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Abstract
Purpose of Review HIV service delivery programs are some of the largest funded public health programs in the world. 
Timely, efficient evaluation of these programs can be enhanced with methodologies designed to estimate the effects of policy. 
We propose using the synthetic control method (SCM) as an implementation science tool to evaluate these HIV programs.
Recent Findings SCM, introduced in econometrics, shows increasing utility across fields. Key benefits of this methodology 
over traditional design-based approaches for evaluation stem from directly approximating pre-intervention trends by weight-
ing of candidate non-intervention units. We demonstrate SCM to evaluate the effectiveness of a public health intervention tar-
geting HIV health facilities with high numbers of recent infections on trends in pre-exposure prophylaxis (PrEP) enrollment.
Summary This test case demonstrates SCM’s feasibility for effectiveness evaluations of site-level HIV interventions. HIV 
programs collecting longitudinal, routine service delivery data for many facilities, with only some receiving a time-specified 
intervention, are well-suited for evaluation using SCM.
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Introduction

The synthetic control method (SCM) was first described 
by Abadie and Gardeazabal in 2003 and expanded on by 
Abadie, Diamond, and Hainmueller in 2010. It is a design-
based approach to causal inference related to difference-
in-difference (DiD) analyses, employed when randomized 
controlled trials are not feasible, where researchers evaluate 
the effects of an intervention across both space and time 
[1, 2]. In traditional DiD analyses, a non-intervention com-
parison unit is chosen via matching; parallel trends in out-
come characteristics between intervention and matched non-
intervention units in this pre-intervention period are used as 
evidence of the absence of time-varying confounding. DiD 

analyses are extremely useful when matched comparison 
groups are available.

However, in program implementation and evaluation, 
facilities selected to receive an intervention are often decid-
edly different from those not receiving the intervention on 
factors related to the outcome. There are often non-random 
reasons for why we intervene where we do. In these situa-
tions, finding a comparison unit appropriate for a valid DiD 
analysis is challenging.

SCM provides a way forward by manufacturing an appro-
priate comparison group from a weighted combination of 
possible non-intervention units. This method, transparent 
and data-driven in its comparison unit selection, meets many 
of the assumptions inherent in DiD analyses and has been 
labeled “arguably the most important innovation in the pol-
icy evaluation literature in the last 15 years” [3].

We pose that SCM should be used more frequently in 
routine program monitoring and evaluation, specifically for 
large-scale HIV service delivery programs. Although SCM 
is currently most widely used in policy evaluation, the types 
of questions often being asked, and the types of data rou-
tinely available for use in conducting program evaluations, 
are directly analogous to the situations where SCM has been 
most useful. For example, HIV and related program service 
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implementation, like those funded through the United States 
President’s Emergency Plan for AIDS Relief (PEPFAR), 
are shifting from generalized support to more targeted ser-
vice delivery, and evaluations of interventions focused on 
addressing gaps in optimal HIV treatment and prevention 
service delivery are vital [4].

SCM is a natural fit for HIV service delivery program 
evaluation for several reasons. First, this shift to targeted 
service delivery creates conditions where providers and 
partners launch interventions heterogeneously within their 
care portfolios, with, for example, some facilities receiv-
ing interventions and others not. Facilities not receiving the 
intervention can contribute towards a counterfactual com-
parison group for those receiving the intervention. Second, 
routinely reported information of key HIV and related indi-
cators, like PEPFAR Monitoring, Evaluation, and Report-
ing (MER) Indicators [5], are available longitudinally across 
long time periods, allowing for sufficient pre-intervention 
data to model trends. Finally, the non-random nature of 
many service delivery evaluations can make other study 
designs for evaluation less rigorous.

In this review, we will begin with a brief overview of 
SCM as a tool useful for large-scale evaluation of public 
health interventions. Because we found no examples of using 
SCM for HIV program evaluation outside of own evalua-
tions to date, we will extend this review to its application in 
evaluation of policies and evaluations in public health and 
the social sciences more broadly. Next, we will describe the 
SCM and present an example of its use for program moni-
toring and evaluation in an HIV service delivery setting, 
focusing on assessing changes in PrEP enrollment following 
a public health response intervention targeted at facilities 
with high numbers of recent HIV infections in Eswatini. 
Finally, we will discuss the strengths and limitations of SCM 
for evaluating HIV service delivery programs.

