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Abstract Previously considered a disease isolated to the pul-
monary circulation, pulmonary arterial hypertension is now
being recognized as a systemic disorder that is associated with
significant metabolic dysfunction. Numerous animal models
have demonstrated the development of pulmonary arterial hy-
pertension following the onset of insulin resistance, indicating
that insulin resistance may be causal. Recent publications
highlighting alterations in aerobic glycolysis, fatty acid oxida-
tion, and the tricarboxylic acid cycle in the pulmonary circu-
lation and right ventricle have expanded our understanding of
the complex pathobiology of this disease. By targeting these
derangements in metabolism, numerous researchers are inves-
tigating noninvasive techniques to monitor disease activity
and therapeutics that address the underlying metabolic condi-
tion. In the following review, we will explore pre-clinical and
clinical studies investigating the metabolic dysfunction seen in
pulmonary arterial hypertension.
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Introduction

Pulmonary arterial hypertension (PAH) is a highly morbid and
fatal illness defined by progressive pulmonary vascular

obstruction, which ultimately leads to right ventricular failure
and death [1–3]. While the disease is characterized histopath-
ologically as an arteriopathy of small-to-medium-sized pul-
monary arteries [4], PAH is increasingly being recognized as
a systemic illness with a predilection for the pulmonary vas-
culature and right ventricle (RV) [5].

There is a growing body of evidence that a variety of sys-
temic metabolic derangements are associated with, if not caus-
ative of, PAH. Much of the earlier research on this subject has
focused on the role of insulin resistance (IR), glucose intoler-
ance, and the metabolic syndrome (MS) on disease progres-
sion within the pulmonary circulation [6, 7, 8•, 9]. Several
new discoveries over the past few years have illuminated more
extensive metabolic dysfunction in PAH, as alterations in aer-
obic glycolysis, fatty acid oxidation (FAO), and the tricarbox-
ylic acid (TCA) cycle [10••] have been associated with PAH
and the development of lipotoxicity in the RV [11••]. Ongoing
research will elucidate whether these metabolic alterations
contribute to or result from pulmonary vascular disease.

As there are currently no known curative treatments for
this devastating illness, pulmonary vasodilators, such as
endothelin receptor antagonists, phosphodiesterase-5 in-
hibitors, and prostaglandins, are utilized to improve pul-
monary vascular and right ventricular hemodynamics with
varying degrees of success [12]. It is presently unclear
whether treatments that target metabolic dysfunction in
PAH will improve pulmonary vascular disease. Due to
their ready availability and ease of administration, several
FDA-approved metabolically active drugs are being con-
sidered for the treatment of PAH, though none are known
to have a beneficial effect in PAH. With improved under-
standing of the specific metabolic pathobiology of PAH,
novel therapeutic modalities will hopefully emerge that
treat the underlying disease state, rather than the secondary
hemodynamic consequences. This review will focus on
both basic science mechanisms of metabolic dysfunction
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and clinical knowledge regarding the potential role of al-
tered metabolism in PAH.

Basic Mechanisms of Metabolic Disease in the Pulmonary
Vasculature

BMPR2 Mutation and Insulin Resistance in Pulmonary
Arterial Hypertension

Bone morphogenic protein receptor type 2 (BMPR2) is a pro-
tein kinase that, after binding its bone morphogenic protein
(BMP) ligands of the transforming growth factor-β (TGF-β)
superfamily, modulates tissue injury repair and many other
signaling mechanisms including cytoskeletal function [13].
Germline mutations in BMPR2 are well-known causes of her-
itable PAH (HPAH) [14, 15] and are thought to induce PAH
through increased apoptosis of pulmonary vascular endothe-
lial cells [16] and uncontrolled proliferation of pulmonary
vascular smooth muscle cells [17]. The inheritance pattern in
HPAH is autosomal dominant with reduced penetrance (typi-
cally around 20 %) [18]. While other novel genetic mutations
associated with PAH have been discovered in recent years,
approximately 80 % of known HPAH is caused by BMPR2
mutations [5]. In fact, other forms of pulmonary hypertension
have been associated with sporadic BMPR2 mutations, most
notably idiopathic PAH (IPAH) [19], stimulant-associated
PAH [20], and pulmonary veno-occlusive disease [21], and
BMPR2 expression is reduced in IPAH even in the absence
of germline BMPR2 mutations [22]. Given the clinical, histo-
logical, and genetic similarities between heritable and other
forms of PAH [23], BMPR2 models of PAH are ideal for the
study of molecular mechanisms of disease in PAH.

