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Abstract

Purpose of Review Retention in care is both dynamic and longitudinal in nature, but current approaches to retention often reduce
these complex histories into cross-sectional metrics that obscure the nuanced experiences of patients receiving HIV care. In this
review, we discuss contemporary approaches to assessing retention in care that captures its dynamic nature and the methodo-
logical and data considerations to do so.

Recent Findings Enhancing retention measurements either through patient tracing or “big data” approaches (including probabi-
listic matching) to link databases from different sources can be used to assess longitudinal retention from the perspective of the
patient when they transition in and out of care and access care at different facilities. Novel longitudinal analytic approaches such
as multi-state and group-based trajectory analyses are designed specifically for assessing metrics that can change over time such
as retention in care. Multi-state analyses capture the transitions individuals make in between different retention states over time
and provide a comprehensive depiction of longitudinal population-level outcomes. Group-based trajectory analyses can identify
patient subgroups that follow distinctive retention trajectories over time and highlight the heterogeneity of retention patterns
across the population.

Summary Emerging approaches to longitudinally measure retention in care provide nuanced assessments that reveal unique
insights into different care gaps at different time points over an individuals’ treatment. These methods help meet the needs of the
current scientific agenda for retention and reveal important opportunities for developing more tailored interventions that target the
varied care challenges patients may face over the course of lifelong treatment.
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Introduction

The current global progress in expanding HIV testing and rapid
initiation of antiretroviral therapy to all persons living with HIV
implies that the scientific agenda to characterize and enhance
retention in care is more important than ever. To make progress,
5 Aaloke Mody however, current epidemiological analyses of retention must

aaloke.mody @wustl.edu make use of available analytical approaches that move beyond
depicting the cascade as a linear sequence of events—diagno-
sis, linkage to care, ART initiation, retention, and viral
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2 Department of Epidemiology and Biostatistics, University of rarely linear: in the real world, patients frequently transition in
California, San Francisco, San Francisco, CA, USA and out of care and between different levels of engagement over

3 Centre for Infectious Diseases Research in Zambia, Lusaka, Zambia time [1-5, 6¢°, 7-9, 10+, 11¢°, 12]. Retention and engagement
Department of Public Health Environments and Society, Faculty of are better conceived of as dynamic processes that may take on

Public Health and Policy, London School of Hygiene and Tropical different longitudinal patterns (Fig. 1) and, as such, require the
Medicine, London, UK appropriate analytical approaches to capture these nuanced

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11904-021-00561-2&domain=pdf
http://orcid.org/0000-0003-3787-365X
mailto:aaloke.mody@wustl.edu

300

Curr HIV/AIDS Rep (2021) 18:299-308

Fig. 1 Different patterns of

Different Patterns of Retention Over Time

retention over time. Retention in

Patient1 @ @

care is an assessment of an
individuals’ inherently
longitudinal and dynamic
experience of accessing HIV care.
This figure depicts several
potential retention trajectories
characterized by patterns across
several dimensions over time:

Patient4 @—— Q\(’é. @

Patient 2 .*@\66 ........ H ...............................................
Patient 3 .———' ............

. Made Visit

\@" Missed Visit

' LTFU

making visits, missing visits,
becoming lost to follow-up,
transferring clinics, and returning
back into care

Patient 5 .——' ............

A Transfer

Patient 6 ‘ ‘

features. Still, the current analytic approaches often reduce
these highly dimensional patient histories into cross-sectional
estimates from a single time point and also obscure heteroge-
neity in the different patterns and types of retention behaviors
across patients. By overlooking both the dynamic and longitu-
dinal nature of retention in care, current approaches may miss
opportunities to deepen our assessments of the actual rich and
nuanced longitudinal experience of patients receiving HIV care
[1-5, 6°2, 7-9, 10ee, 11°e, 12].