Review of Synthetic Control Method 
Applications in Public Health Evaluations

Early applications of SCM were focused on policy evalu-
ation. For example, Abadie et al.’s 2010 paper estimated 
the causal effect of California’s Tobacco Control Program 
on cigarette sales [2]. A 2018 literature review identified 
38 studies using SCM in health research, with most focus-
ing on state or national policy interventions [6]. However, a 
few studies included in this review focused on interventions 
below the state or national level, including one investigating 
the effectiveness of a pay-for-performance policy on 30-day 
hospital mortality, two assessing school food programs, and 
one focused on food labeling [7–9]. Public health-relevant 
studies published after this review have used SCM to evalu-
ate the effects of Medicaid expansion on cardiovascular 

disease, the impact of the Convention on the Rights of the 
Child on child mortality and vaccination rates, and the effect 
of air-quality regulations in Seoul, Korea, on cardiovascular 
mortality, and more [10–12].

SCM has also been used in evaluations of targeted inter-
ventions of direct analog to those relevant in HIV imple-
mentation science. However, there are very few studies spe-
cifically focusing on HIV. One study in the 2018 literature 
review used SCM to compare life expectancy, mortality, and 
birth rates in countries heavily impacted by HIV (Mozam-
bique, South Africa, and Zimbabwe) against a synthetic con-
trol of other countries in Sub-Saharan Africa less impacted 
by HIV [13]. To our knowledge, no other HIV-related papers 
using SCM have been peer-reviewed since this review; 
however, one IZA Discussion Series paper, examining the 
impact of the introduction of highly active anti-retroviral 
therapy on economic indicators, and a masters dissertation 
examining the effect of a needle exchange program on HIV- 
and hepatitis-related healthcare visits, have expanded the use 
of SCM into the field of HIV [14, 15].

There are several studies directly applicable to the types 
of situations encountered in HIV program evaluation. A 
2024 study used SCM to evaluate the effectiveness of a 
targeted mosquito sterilization program for dengue control 
in Singapore, comparing Dengue rates in towns receiving 
interventions to a synthetic control built from 30 or non-
intervention towns [16]. A 2015 report focused on evaluat-
ing a heterogeneously implemented policy intervention (free 
primary care in Zambia), a frequent intervention target in 
program evaluations [17]. SCM has also recently been used 
to evaluate the impact of COVID-19-related policies on a 
variety of outcomes, including on COVID-19 cases, deaths, 
vaccination rates, and air pollutants [18–21]. Regarding pro-
gram evaluations, one study used SCM to investigate the 
impact of pneumococcal conjugate vaccine programs and 
another evaluated a firearm violence prevention program 
[22, 23]. The one evaluating the firearm violence prevention 
program investigated an effect at the site-level [23].

While the use of SCM is lacking in the field of HIV pro-
gram evaluation, we feel that the applications listed above 
are directly relevant to questions often raised in this field. 
Below, we argue that SCM is uniquely suited to many types 
of program and policy evaluations routinely encountered by 
researchers focusing on HIV service implementation evalu-
ation. Specifically, we propose the use of SCM to answer 
research questions involving the implementation of a speci-
fied intervention within part, but not all, of a service pro-
vider’s portfolio, such as specific health facilities or regions 
within a country introducing a new standard of care, receiv-
ing enhanced clinical training, or targeting a new population 
of interest. In these settings, traditional approaches for evalu-
ation might be difficult due to the myriad differences related 
to the outcome of interest between clinics or regions chosen 
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versus those not chosen for such interventions, as well as a 
lack of high-quality data measuring these proposed differ-
ences. However, in these settings, there likely is substantial 
longitudinal data measuring trends in the outcome of interest 
and numerous facilities or districts, similar in many respects, 
but not receiving an intervention from which a synthetic 
control can be built.

The Method and an Application

When and How to Use the Synthetic Control Method

SCM was developed as an extension of difference-in-differ-
ence approaches to policy evaluation, replacing the choice 
of a single non-intervention comparison unit with one syn-
thesized from a weighted average of many potential non-
intervention units [1, 2]. The reasoning is intuitive: in situ-
ations where a given location (such as a district or health 
facility) receives an intervention, but other areas do not, how 
best can we approximate outcome trends in the intervention 
unit had there actually been no intervention? In the case of 
HIV implementation science, we are often tasked to evalu-
ate the effects of a targeted intervention focusing on, for 
example, low-performing health facilities or under-serviced 
geographic areas. While traditional DiD methods require 
identification and matching of this intervention unit with a 
non-intervention unit, the SCM leverages information from 
a “donor pool” of similar units to statistically manufacture 
an approximation for pre-intervention trends observed in 
the intervention unit. By using a weighted average of several 
non-intervention units, like districts or facilities, rather than 
relying on matching against a single unit, synthetic control 
methodologies begin with the assumption that “a combina-
tion of unaffected units often provides a more appropriate 
comparison than any single unit alone” [24••].