One known downstream target of BMPR2 is peroxisome
proliferator–activated receptor-γ (PPARγ), a transcription
factor that belongs to the nuclear receptor family, which has
many downstream targets involved in vascular modeling and
glucose homeostasis [24]. Two important downstream targets
of PPARγ are apolipoprotein E (ApoE) [25] and adiponectin
[26]. ApoE is predominantly involved in reverse cholesterol
transport by macrophages [27], and adiponectin, a so-called
adipokine as it is a cell-signaling protein secreted exclusively
by adipocytes, is important for regulating endothelial inflam-
mation [28]. Although their biochemical pathways are mostly
unrelated, both proteins inhibit platelet-derived growth
factor-β (PDGF-β) function.

While ApoE inhibits PDGF-β function by binding to
lipoprotein-like receptor protein [29] and adiponectin binds
the homodimer of PDGF-β [30], both decrease its bioavail-
ability. The downstream consequences of heightened
PDGF-β signaling on vascular smooth muscle cells are pro-
found, as increased PDGF-β concentration leads to dysregu-
lated vascular smooth muscle cell proliferation and survival

due to upregulation of cell cycle–promoting genes via
PDGF-β-dependent MAP kinase activation [31].

Circulating levels of PPARγ [32] and ApoE [33] have been
noted to be reduced in PAH, either via BMPR2-mediated sup-
pression or otherwise. It is important to note that aside from
BMPR2 mutations or the presence of pulmonary vascular dis-
ease, reduced levels of PPARγ [34], ApoE [35], and
adiponectin [36] have all been associated with a variety of
pathologic metabolic states, such as obesity, type II diabetes
mellitus (DMII), and IR.

Hansmann et al. sought out to determine whether reduced
levels of PPARγ and ApoE seen in PAH are causative or
merely biologic spectators [6]. By using an ApoE (−/−) mouse
model, they observed that mice fed a high-fat diet were prone
to develop PAH, with a much more severe phenotype ob-
served in the male cohort. They determined that the degree
of PAH was inversely proportional to adiponectin levels, and
since females had higher adiponectin levels than males at
baseline, they were relatively protected from the development
of PAH. IR developed in the male Apo (−/−) mice fed a high-
fat diet, and not in the corresponding female mice, indicative
of the protective role of adiponectin in the development of IR
as well. A fundamental observation from these data was that
PPARγ activation with rosiglitazone raised adiponectin
levels, improved insulin sensitivity, and ultimately reversed
PAH in these mice.

Further supporting a role for adipokines in PAH,
adiponectin knockout mice have also demonstrated significant
vascular remodeling and PAH. Adiponectin (−/−) mice devel-
oped PAH in an age-dependent manner [37], and the pheno-
type was intensified when these mice were exposed to acute
allergic airway inflammation independent of hypoxia [38].
The mechanisms through which airway disease stimulates
pulmonary vascular disease in this model are as yet unclear,
but these data suggest that adipokines are active in the lungs
and may influence pulmonary vascular disease.

Our group has demonstrated a high degree of IR in a trans-
genic rodent model of inducible mutant BMPR2 overexpres-
sion. In this model, transgenic mice developed early IR (with-
in 2 weeks of transgene activation and prior to development of
PAH) associated with rapid weight gain [39]. We further
found tissue markers of lipid deposition, including fat staining
in the peripheral muscles [40]. Similarly to Apo (−/−) mice,
BMPR2 mutant mice fed a high-fat diet developed a more
severe PAH phenotype with higher penetrance of the disease
[40]. Furthermore, we demonstrated that BMPR2mutant mice
developed glucocorticoid receptor translocation abnormali-
ties, which led to glucocorticoid resistance that may underlie
some of the metabolic findings in this model.