In this review, we discuss methods that are increasingly
used, but still relatively uncommon in the HIV literature, to
account for longitudinal and dynamic care experiences over
time [3, 6°°, 13¢¢, 14e¢]. We first discuss advances in data
collection and measurements to capture the longitudinal care
experience from the patient perspective. We then emphasize
two methods—multi-state and group-based trajectory
analyses—that are designed specifically for assessing dynam-
ic metrics that change over time and examine the data needs
and methodological considerations for using them. Multi-state
models characterize the patient transitions either into or out of
“states” over time and are able to examine combined dynam-
ics of multiple cascade steps (such as retention and viral sup-
pression) over time at the population level. Trajectory analy-
ses decompose a population over time into distinct groups
defined by the heterogeneity in their longitudinal patient ex-
periences. By enabling greater visibility into variation at any
one time point as well as variation over time, these methods
uncover more complex patient behaviors. These approaches
can thus help public health respond in more nuanced ways to
the varied needs of different patient groups and advance a
scientific agenda around retention in care that is more cogni-
zant of the distinctive patient experiences even in a public
health setting.

Traditional Cross-sectional Metrics of Retention in
Care

Retention in care can be conceptualized as individuals’ adher-
ence to appropriate care, treatment, and monitoring over a
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period of time [15]. Several commonly used retention metrics
have been proposed and are used to varying extents across the
literature and in practice. These include missed visits (i.e.,
scheduled visits which patients did not keep), visit adherence
(i.e., the proportion of scheduled visits that were kept), visit
constancy (i.e., the proportion of time intervals with at least
one completed clinic visit), and gaps in care (i.e., not having a
visit for a defined period of time) [15]. These metrics—
although originally conceptualized using data based on atten-
dance at clinic visits—can also be extended to include data
from pharmacy refills or laboratory monitoring [12, 16-18,
199, 20, 21+¢]. Each metric has its own advantages and lim-
itations when considering the availability of appropriate data,
case of analysis, association with longer-term clinical out-
comes, and the prevailing question at hand [22-28]. Still, all
reduce the dynamic and longitudinal nature of retention into
measurements that can be assessed cross-sectionally at a sin-
gle time point, which can lead to missed opportunities to un-
derstand nuanced patient behavior and potentially even mis-
leading conclusions under certain circumstances [7, 10e, 29].

Enhancing Data Sources and Measurements for
Retention in Care from the Patient Perspective

Emerging strategies for measuring retention have emphasized
retention metrics that are both longitudinal and also measured
from the perspective of the patient. This first requires the ap-
propriate data to do so. Currently, retention in care is often
assessed by whether a patient continues to make visits, receive
medication, or obtain labs at their original clinic or health
system [16, 30]. The underlying assumption is then that pa-
tients are not receiving care if they are not going to their
original clinic, thus measuring retention only from the per-
spective of a single clinic or health system and not the indi-
vidual patients. In reality, however, a patient may transfer
between clinics, get medications at different pharmacies, or
obtain labs from outside the network. Contemporary ap-
proaches to assessing retention have emphasized strategies
for developing longitudinal datasets that measure retention
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from the patient experience even as they access care in differ-
ent places.

Using patient tracing to ascertain outcomes among those
who are considered lost to follow-up (LTFU) has emerged as a
critical tool for more comprehensive assessments of retention
in care. Patients are frequently mobile and need to transition
care between facilities. Several studies that have used patient
tracing to ascertain outcomes among those LTFU have dem-
onstrated that a substantial proportion of those considered
LTFU from their original clinic report that they eventually
end up transferring to a new facility [5, 31-38]. Still, it is
important to note that, though patients eventually transfer to
anew facility, cross-sectional metrics of transfer can still belie
the full picture. In one study examining outcomes among
those who reported transferring, a majority of patients that
transferred only did so after a prolonged gap in care [11e].
Furthermore, once reaching their new clinic, they experienced
delays in treatment reinitiation. Thus, capturing this full jour-
ney and incorporating the periods of time when patients have
gaps in care are keys to understanding the retention experience
from the patient perspective.