To illustrate this concept, consider an example using 
SCM for routine monitoring and program evaluation 
recently conducted in Eswatini. Beginning in 2019, 
all health facilities offering HIV testing services began 

classifying HIV-positive test results based on likely tim-
ing of infection (recent or long term) using the Recent 
Infection Testing Algorithm (RITA) based on a Rapid 
Test for Recent Infections (RTRI) and baseline viral load 
as part of routine HIV testing services. As part of the 
Eswatini HIV-1 Recent Infection Surveillance (EHRIS) 
program, potential “hotspots” of recent infection, defined 
as any facility identifying ≥ 4 RITA recent cases within a 
month, are flagged for potential public health responses 
[25, 26]. This facility-level public health response, trig-
gered by identification of HIV infection “hotspots,” is our 
intervention of interest. In Eswatini, this public health 
response includes re-emphasizing fidelity to existing 
national policies supporting providing index testing ser-
vices for contacts of all newly identified people with HIV 
and linkage to PrEP services for contacts of index cases 
testing HIV-negative. This is achieved by (1) conducting 
in-person situational assessments at health facilities of 
gaps in implementation of these national policies and (2) 
increasing training and education to healthcare workers at 
these facilities on these policies. As part of routine pro-
gram evaluation activities, we wanted to assess whether 
this facility-level public health response—this renewed 
emphasis on index testing and, ultimately, linkage to PrEP 
for those testing negative—affected the outcome of PrEP 
enrollment, defined as the new persons enrolled on PrEP 
monthly. This is illustrated in Fig. 1.

We used aggregated HIV service data available for 
routine reporting; no participants were enrolled, no iden-
tifying information on individuals was collected, and no 
additional data points were collected for this analysis. We 
used what is routinely available to HIV service delivery 
programs: aggregated, longitudinal data. In this case, these 
data were aggregated at the facility level, from October 
2019 to December 2022.

The intervention time-point was August 2020, resulting 
in ten pre- and 28 post-intervention months. This is the 
point at which the public health responses were imple-
mented, after facilities with “hotspots” of recent infec-
tion were identified. Nine intervention facilities (out of 

Fig. 1  Illustration of the EHRIS program and subsequent public health response intervention triggered by HIV “hotspot” identification
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102 facilities with data available that were implementing 
EHRIS) received the intervention in August 2020.

When there are multiple treated units, intervention effects 
can be estimated for each intervention unit, or the interven-
tion units can be combined into an aggregated unit such as a 
geographic region or district [27–29]. Constructing separate 
synthetic controls for each intervention avoids interpolation 
biases but is burdensome. Construction of an aggregate 
intervention unit is acceptable if the pre-intervention out-
come has a similar average and range in the intervention 
units and donor pool [27]. Investigators may also desire to 
use SCM to evaluate an intervention that has been rolled out 
in a staggered or stepwise fashion. When an intervention is 
staggered, there are three ways to perform SCM. Investiga-
tors may fit a separate synthetic control for each intervention 
unit and average; they may pool weights to construct a syn-
thetic control that better approximates a counterfactual for 
all the intervention units; or they may use partially pooled 
weights—an intermediate between these two options [30••]. 
These extensions are described in detail by Ben-Michael 
et al., Abadie, and others [24••, 27–29, 30••].

For the purposes of this analysis, we averaged the nine 
intervention facilities to represent a single intervention unit; 
subsequent analyses can explore whether the effect of the 
intervention was greater or lesser at specific facilities, but 
here, we focused on the average effect.

We first examined our data visually. Figure 2 provides a 
summary of average PrEP enrollment trends for the inter-
vention and non-intervention facilities. We saw increases in 
PrEP enrollment averages in both groups, with this increase 
starting in January 2021. The trend in PrEP enrollment 
appears generally higher in the intervention facilities after 
August 2020. This analysis is a good starting point, and we 

have enough information here to support performing a dif-
ference-in-difference analysis if we could find an appropriate 
comparison unit. However, because the intervention facili-
ties were chosen deliberately based on identified increases in 
recent infections, which might be related to PrEP enrollment 
trends regardless of any intervention, we did not want to use 
traditional matching to perform this assessment. Further, we 
had substantial longitudinal measures of a few key indicators 
across many health facilities, as is typical of large-scale ser-
vice delivery projects, but not the granular data often needed 
for proper matching. Because of these conditions—no clear 
matching prospects, a large donor pool of facilities, and 
adequate longitudinal data on key measures—we decided 
this situation was ideal for SCM.

