]. Thus, appropriately timed 
light exposure might have the most robust effects on blood pres-
sure outcomes in shift workers.

Finally, a growing interest in chronotherapeutic strategies 
has begun to examine the effectiveness of drug timing on 
both basal blood pressure levels, circadian driven blood pres-
sure rhythms, and cardiovascular endpoints. With overnight 
blood pressure dipping appearing to better predict adverse 
health outcomes compared to daytime pressures, evening 
dosing of antihypertensive medications may provide more 
cardioprotective effects by improving nighttime blood pres-
sures while attenuating the morning pressure surge. The safety 
and efficacy of chronotherapy for hypertension management 
has been excellently reviewed by others [115, 116, 117••], 
highlighting that improved 24-h blood pressure profiles and 
cardiovascular endpoints have been reported with evening use 
of blood pressure lowering medications in daytime workers 
in several clinical trials. However, improved outcomes from 
bedtime medication use is not a unanimous finding [118] and 
differences between study design, such as the concomitant 
use of morning medication, underscores the need for more 
clarity in this area [119–121]. Observational data from 1546 
patients and 24-h administration of medications (~ 500,000 
doses), including but not limited to antihypertensives, has 
shown greatest clinical responsiveness when drugs were 
given at night [122••]. Furthermore, recent findings from the 
HYGIA Chronotherapy trial report significant decreases in 
cardiovascular events, improved sleep-time blood pressure, 
and improved blood pressure dipping patterns despite mod-
est improvements to 48-h systolic blood pressure measures 
(− 1.3 mmHg) with bedtime medication use [123]. Of note, 

these robust outcomes are contrary to findings from other 
clinical trials and caution is warranted when interpreting 
these results [124]. Future results from the currently ongoing 
prospective, multicenter clinical trials Treatment In Morning 
versus Evening (TIME) and Bedtime versus morning use of 
antihypertensives for cardiovascular risk reduction (BedMed) 
should provide more insight [125, 126]. Considering a major-
ity of top-selling medications, including classes of blood pres-
sure medications, target genes that are circadian-controlled 
[127], more research is needed to clarify the effect of chrono-
therapy on blood pressure and what benefits, if any, it may 
have on cardiovascular risk profiles in individuals where 
recurring circadian misalignment is a feature.

Conclusions

Misaligning behaviors with the endogenous circadian system 
results in adverse alterations to 24-h blood pressure rhythms, 
most notably in shift working populations. Numerous blood 
pressure regulatory mechanisms appear to be disrupted 
with circadian misalignment, such as altered autonomic 
balance, upregulated inflammatory pathways, and changes 
in sodium retention. Bright light therapy shows promising 
effects on blood pressure outcomes in shift workers, though 
more research is needed. Despite conflicting evidence of 
hypertension prevalence in presumably circadian-misaligned 
shift working populations, improved blood pressure control 
has significant implications for overall health and reduc-
tion of cardiovascular disease risk. While acute, recurring 
circadian disruptions elicited by social jetlag do not appear 
to have clear impacts on average prevailing blood pressures 
in healthy adult populations, evidence suggests that social 
jet lag may impact blood pressure regulation either through 
the development of obesity or other hypertension-promoting 
pathways, such as autonomic nervous system imbalance. 
Furthermore, social jetlag may be a useful metric in assess-
ing the magnitude of circadian disruption in populations 
vulnerable to circadian misalignment (i.e., shift workers). 
There are significant public health implications for individu-
als experiencing higher degrees of circadian misalignment 
and more research is needed to develop therapeutic strategies 
designed to promote better circadian adjustments.
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