Beyond patient tracing, big data approaches have led to
promising solutions for creating more patient-centered
datasets that track retention from the patient perspective even
as they access care at different venues. Retention in care often
utilizes measurements such as clinic visits, pharmacy refills,
and laboratory values, each of which provides unique insights
into different aspects of care from accessing treatment to get-
ting appropriate monitoring but is often stored in separate
databases [16, 30]. Developing full longitudinal patient histo-
ry that tracks patients as they receive care in different settings
(and also times when they are not receiving care) requires
linking together all records from different clinics, pharmacies,
and laboratories, ideally, using a universal patient identifier
such as a social security number or even biometric data
[39—41]. This approach has been employed on smaller scales
to identify out-of-care patients in order to target attempts to
reengage them back into care [42—45]. Researchers in South
Carolina have also sought to link together multiple regional
databases—including inpatient and outpatient insurance
claims data sources, the state electronic HIV/AIDS reporting
system, and data from the state corrections database—extend
this approach further to generate a comprehensive and repre-
sentative longitudinal database [46]. Similarly, researchers
have used South Africa’s national laboratory monitoring sys-
tem to create longitudinal patient records in order to examine
retention in a manner that incorporated transfers [19ee, 20,
21ee]. A key innovation in the approach done in South
Africa was the use of probabilistic matching to link patient
records from programmatic data under circumstances where
there is no universal patient identifier and names, dates of
birth, and sex may contain nicknames, typographical errors,
and/or transpositions/inversions that preclude exact matching

[19ee, 47, 48]. The first iteration of the database only incorpo-
rates laboratory values—using it as a proxy for being in
care—but future work will also seek to link it to clinic- and
pharmacy-based patient records [49], thereby creating a com-
prehensive longitudinal patient record.

Using Multi-state Analytic Methods to Capture
Transitions in between Retention States

Multi-state analytic methods extend widely used longitudinal
survival analysis because they readily account for the fact that
patients may experience multiple transitions between different
care states over time [50-53]. Kaplan-Meier methods—the
most commonly used method for survival analyses—only
asses time to a single event. Competing risk approaches ex-
tend this approach by assessing the time to multiple potential
events, but only considers the first event to occur [54]. The
reality, however, is that patients’ treatment journey and reten-
tion in care are often a series of events [1-5, 6, 7-9, 10e,
11e¢]. Although someone may become lost to follow-up, they
may then reengage back into care after some time, either at
their original clinic or at a new facility. Multi-state analyses
are designed precisely to provide estimates under circum-
stances where patients flow through multiple states over time
(Fig. 2) but observation time is unequal and patient censoring
is also required [50-53]. Thus, these methods better reflect the
realities of patient retention and synthesize the cumulative
experience of patients’ treatment histories at the population
level.

There are several concrete ways in which estimates derived
from multi-state analyses can extend insights gleaned from
standard longitudinal methods. First, they can provide a com-
prehensive depiction of the different states of patients will be
in over time and estimate the proportion of the population that
will be in a given state at any particular time (Fig. 3). For
example, there may be higher proportions of LTFU in early
time periods, but the proportion who have reengaged in care
(and then considered in care) may then increase over time as
more people come back to care [6+¢]. This is in contrast to
typical survival analyses that only examine how many people
have transitioned to the next event (e.g., ever experience loss
to follow-up). It also improves on cross-sectional approaches
because it is longitudinal and appropriately accommodates
circumstances where the amount of observation time for all
individuals is not equal and where censoring is required.
[llustrative examples from the literature have sought to char-
acterize the longitudinal patient experience after linkage to
care—including retention in care in the periods prior to and
after ART initiation—in cohorts from public health HIV
clinics in Zambia [6°, 55], South Africa [14e], Indonesia
[56], and the USA [57¢¢]. In addition to providing a complete
picture of the whole cohort over time, multi-state analyses
allow one to examine outcomes among those patients entering