Creating the Synthetic Control

We began by creating our synthetic control. Originally 
described by Abadie and Gardeazabal [1], synthetic controls 
are constructed as the weighted average of “candidate” non-
intervention units that maximizes the fit between the pre-
intervention trends in the outcome of interest in the inter-
vention unit and the synthetic control using simple ordinary 
least squares regression:

W is the weight assigned to each candidate unit, X0 
reflects a vector of pre-intervention characteristics of can-
didate unit m, and X1 reflects a vector of pre-intervention 
characteristics of the intervention unit. The variable νm is 

k
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Fig. 2  Average PrEP enrollment for intervention vs. non-intervention facilities, October 2019 to December 2022
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optional but can be used to change the relative importance of 
any predictors in the vector. In its simplest form, νm is set to 
1 and the vectors X1 and X0 contain only repeated measures 
of the outcome of interest at time-points prior to intervention 
implementation. Other predictors thought to improve model 
fit can also be added. Each candidate non-intervention unit 
is assigned a weight W that is chosen to minimize the total 
value of the above equation; in traditional SCM, the can-
didate weights W are non-negative and sum to exactly 1.0. 
[27]. Therefore, to create a synthetic control is essentially a 
two-step process in which we (1) create predictor weights, 
including, minimally, pre-treatment repeated measures of 
the outcome of interest and, potentially, additional predictor 
variables of exogenous trends, and (2) create non-interven-
tion unit weights.

In its simplest formulation, the synthetic control is gener-
ated exclusively from a weighted average of pre-intervention 
trends in the outcome of interest; no additional predictors 
are required. This makes this approach extremely well-
suited to HIV implementation science, where longitudinal 
information is routinely available on key programmatic out-
comes, but additional information is not routinely available 
on potential sources of confounding. The overlying goal of 
SCM is to create a comparison group that closely mimics 
pre-intervention trends in the outcome of interest as experi-
enced by the intervention groups. Any predictor weighting 
that accomplishes this goal is considered valid. If this goal 
is accomplished without additional predictors, so much the 
easier. When the initial model fit is insufficient, or when 
the investigator wants to ensure that the intervention and 
synthetic control are similar on specific characteristics, pre-
dictors may be included in the model to the extent that these 
improve model fit. Whether to include predictors, and how 
many, is a decision made by the investigator, who is likely 
to factor in several considerations: the likelihood that other 
measured variables might influence trends, comparison of 
the overall model fit, how affected the predictors are by the 
intervention, and statistical considerations [27]. If investiga-
tors choose to use predictors, it is recommended that they 
consider various combinations of predictors and observe 
model fit. Additionally, if used, the predictors are weighted 
by importance, statistically, and sum to 1.

Consequently, to complete the first step in the process to 
construct our SCM, we considered two models: one includ-
ing only pre-intervention PrEP enrollment (the outcome) in 
the vector of predictors and one including additional predic-
tors of PrEP enrollment routinely available to HIV program 
implementers: monthly counts of (1) individuals accepting 
an index testing referral, (2) individuals tested for HIV, (3) 
individuals testing positive for HIV, (4) individuals starting 
ART, (5) the type of clinic (i.e., clinic, hospital, or public 
health unit), and (6) the outcome of PrEP enrollment. These 
predictors are correlated with each other but not perfectly. 

We decided to test both models, labeling the model with 
only PrEP enrollment as a predictor of the “primary” model 
and the model with additional predictors as the “second-
ary” model. For this analysis, we did not choose different 
combinations of the additional predictors for the simplicity 
of illustrating this practical SCM example.

SCM is available through several statistical software 
packages. We used the “synth” and “augsynth” R packages, 
for this analysis [31–33]. Additional packages are avail-
able in STATA (“synth,” “allsynth,” etc.) [34]. In brief, the 
“synth” R package creates predictor and donor pool can-
didate weights, manufactures a synthetic control, provides 
trend plots comparing the intervention unit and synthetic 
control, and produces the mean squared prediction error for 
the model [31]. For the first step in the process to create a 
synthetic control, we focused on the predictor weights for 
our primary and secondary models. As expected, the weight 
for PrEP enrollment in the primary model was 1.0. In the 
secondary model, predictor weights ranged from 0.7% for 
the predictor “individuals tested for HIV” to 53.8% for the 
predictor “individuals accepting an HIV index testing refer-
ral.” This is illustrated in Table 1.