These data taken together are interesting for several rea-
sons. First, they demonstrate that BMPR2 signaling is linked
downstream to PPARγ. Since PPARγ is a known Bmaster
regulator^ of insulin sensitivity, dysfunctional BMPR2
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expression may influence cellular glucose homeostasis. Addi-
tionally, in a model of BMPR2 mutation, IR develops before
pulmonary hypertension, suggesting a causative role for IR in
the development of pulmonary vascular disease. Finally, these
studies show that traditional animal models of IR such as the
ApoE or adiponectin (−/−) mice develop pulmonary hyperten-
sion, demonstrating that IR may promote pulmonary vascular
disease independent of BMPR2 signaling (Fig. 1).

Other Affected Metabolic Pathways in Pulmonary Arterial
Hypertension

IR seems to play a major role in PAH and has thus far been the
best studied; however, observed derangements in glycolytic,
TCA cycle, carnitine, fatty acid, and glutamate metabolism
indicate a more widespread metabolic disease state beyond
glucose homeostasis. It has been noted that aerobic glycolysis,
otherwise known as the BWarburg effect^, is highly prevalent
in patients with PAH [41]. The Warburg effect is considered
an adaptivemechanism exhibited by rapidly proliferating cells
(notably cancer cells) that allows for unrestrained growth [42].
It is also the fundamental principle behind positron emission
tomography-computed tomography (PET-CT) detection of ra-
dioactively labeled fluorodeoxy-D-glucose (FDG) uptake in
such cells [43]. While the ATP generated per glucose mole-
cule in glycolysis is far less than via mitochondrial respiration,
the reliance on less efficient catabolism may have some ad-
vantages when glucose uptake is not rate-limiting [44].

Marsboom et al. explored alterations in glucose metabo-
lism in two different mouse models of PAH, both the mono-
crotaline and SU5416 with chronic hypoxia models. FDG
uptake in lung tissue as determined by PET-CTscan increased
simultaneously with the development of PAH [45••], suggest-
ing that increased glucose turnover can be detected noninva-
sively by FDG uptake and is a relatively early feature of pul-
monary vascular disease in these rodent models. The observed
increase in aerobic glycolysis was found to be secondary to
increased glucose transporter 1 expression in PA endothelial
and smooth muscle cells in vivo and in vitro, partly due to
increased hypoxia-inducible factor-1α (HIF-1α) expression.

These largely mechanistic studies have focused on the glu-
cose metabolic pathway, but other fundamental areas of me-
tabolism have been less explored. We studied the metabolic
profile of pulmonary microvascular endothelial cells
(PMVEC) in humans and BMPR2 mutant mice. Fessel et al.
showed that human PMVEC transfected with BMPR2 vector
were noted to have extensive alterations in their gene expres-
sion when compared to empty vector controls [10••]. Nearly
one half of the altered genes regulated small molecule metab-
olism, and there was evidence of increased aerobic glycolysis
and decreased FAO. Furthermore, we observed increased pen-
tose phosphate pathway activation, decreased carnitine metab-
olism, decreased TCA cycle enzymatic activity distal to cit-
rate, and increased catabolism of peptides and amino acids.
This unbiased discovery approach has demonstrated that mul-
tiple metabolic pathways are affected in cells with a mutation
known to cause PAH. Although failure of adequate glucose
homeostasis is an important feature of PAH, it is likely not the
only metabolic derangement in this disease.

Basic Mechanisms of Right Ventricular Metabolic Disease

Altered metabolism is not isolated to the PMVEC or PA
smooth muscle cells in PAH but is also seen in the RV. It is
clear that different animal models of PAH have varying effects
on the RV. Some models, such as the pulmonary artery
banding (PAB) model, induce an early and adaptive model
of RV hypertrophy soon after the intervention. Other models,
such as those that utilize the endothelial cell toxin monocro-
taline, stimulate early and dysfunctional changes in the RV,
such as dilation and fibrosis [46, 47].