@ Springer



302

Curr HIV/AIDS Rep (2021) 18:299-308

a) Standard Survival Analysis Approach

b) Competing Risk Approach

C) Multi-State Analysis Approach

—> Transfer > Transfer  |#——————
A
- Loss to
ART Initiation > follow-up
I - -~ Rengaged in
ART Initiation Out of Care ART Initiation »| Out of Care Care
A
— Died — Died j-——————

Fig. 2 Comparison of transition frameworks for retention in care using
standard survival analyses, competing risk approaches, and multi-state
approaches. In standard survival analyses, one is assessing the time to
single event. In competing risk approaches, one can assess time to
multiple different events, but only a single transition can be evaluated
for each individual. In contrast, using multi-state analytic approaches,
individuals may transition between various different states over time

a specific state, to characterize specific types of transitions and
how transition rates change over time, and to identify predic-
tors of different types of transitions. For example, one can
examine both the rates and predictors of first becoming
LTFU, and then also estimate these same metrics for patients
reengaging back into care. Examples from the USA [58, 59],
Canada [60, 61], and Kenya [62] have used multi-state anal-
yses to assess rates of transitions between varying levels of
engagement in care and their predictors, such as stress, adher-
ence, or time out of care. Analyses by Lee et al. [58, 62], for
example, highlight that individuals often return to care after
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without any limitations as to the types or numbers of transitions an
individual can make. Of note, in all examples, individuals can also be
censored (not depicted), but this is done under the assumption that
censoring is uninformative (i.e., those who are being censored and no
longer under observation have an equal probability of having events as
those that remain in the analysis), which may not be valid under many
circumstances

short-term disengagement, but those disengaged for longer
periods often remain disengaged, indicating that distinct strat-
egies may be needed depending on how long one has been out
of care. Ultimately, multi-state analyses can thoroughly char-
acterize each individual transition but then also synthesizes
them all into a comprehensive depiction of longitudinal pa-
tient outcomes. These results can reveal nuanced insights for
identifying specific timepoints and transitions that might pro-
vide unique opportunities for intervention.

This suite of methods is grounded in the state-transition
framework which is used to describe the relationships
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between a set of mutually exclusive and exhaustive states
that fully capture the potential experiences of a patient (Fig.
2) [50-53]. These states may be either absorbing (i.e., once
a person enters that state, it does not change) or non-
absorbing (i.e., a person can transition out of that state at
a later time). For example, when a patient is currently in
care (i.e., non-absorbing state), they may become lost to
follow-up, transfer to a new facility, or die. Similarly, once
they are lost to follow-up (i.e., non-absorbing state), they
may reengage back into care, transfer to a new facility, or
die. In contrast, death is an absorbing state as patients can-
not transition to a new state once they have died. When
defining the states in the state-transition framework, incor-
porating individuals’ past experiences (e.g., “reengaged in
care after being lost” as opposed to “in care”) can help to
better capture these rich individual experiences. The flexi-
bility in defining the appropriate state-transition framework
is a particular advantage of multi-state methods, but a key
consideration is having longitudinal patient data where the
timing of each specific transition in the state-transition
framework can be identified. Based on this framework,
one then estimates all the possible transitions patients make
between these different states in a multi-state analysis.
Estimation methods for multi-state analyses may be based
on either parametric (i.e., transition rates assumed to follow
a specific functional form that can be parameterized) or
non-parametric (e.g., no functional form for transition rates
assumed [e.g., Aalen-Johansen methods]) approaches
[50-53]. Additionally, in synthesizing estimates from each
transition into a complete picture, it is important to note that
the Markov assumption (i.e., once a patient enters a partic-
ular state, it is only their current state and not their prior
history that influences their outcomes) is often required, but
can be overcome by incorporating past history into the
state-transition framework or using robust variances
[50-53, 63]. Research to refine estimation methods and
the underlying assumptions is ongoing.