For the second step in the process, weighting the donor 
pool candidates, the pool of potential candidates should meet 
these minimally sufficient conditions: (1) they should have 
adequate longitudinal outcome measures to establish a sta-
ble assessment of pre-intervention trends in the outcome of 
interest; (2) their outcome trends should not be impacted 
by the intervention under investigation; (3) they should be 
of the same general “type” as the intervention unit (i.e., 
facilities should be in the donor pool for investigations of 
facility-level interventions, countries for country-level inter-
ventions); and (4) units that have received unique “shocks” 
related to the outcome should be excluded [2, 27]. Longi-
tudinal pre-intervention outcome measures are important 
because SCM uses the trend in pre-intervention time-points 
to estimate the trend in the outcome in the post-intervention 
period. Abadie et al. assert that SCM should not be used 
when the SCM’s pre-intervention outcome trend does not 
closely match that of the intervention unit [27]. However, 

Table 1  Predictor weights for the SCM

Predictor Weight (pri-
mary model)

Weight 
(secondary 
model)

Accepted HIV index testing referral n/a 0.538
Tested for HIV n/a 0.007
Tested positive for HIV n/a 0.036
Started ART n/a 0.294
Clinic type n/a 0.014
Enrolled in PrEP 1 0.111
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“closely match” is not defined and may be considered rela-
tive to the investigator’s goals and the quality of the data 
used in the analysis.

Our analysis had a natural donor pool: 93 facilities that 
were implementing EHRIS (i.e., rapid HIV testing and rapid 
HIV testing for recent infections) but were not flagged as 
“hotspots” of recent infection and, therefore, did not receive 
the public health response intervention. Like the intervention 
units, these non-intervention units were health facilities with 
adequate measurement of the longitudinal outcome meas-
ures necessary to establish a stable assessment of pre-inter-
vention trends in the outcome of interest. Unlike the inter-
vention units, they should not have been impacted by the 
intervention. Additionally, none of these facilities received 
any unique “shocks” that would have impacted our specified 
outcome of PrEP enrollment.

Using the “synth” R package, we created non-interven-
tion unit weights for donor pool facilities to manufacture 
the synthetic control for both our primary and secondary 
models. For the primary model, the synthetic control was a 
weighted combination of all 93 donor units, ranging from 
0.5 to 6% each. For the secondary model, three units from 
the donor pool comprised the synthetic control, with weights 
ranging from 2.3 to 78.9%. This is illustrated in Table 2.

Using both these predictor and facilities weights, we 
created the synthetic control and statistically and visually 
assessed its performance.

Analyzing the Synthetic Control Model

The ability of the SCM to unbiasedly estimate the causal 
effect of the intervention on the intervention unit is premised 

on having a good pre-treatment model fit. Statistically, this 
is determined by comparing the synthetic control’s pre-
intervention fit with observed trends in the intervention unit 
using the mean squared prediction error (MSPE) [2]. Steps 
taken to reduce over-fitting follow conventional prediction 
model building approaches and include dividing the pre-
intervention periods into training and validation periods and 
testing different groups of predictors [27]. To evaluate the 
effect of the intervention on the outcome, as with standard 
DiD analyses, investigators plot the trends in the outcome 
in the pre-intervention and post-intervention periods for the 
intervention unit and the synthetic control and compare visu-
ally. Investigators can construct 95% confidence intervals 
and estimate p-values using a t-statistic, plot the trend in 
the difference between the intervention unit and the syn-
thetic control in the pre- and post-intervention time periods, 
and calculate the magnitude and significance of the average 
treatment effect on the treated (ATT) unit compared to the 
synthetic control.

Figure 3 presents the results of our SCM analysis using 
the “synth” R package using both the primary and secondary 
models. A visual inspection showed similar results, but with 
the secondary model (3b) having somewhat better pre-inter-
vention fit. For example, in the primary model, notice the 
spike in the synthetic control around March 2020 that is not 
observed in the intervention unit. Tables 3 and 4 compare 
the predictor means for the intervention unit to the predictor 
means for the synthetic control and the entire donor pool. 
This allowed us to see how closely the synthetic control 
approximates the intervention. In Table 3 for the primary 
model, the intervention and synthetic control means for PrEP 
enrollment are identical (3.425 monthly enrollments) while 

Fig. 3  Trends in PrEP enrollment for the intervention unit and the synthetic control, October 2019 to December 2022. a Primary model, only 
includes PrEP enrollment as a predictor. b Secondary model, additionally includes other predictors (“synth” package)

Table 3  Mean values for the intervention, synthetic control, and sam-
ple for each predictor (primary model)

Predictor Intervention 
mean

Synthetic control 
mean

Donor pool

Enrolled in PrEP 3.425 3.425 0.800

Table 2  Weighted facilities in 
the synthetic control (secondary 
model)

Facility Weight

Facility A 0.789
Facility B 0.189
Facility C 0.023
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the donor pool mean is much lower (0.8 monthly enroll-
ments). In Table 4, the intervention and synthetic control 
means for each predictor are still quite dissimilar. This result 
is very different from the intervention and synthetic control 
means outlined in the literature, which resemble the close-
ness of the synthetic control and intervention unit in Table 3 
[1, 2, 27]. This suggests that the secondary model may not 
be a good fit for our analysis, that the predictor means across 
donor facilities are too different, and that these very different 
means could be an artifact of using programmatic data. More 
investigation was warranted.