Exploiting this distinction between models, investigators
have shown that the RVof mice treated with PAB as compared
to a SU5416 and chronic hypoxia model demonstrate different
metabolic profiles [48]. Specifically, the RV of mice treated
with SU5416 and chronic hypoxia had decreased expression
of PPARγ, its cofactors, and its target genes. There was also a
qualitative and quantitative reduction in mitochondria associ-
ated with reduced oxidative capacity. These changes were not
found in the corresponding mice treated with PAB.

Fig. 1 Insulin resistance and PAH. BMPR2, PPARγ, ApoE, and APN
knockout mice all lead to the development of insulin resistance (IR) prior
to pulmonary arterial hypertension (PAH), and IR is commonly
associated with PAH in human studies. BMPR2 mutations also lead to
right ventricular lipotoxicity. BMPR2 bone morphogenic protein recep-
tor 2, PPARγ peroxisome proliferator–activated receptor-γ, ApoE
apolipoprotein E, APN adiponectin
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In contrast, other groups have observed that even the
hypertrophied RVs of mice that have undergone PAB demon-
strated a shift away from glucose oxidation towards aerobic
glycolysis and FAO [49]. While FAO is the preferred form of
ATP generation in cardiomyocytes in the healthy RV [50, 51],
inhibitors of FAO (trimetazidine and ranolazine) induced an
increase in cardiac output and exercise capacity, with a regres-
sion of established RV hypertrophy in the PAB model. Inhib-
itors of FAO may improve RV hemodynamics by shifting RV
metabolism towards glucose oxidation, by the so-called
Randle cycle [52], thus improving the oxidative metabolism
of RV cardiomyocytes [47]. The long-term consequences of
suppressing FAO in the heart, however, are presently unstud-
ied and may not be beneficial based on the normal metabolic
preferences of the heart.

In the case of PAH associated with germline BMPR2 mu-
tations, the metabolic effects would be predicted to affect all
tissues of the body to varying degrees. The RV changes seen
in BMPR2 mutant mice are illustrative of the breadth of met-
abolic alterations in the context of PAH, as we have demon-
strated a maladaptive RV response that is associated with
markedmyocardial lipotoxicity. The compensatory concentric
RV hypertrophy that is seen in PAB-treated mice and smooth
muscle-specific BMPR2 mutant mice is mitigated in mice
with a systemic BMPR2 mutation, despite moderate increases
in PA pressures [11••]. The RVs of these mice demonstrated
extensive lipid deposition (notably triglycerides and
ceramides) within the cardiomyocytes. Circulating lipids were
not elevated in these mice, and extracellular RV and left ven-
tricle (LV) lipid deposition was minimal. This effect, though
profound, could be reversed qualitatively and quantitatively
by metformin administration.

The reason behind this observed lipotoxicity is under
active investigation; however, it is almost certainly multi-
factorial. We have shown that there is increased expression
of CD36, a fatty acid transporter, in the RV of BMPR2
mutant mice and control mice fed a high-fat diet [53],
which may be responsible for the increase in fatty acid
entry into RV cardiomyocytes. Expression patterns in hu-
man RVs have suggested suppression of FAO [11••], thus
the utilization of fatty acids may be reduced at a mitochon-
drial level in cardiomyocytes with BMPR2 mutations
[10••]. The increase in fatty acid uptake, coupled with po-
tentially reduced utilization, necessitates the conversion of
these free fatty acids into complex lipids, such as triglyc-
erides and ceramides [54]. Once in the cytoplasm of RV
cardiomyocytes, these lipids fail to be transported out of
the cells and may mediate the RV dysfunction seen in these
mice. The mechanisms of how lipotoxicity alters RV hy-
pertrophy and compensation are currently unknown and
are active areas of exploration. Development of RV-
specific metabolic therapies is the ultimate goal of these
studies of lipotoxicity in the RV of patients with PAH.