Identifying Distinct Trajectories of Retention using
Group-Based Trajectory Analysis

Group-based trajectory analysis offers another novel method
for characterizing retention that helps to highlight two impor-
tant features: (1) how retention changes over time and (2) how
different patient subgroups may have distinctive patterns of
change over time. This method—which is a form of latent
class analysis—can be used to identify subgroups of patients
that have unique trajectories of retention trajectories (Fig. 1).
The main underlying assumption is that the overall population
is made up of distinct, but unobserved (i.e., latent), subpopu-
lations with different behavioral patterns and that these
methods can empirically uncover these subgroups using the
observed data [64, 65]. The benefits of this method are that it

clearly delineates unique trajectories patients may follow as
they change over time, unlike other methods—including
multi-state analyses—that present population-level averages
of outcomes. Furthermore, it demonstrates the heterogeneity
in these trajectories across distinctive patient subgroups.
[lustrative examples from the literature have used group-
based trajectory modelling to examine trajectories of retention
in care [13ee, 66°¢, 67+, 68], adherence (including PrEP) [69,
70], viral loads [71-74], and CD4 counts [75], but this method
can be used to identify trajectories of any relevant metric that
may fluctuate over time [76-79].

Understanding this type of heterogeneity advances our un-
derstanding of retention in several ways. First, it highlights
different subgroups that are expected to represent generaliz-
able archetypal patterns of behaviors with shared underlying
determinants (Fig. 4). For example, one study from Zambia
identified that approximately 50% of patients remain engaged
in care consistently, 20% become LTFU and remain out of
care, while another 30% have more intermittent engagement
and move in and out of care over time [66°¢]. Similar patterns
and insights have also been gleaned from studies in different
settings and also using different metrics of retention [13ee,
660, 67+, 68-75]. As the underpinning of group-based tra-
jectory analysis is that these different groups have distinct
behavioral determinants driving their trajectories [64, 65], this
also suggests that these groups may likely require different
things from the health system [80-83]. Patients doing consis-
tently well can have their care de-escalated, which is currently
the rationale behind the so-called differentiated service deliv-
ery [84, 85]. Those who become LTFU and remain out of care
likely need the most intensive intervention, but their trajecto-
ries also indicate that opportunities to intervene at the clinic
may be limited (e.g., only during the first few visits when it
will not yet be clear which trajectory they will follow) [66ee,
83]. This may indicate the need for well-conceptualized pro-
grams that can successfully reach patients in the community.
Second, the trajectories themselves also can identify unique
opportunities for intervention that has yet to be fully exploited.
For example, patients coming in and out of care can be inter-
vened on at the time of reengagement [83, 86—88]. Third,
characterizing these trajectories provides unique opportunities
to risk-stratify patients based on their observed behaviors. In
the study from Zambia, different retention trajectories were
highly associated with patient mortality and much more so
than typical sociodemographic predictors such as age and
sex. This is important to note because risk stratifying based
on observed patient behavior—rather than simply using
sociodemographic characteristics—may be a much more ef-
fective and efficient way of targeting resource-intensive inter-
ventions. Lastly, identifying unique trajectories also presents
opportunities for novel study designs. For example, one
mixed-methods study on PrEP adherence first used group-
based trajectory analysis to categorize patients into trajectories
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and then used qualitative methods to better understand the
determinants of these patient journeys across trajectories
[70]. Thus, characterizing different trajectories reveals several
untapped opportunities for improving the outcomes along the
HIV care continuum by better targeting and tailoring interven-
tions toward patients’ distinctive needs.