The MSPE for the primary model was 5.1, while the 
MSPE for the secondary model was 3.7, indicating that the 
secondary model had better predictive accuracy. Conse-
quently, the statistical and visual assessments of the syn-
thetic control models agreed.

Using the “augsynth” package, we deepened our analy-
sis. The “augsynth” package, more recently developed than 
the “synth” package, can be used in both traditional syn-
thetic control and augmented synthetic control analyses (see 
“Extensions of the Synthetic Control Method” section). This 
package provides graphs, tables, and gap plots estimating the 
average treatment effect among the treated and the difference 
in the outcome between synthetic control and intervention 
unit, with confidence intervals and p-values, at each time-
point. We created gap plots for the primary and secondary 
models to examine the difference in the outcome between 

the intervention unit and synthetic control (the solid line), 
with confidence intervals (the gray shading), at each time-
point (Fig. 4). In our visual inspection, in contrast to what 
we determined from the results of the “synth” package, we 
determined that the primary model appears to have a better 
pre-intervention fit for the outcome. Notice the smoother 
pre-intervention fit line in the primary model compared to 
the secondary model. The ATTs for the primary and second-
ary models were 9.53 (p = 0.066) and 10.19 (p = 0.004) more 
monthly PrEP enrollments, respectively, for the interven-
tion unit than the synthetic control in the post-intervention 
period. Because of these conflicting results, to decide what 
model was best, we used an SCM extension with augmented 
synthetic controls (see “Extensions of the Synthetic Control 
Method” section).

Extensions of the Synthetic Control Method

Augmented Synthetic Controls

Approaches to statistically improve pre-treatment model fit 
are available with the augmented synthetic control method 
(ASCM). ACSM involves the use of advanced regression 
techniques and more flexibility in donor pool weights to 
avoid overfitting [35••]. The choice to use ASCM instead 
of SCM should be based on how much bias exists between 
the outcome model’s fitted values for the intervention unit 

Table 4  Mean values for the 
intervention, synthetic control, 
and sample for each predictor 
(secondary model)

Predictor Intervention mean Synthetic control 
mean

Donor pool

Accepted HIV index testing referral 5.458 4.619 0.742
Tested for HIV 98.440 56.749 39.068
Tested positive for HIV 31.380 18.468 10.778
Started ART 25.520 13.785 6.262
Clinic type 1.000 1.000 1.172
Enrolled in PrEP 3.425 2.356 0.800

Fig. 4  Difference in PrEP enrollment between the intervention unit and synthetic control. a Primary model, only includes PrEP enrollment as a 
predictor. b Secondary model, additionally includes other predictors (“augsynth” package)
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and synthetic control [35••]. Researchers must decide how 
much bias they can tolerate based on their data source, con-
textual factors, and research question. For more information, 
see Ben-Michael et al. [35••].

For our analysis, because of the noted discrepancies in the 
results, we ran the augmented synthetic control models both 
with and without predictors (i.e., the primary and second-
ary models), and we found that the bias estimation was 0.06 
PrEP monthly enrollments for the primary model and 7.01 
PrEP enrollments for the secondary model. While the bias 
estimation for the primary model was a very small percent-
age of its ATT, the bias estimation for the secondary model 
was more than two-thirds of its ATT. Therefore, in con-
sideration with our visual examination of pre-intervention 
trends, MSPE comparison, and Tables 3 and 4 comparisons, 
we determined that the primary model was the right model 
for interpretation. We also determined that, because of the 
small bias estimation, conducting ASCM was not necessary.

For demonstration, Fig. 5 shows the augmented differ-
ence, with ASCM, in the outcome between the intervention 
unit and the synthetic control, with confidence intervals, at 
each time-point. The augmented primary model (Fig. 5a) 
appears to be very similar to the regular primary model, 
further supporting our use of the regular primary model. 
The ATTs for the augmented primary and secondary models 
were 9.48 (p = 0.149) and 5.58 (p = 0.998) more monthly 
PrEP enrollments for the intervention unit compared to the 
synthetic control, respectively.