Human Studies Involving Metabolic Disease
and the Pulmonary Vasculature

Insulin Resistance in Pulmonary Arterial Hypertension

While IR can be broadly defined as an abnormal clinical re-
sponse to a physiologic amount of insulin, there is a wide
array of clinical conditions associated with it, ranging from
frank DMII to the MS [55]. While the American Diabetes
Association has identified several modalities for the diagnosis
of DMII, notably a hemoglobin A1c greater than 6.5 [56], the
diagnosis of the MS is less clearly defined. The most unified
definition was jointly published by several American and in-
ternational organizations in 2009, and includes the presence of
or treatment for three out of the following five entities: elevat-
ed waist circumference, elevated triglycerides (TG), reduced
high density lipoproteins (HDL), elevated blood pressure, or
elevated fasting blood glucose [57].

DM and the MS have a steadily increasing prevalence
around the USA and world, occurring in approximately one
eighth and one third of American adults, respectively [58, 59].
IR is thought to be the underlying defect in both conditions
[60], and several biomarkers have been validated as reason-
able surrogates for IR, particularly an elevated TG/HDL ratio
and the homeostasis model assessment (HOMA), which uti-
lizes fasting glucose and insulin levels to estimate pancreatic
beta cell function and insulin sensitivity [61–63].

Numerous investigators have demonstrated that high levels
of pro-inflammatory biomarkers, such as C-reactive protein,
interleukin 6, and myeloperoxidase, are seen in conditions
associated with IR [64–67], and this inflammatory milieu is
thought to underlie the associated endothelial dysfunction and
vascular disease seen in patients with obesity, DM, and the
MS. While much is known about the association of IR and
vascular disease in the systemic circulation [68, 69], the role
of IR and other metabolic derangements on the pulmonary
circulation and RV is an emerging field (Table 1).

Validating the associations seen between IR and PAH in
animal models, there is a growing body of data supporting
these findings in humans. When compared to age-matched
controls from the National Health and Nutrition Examination
Survey (NHANES) database, non-diabetic female patients
with PAH had significantly more IR assessed by the TG/
HDL ratio [7]. Interestingly, when compared with insulin-
sensitive PAH patients, IR PAH patients had the same age
and weight profile; however, when compared with the IR con-
trol patients, the IR PAH patients were both younger and less
frequently overweight. Our group has shown that as many as
two thirds of non-diabetic patients with PAHwill demonstrate
some degree of glucose intolerance, defined as a hemoglobin
A1c greater than 6.0 [8•]. In fact, 15 % of the patients evalu-
atedwere newly diagnosed with DMII because of the analysis.
Similar to what Zamanian et al. demonstrated, glucose
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intolerance in this population seems to be independent of other
risk factors for IR, as age and BMI between PAH patients with
and without glucose intolerance were equal. While IR and the
MS are highly associated with PAH, the association is even
stronger for pulmonary venous hypertension, with two of the
three features of the MS seen in nearly all patients with PVH
[70].

IR and disordered glucose metabolism also appear to im-
pact survival in PAH. In both prior studies, while their degree
of IR did not correlate with individual metrics of disease se-
verity, IR PAH patients, as determined by both TG/HDL and
hemoglobin A1c, have decreased short- and long-term surviv-
al [7, 8•, 9]. Aside from the TG/HDL ratio, a low HDL level
was independently associated with worse outcomes in PAH
[71].

While there are no published therapeutic trials in humans
aimed at improving IR in PAH, we reported a potentially
illustrative case of a female with IPAH and morbid obesity
treated with laparoscopic Roux-en-Y gastric bypass surgery

[72], an experiment of nature involving surgical correction of
IR in PAH. Following surgery, and prior to any substantial
weight loss, her pulmonary vascular and RV hemodynamics
greatly improved. This trend continued as she sustained sig-
nificant weight loss and was paralleled with improved insulin
sensitivity and lipid metabolism.Whether this pulmonary vas-
cular improvement can be achieved by pharmacologic adjust-
ments of metabolism or solely by gastric bypass is presently
unknown. Moreover, as this is only a single case, bariatric
surgery cannot presently be recommended as a therapy for
PAH.