In group-based trajectory analysis, one first uses the ob-
served data to empirically identify the different retention pat-
terns over time (i.e., trajectories), and then categorizes each
individual into the trajectory group to which they are most
likely to belong (based on their observed data) [64, 65].
Statistically, group-based trajectory models use maximum
likelihood estimation to empirically estimate both the trajec-
tory shape of each group and also the proportion of individuals
in each group that creates the best fit for the observed data [64,
65]. Group-based trajectory models not only can be used to
model a single metric over time but also can be extended to
identify groups of individuals that follow similar trajectories
with respect to more than one metric (i.e., joint trajectories of
multi-trajectories) [64, 65, 89]. Since characteristics of the
trajectory groups are not known a priori and are empirically
derived from the observed data, the key steps in the modelling
process involve choosing a final model by systematically
assessing various model specifications and comparing their
metrics of how well they fit the data. Specifically, the number
of trajectory groups as well as the shape of trajectories—
which are modelled using a flexible polynomial that is either
linear, quadratic, or cubic—are not known a priori and must
be systematically assessed to identify which specifications
lead to the optimal fit. Typically, one first varies the number
of groups to identify the optimal number of trajectory groups
and then varies the order of the trajectory polynomials. In
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choosing the final model, the goal is to identify a model that
is optimized for both fit and parsimony, which helps to pre-
vent overfitting while still choosing a model that captures the
complexity in the data. This is typically done using metrics
such as Bayesian information criterion (BIC), Akaike infor-
mation criteria (AIC), and bootstrapped Lo-Mendell-Rubin or
Vuong-Lo-Mendell-Rubin likelihood ratio tests, but, critical-
ly, should also take into account the interpretability of the
classes based on contextual knowledge [64, 65, 89, 90].
After identifying the final model, the next step is to esti-
mate the probabilities of an individual belonging to a specific
trajectory group given their observed engagement patterns
(i.e., their posterior probabilities) based on an application of
Bayes’ Theorem [64, 65, 89]. Once the posterior probabilities
are estimated, there are several ways to assign trajectory group
membership for each individual so that analyses examining
predictors of trajectory group membership or using trajectory
group membership as the exposure can be performed. These
include assigning individuals to the group to which they most
likely belong based on posterior probabilities (i.e., the maxi-
mal probability rule) or using multiple imputation based on
posterior probabilities (i.e., multiple pseudo-class draws);
methodological research into the most appropriate methods
for accounting for uncertainty in trajectory group assignments
is going [91, 92]. As a final step, one then should examine the
adequacy, fit, and consistency of the trajectory model and
group assignments using well-established metrics. These in-
clude (1) comparing the proportion assigned to each latent
class using maximal probability rule versus the estimated dis-
tribution from the initial model, (2) estimating the average
posterior probability for individuals assigned to each class
using the maximal probability rule, and (3) calculating the
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entropy statistic, an indicator of separation between latent
classes [64, 65, 90].

There are several key considerations when conducting
group-based trajectory modelling. First, outcomes must be
relatively complete and specified at routine intervals.
When missing data is present, it utilizes the maximum
likelihood function to fill in the missing data, based on a
missing at random (MAR) assumption. The MAR assump-
tion, however, may not be valid in certain situations such
as when there is a significant amount of censoring in the
data [64, 65, 89, 90]. Second, it is important to note that
trajectory groups and trajectory group membership are
empirical—based on the best fit to the observed data—
and not actually an innate characteristic. Validating find-
ings in an external dataset (or at least using cross-
validation with the existing data) can help support that
identified trajectories are reproducible and generalizable
beyond the observed data.

Conclusion

Retention in care is a dynamic process and individuals
frequently transition between different retention states
over the course of their treatment history. Emerging ap-
proaches have allowed for more nuanced characterizations
of the experiences of patients receiving HIV care over
time by (1) optimizing data sources and measurements
to capture longitudinal retention experience as individuals
transfer in and out of care and access care through differ-
ent venues and (2) using novel methodological ap-
proaches developed to better capture these longitudinal
histories. Leveraging these more contemporary ap-
proaches to help meet the current needs for the scientific
agenda for retention in care by (1) delineating more spe-
cific care gaps at different time points over an individuals’
treatment and (2) revealing important heterogeneity in the
different patterns of retention individuals’ experiences.
Ultimately, improving our understanding of retention in
care in this manner can help to guide future research
agendas and HIV treatment programs in developing more
tailored interventions that more effectively target the var-
ied care challenges patients may face over the course of
lifelong treatment—a key step in implementing more
patient-centered HIV care.
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