Sensitivity Analyses—Robustness Checks

Sensitivity analyses examining the robustness of the study 
findings to different exposure or outcome operationalizations 
are recommended when performing SCM. Common sensi-
tivity analyses include the following: “different outcome” 
placebo tests (replacing the outcome of interest with one 
not expected to be impacted by the intervention), “in time” 
placebo tests (replacing the actual timing of the intervention 

with a random time not related to it), and “in space” placebo 
tests (creating a synthetic control for every non-intervention 
unit) are commonly applied to assess the robustness of study 
assumptions [27, 36]. In our example, we performed a “dif-
ferent outcome” placebo test using ART initiation as the 
outcome instead of PrEP enrollment (Fig. 6a). As hypoth-
esized, there was no difference between the performance 
of the intervention and synthetic control. For an “in time” 
placebo test, we replaced the real intervention time-point 
with a randomly selected time-point (March 2021) (Fig. 6b). 
As hypothesized, there was no difference between the per-
formance of the intervention and synthetic control.

However, the results of our “in space” placebo test pro-
vided some evidence warranting caution in interpreting 
our findings. Using a gap plot illustrating the differences 
between every candidate-turned-intervention unit and its 
synthetic control, investigators can examine an array of 
effects and evaluate them all against the effect difference 
between the actual intervention unit and its synthetic control. 
We expect the magnitude of the effect should be at the outer 
range or, ideally, beyond the range of placebo effects. If it 
instead falls within the range of placebo effects, this under-
mines a claim for causation [27]. We see that the magnitude 
of the effect of the intervention unit is at the higher end of 
the plot but within the range of placebo effects in the post-
intervention period (Fig. 6c). This suggests that chance alone 
cannot be ruled out as an explanation for our findings.

Discussion of Our Synthetic Control Method Results

The SCM analysis found that post-intervention trends in 
PrEP enrollment increased compared to the hypothetical 
situation of no intervention in the synthetic control. This 
difference was lagged (not apparent until about 6-month 
post-intervention) and largely sustained over time. Across 
all facilities, there was a decrease in PrEP enrollments in 
June 2021, corresponding to the beginning of a period of 
anti-monarchy protests, political unrest, and associated 

Fig. 5  Difference between the intervention unit and synthetic control using augmented synthetic control method. a Primary model, only includes 
PrEP enrollment as a predictor. b Secondary model, additionally includes other predictors (“augsynth” package)
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limitations in mobility in Eswatini [37–39]. This highlights 
the importance of contextual knowledge across evaluation 
and interpretation.

A potential limitation of this analysis is the limited avail-
ability of predictors for model building. In the future, we 
could consider using facility characteristics, like catchment 
area and staff size, or other predictors of PrEP enrollment. 
Moreover, it is possible that our chosen predictors are also 
affected by the intervention, if health facility staff move 
from facility to facility, making it an imperfect proxy for 
control of time-invariant confounding. Furthermore, rather 
than classifying our facilities as clinics, hospitals, or public 
health units, we could have used additional information to 
more systematically classify the facilities to ensure similar-
ity between our intervention and donor pool units.

We conducted both SCM and ASCM, with and without 
predictors, to illustrate their use, their differences, and the 
implications of their results for this routine evaluation exam-
ple in Eswatini. We also conducted robustness checks via 
placebo testing, with mixed results. Two placebo tests sup-
ported our conclusion, while the third did not, highlighting 
the need for multiple methods of placebo testing.

Based on the ATT analysis of the primary and secondary 
models for regular SCM, the difference in monthly PrEP 
enrollment between the intervention and synthetic control 
in the post-intervention period was 9.53 and 10.19, respec-
tively. This is a less-than-one-PrEP enrollment difference, 
but only the secondary model had statistical significance.

Observed increases in PrEP enrollment resulting from a 
low-burden public health intervention would be meaningful 

if causal. Enrolling 9.53 more people on PrEP each month, 
per the 9 intervention facilities, translates to an additional 
1029 persons on PrEP per year. If this intervention were 
rolled out to all facilities, in the event of “hotspots,” this 
could mean an additional 10,635 persons on PrEP per year.

Assumptions – Difference‑in‑Difference 
and the Synthetic Control Method

In addition to the identifiability assumptions, the main 
assumptions necessary in difference-in-difference analysis 
are the parallel trends assumptions, or the assumption that 
the trends in the outcome in the pre-intervention period 
between the intervention and non-intervention units are par-
allel, and the assumption that important unmeasured vari-
ables are either time-invariant attributes of the study units 
or time-varying factors that are homogenous across study 
units [40]. SCM addresses the first assumption completely 
because it weights candidate non-intervention units to cre-
ate parallel trends in the pre-intervention phase. The second 
assumption, however, is nearly unverifiable, but points to the 
importance of understanding the context of your interven-
tion and data. This supports our argument that SCM is well-
suited for evaluations of HIV and related program service 
implementation, as implementers are keenly aware of their 
implementation context.