Other Affected Metabolic Pathways in Pulmonary Arterial
Hypertension

Our group has shown that humans with HPAH have altered
gene expression profiles in cultured lymphocytes from periph-
eral blood that predominantly affect the metabolic pathway
[11••]. In examining the RVs and serum from HPAH patients,

Table 1 Widespread metabolic dysfunction in PAH

Tissue(s) affected Metabolic defect Supporting data and references Investigative therapeutics

Systemic changes ↑ IR • More IR in PAH subset of NHANES
vs. age-matched controls [7]

• Decreased short-term survival in PAH
with IR vs. insulin sensitivity [7]

• More IR in ASD patients with vs.
without PH [79]

• Metformin (enrolling patients, NCT01884051)
• PPARγ agonist (i.e., rosiglitazone, no clinical
trials in humans performed or enrolling)

• When indicated, Roux-en-Y gastric bypass in
the morbidly obese [72]

↓ Glucose tolerance • Elevated A1c in PAH vs. age-matched
controls [8•]

• Decreased long-term survival in PAH
with A1c >5.7 vs. <5.7 [9], and with
DMII vs. without [80]

↓ HDL • Reduced HDL in PAH vs. controls [71]
• Decreased 1.5 year survival in PAH
with low vs. normal HDL [71]

• Simvastatin ineffective in the ASA-STAT trial,
although changes in HDL not reported [84]

Altered TCA Cycle • Increased IDH 2/3 activity in HPAH
vs. controls, with decreased TCA
intermediates distal to citrate [10••]

• No known therapy

↑ Adiponectin • Increased adiponectin in PAH vs. age-,
sex-, and BMI-matched controls,
although this may represent developed
resistance [74]

• When indicated, Roux-en-Y gastric bypass in
the morbidly obese [72]

↑ Leptin • Increased leptin and leptin receptor
expression on regulatory T cells in
PAH vs. controls [78]

↓ Ghrelin • Reduced ghrelin in ASD patients with
vs. without PH [79]

Right ventricle ↑ Aerobic glycolysis • Gene expression demonstrates reliance
on aerobic glycolysis over FAO and
TCA cycle in HPAH vs. healthy and
dilated cardiomyopathy control RVs [11••]

• No known therapy
↓ FAO

Altered TCA cycle

↑ Lipid deposition • Increased deposition of lipids in HPAH RV
cardiomyocytes [11••]

• Metformin (enrolling patients, NCT01884051)

The following systemic and right ventricular defects in metabolism have been identified in humans with pulmonary arterial hypertension (PAH). While
very few targeted therapeutics have been studied in humans, animal models and case reports have demonstrated potential metabolic targets
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we have also demonstrated reduced FAO and TCA cycle en-
zymatic expression compared with healthy controls [10••,
11••] and patients with dilated cardiomyopathy [11••], favor-
ing aerobic glycolysis instead. These data show conserved
alterations in metabolic pathways across tissue types.

On the other hand, when the explanted lungs of patients
with severe PAH following lung transplant were analyzed,
Zhao et al. noted an overall decrease in glycolysis and increase
in TCA cycle activity [73]. The reason for this discrepancy is
not entirely clear; however, our patients all had HPAH at a
presumed time of steady state, whereas the patients evaluated
by Zhao et al. had very advanced disease without mention of
BMPR2 status.