Shi et al. describe assumptions required for the SCM esti-
mator to validly measure the average causal effect of the 
intervention on the intervention units [41]. Briefly, under 

Fig. 6  Robustness checks (“synth” package). a and b Plots of trends in the outcome. c A gap plot
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the identifiability assumptions of consistency (assuming that 
observed outcomes are a realization of potential outcomes 
under that treatment scenario), an interactive fixed effects 
model (assuming that the intervention is the only source of 
time-varying difference in causes of the outcome of interest), 
no interference between intervention and non-intervention 
units, and that effects of unmeasured confounding on the 
intervention units can be matched by a weighted average of 
unmeasured confounding on a set of the non-intervention 
units, which requires the assumption that a set of weights 
exists that can satisfy this assumption, a causal inference can 
made [41]. More informally, the identifiability assumptions 
unique to the SCM involve the assumption of no time-vary-
ing confounding between intervention and non-intervention 
units. Hollingsworth and Wing add an additional require-
ment of no period perfect multicollinearity of common fac-
tors, implying that imperfect multicollinearity is acceptable 
[42].

In our example, we assumed consistency. Additionally, 
because the intervention was targeted at specific facilities, 
so that only these facilities received the assessment, train-
ing, and education that enforced fidelity to national policies 
and guidelines, we were reasonably confident in no interfer-
ence between the intervention and non-intervention units. 
We do acknowledge, however, that some facilities have high 
staff turnover resulting in potential interference that would 
underestimate the effect we observed. We also assumed that 
the intervention and synthetic control were exchangeable 
because we manufactured that exchangeability based on pre-
intervention PrEP enrollment trends, which was successful 
for the primary model (Table 3).

Strengths and Limitations

SCM is a transparent, rigorous, data-driven, and efficient 
approach to approximating a counterfactual for non-exper-
imental DiD analyses. Unlike traditional DiD analysis, it 
leverages information across an entire pool of candidate 
non-intervention units to synthetically construct equiva-
lent pre-intervention trends (that are parallel and of similar 
magnitude). Additionally, SCM does not require an exces-
sive amount of data for many different variables, but does 
require data measured over time, making it extremely useful 
for evaluations involving routinely collected data. Its results 
are also straightforward and easily interpreted.

Limitations include the requirement for sufficient pre-
treatment information and a reasonably sized donor pool 
from which to construct the synthetic control. Units in the 
donor pool should have experienced the same “shocks,” 
or time-varying factors, as the intervention units and be 
of the same general type (i.e., facilities). As in traditional 
DiD analysis, SCM is still potentially subject to bias due to 

contamination or spillover from the intervention units to the 
non-intervention units and from anticipation bias, or when 
intervention units react ahead of actual implementation in 
anticipation [6]. Moreover, considerable contextual knowl-
edge is necessary for both choosing adequate units for the 
donor pool and understanding the true nature of the effect 
observed.

Conclusions

SCM is a rigorous, data-driven approach to achieving a 
counterfactual comparison unit for DiD analyses. It is not 
limited by the assumptions inherent in traditional DiD, and 
it controls for observed and unobserved time-varying con-
founders. Its use in public health has increased steadily since 
its introduction, but SCM is rarely used to examine the effec-
tiveness of programs or site-level interventions. We believe 
SCM has a place in routine HIV service delivery program 
evaluation. SCM is an efficient and rigorous analytic tool 
with which to carry out effectiveness evaluations.

We illustrated the use of SCM to evaluate the effect of 
EHRIS-associated interventions on monthly PrEP enroll-
ment. We found that PrEP enrollment increased more in 
the aggregated intervention unit, and this remained true 
throughout the post-intervention period, but this increase 
was not fully robust to alternate explanations. It is impor-
tant to understand the limitations of SCM, as well as its 
various novel elements, to appropriately use this method 
for a particular research question, context, and dataset. This 
example also demonstrates how our understanding of pre-
intervention fit, suitable donor units, and predictor choice 
influences the results of our analysis. Additionally, we must 
strive to increase the quality of programmatic data to use 
SCM to evaluate HIV service delivery programs.

We believe SCM’s potential as an evaluation tool in 
implementation science, and its potential as the method 
grows and improves will be substantial. This is particularly 
true if we can routinize SCM for up-to-date and automatic 
DiD analysis generation.
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