Adipokines have recently been explored in PAH patients as
biomarkers, if not mediators, of PAH. Adiponectin has been
shown to be elevated in patients with PAH compared to age-,
sex-, and BMI-matched controls in a large series [74]. At first
glance this seems counterintuitive, as animal models of the
disease demonstrate a protective role of adiponectin [6, 7,
8•, 9, 10••, 11••, 12–44, 45••, 46–76]. However, there is evi-
dence of reduced survival in patients with left-sided heart
failure and elevated adiponectin [77], so there may be a de-
veloped resistance to the once-protective protein similar to IR
seen in the MS and DMII. Humbert et al. investigated the role
of another adipokine, leptin, in PAH. Compared to controls,
PAH patients had increased serum leptin levels, with much of
the leptin secretion occurring in the pulmonary endothelial
cells [78]. Furthermore, the percentage of regulatory T cells
expressing the leptin receptor was increased in PAH, with
reduced function of these cells, indicating a leptin-dependent
immunomodulatory effect in PAH [78]. Other reports have
noted reduced levels of ghrelin, and reduced ghrelin-to-
obestatin levels, in patients with PAH secondary to an ASD
[79], further demonstrating the complex interplay between
PAH and the digestive hormones.

Human Studies Involving Metabolic Disease and the Right
Ventricle

Clinical data in humans has confirmed increased lipotoxicity
and glycolytic activation in the RVs of patients with PAH.
Similar to the RVs of BMPR2 mutant mice, humans with
HPAH have evidence of lipid deposition limited to the
cardiomyocytes of the RV, with sparing of the extracellular
space and LV [11••]. We have recently demonstrated that in
HPAH and IPAH, patients with a diagnosis of DM had worse
outcomes that appeared to correlate with markers of worse RV
function, suggesting a negative impact of DM on RV stress
response [80]. Interestingly, while the presence of IR was not
associated with echocardiographic RV dysfunction in PAH in
Brunner et al.’s recent analysis, diastolic dysfunction of the
LV was noted [81].

Building upon the PET-CT studies done on the lung tissue
of mice with PAH, several authors have shown that PET-CT
scans can also detect an increase in FDG uptake in the RVof
patients with PAH [82•, 83]. With the exception of patients
receiving β-adrenergic receptor blockade, RV FDG uptake
correlated well with worsening pulmonary hemodynamics
and echocardiographic changes, and appeared to be HIF-1α-
mediated. It appears that at least some of the increased RV
glucose uptake could be attributed to a corresponding reduc-
tion in LV glucose uptake secondary to worsening cardiac
output from LV under-filling [83].

Conclusions

Long known to be causal of an inflammatory cytokine profile,
endothelial dysfunction, and systemic cardiovascular disease,
IR and dysregulated glucose metabolism are now being rec-
ognized as major contributors to the development of pulmo-
nary vascular disease. Through translational research involv-
ing animal models and human studies, we now recognize that
alterations in glucose and fatty acid metabolism due to IR and
aerobic glycolysis are associated with the development of un-
controlled vasoconstriction in the pulmonary circulation and
RV lipotoxicity and dysfunction in patients with PAH.

While inherited or sporadic BMPR2 mutations seem to be
partially responsible, as BMPR2 and its downstream targets
are intimately involved in glucose homeostasis, many of the
PAH animal models have demonstrated that the disease phe-
notype worsens with certain modifications, such as a high-fat
diet. This seems to indicate a Bsecond hit^ phenomenon for the
development of PAH, with the penetrance and severity of the
disease dependent on environmental factors (such as poor diet
or a sedentary lifestyle) in the presence of altered BMPR2
signaling.

Exploiting the altered glucose metabolism in PAH has
opened the door for noninvasive measures to diagnose and
follow the disease. The use of PET-CT scans may eventually
minimize the need for direct hemodynamic data to monitor
response to therapy or stratify patients at greater risk of devel-
oping RV failure. While it seems promising, this noninvasive
modality has yet to replace the right heart catheterization as
the gold standard for the diagnosis of PAH.

Therapeutically targeting this pathologic metabolic condi-
tion with medications such as thiazolidediones, metformin, or
inhibitors of FAO is an area of active research by numerous
investigators. While pulmonary vasodilators will have a role
in treating this condition for the foreseeable future, modifying
the metabolic dysfunction of PAH in the pulmonary vascula-
ture and RV is an exciting prospect for the treatment of this
devastating illness and the goal of future pre-clinical and hu-
man studies.
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