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Abstract
Purpose of Review This manuscript reviews the use of electronic medical record (EMR) data for HIV care and research along the
HIV care continuum with a specific focus on machine learning methods and clinical informatics interventions.
Recent Findings EMR-based clinical decision support tools and electronic alerts have been effectively utilized to improve HIV care
continuum outcomes. Accurate EMR-basedmachine learningmodels have been developed to predict HIV diagnosis, retention in care,
and viral suppression. Natural language processing (NLP) of clinical notes and data sharing between healthcare systems and public
health agencies can enhance models for identifying people living with HIV who are undiagnosed or in need of relinkage to care.
Challenges related to using these technologies include inconsistent EMR documentation, alert fatigue, and the potential for bias.
Summary Clinical informatics and machine learning models are promising tools for improving HIV care continuum outcomes.
Future research should focus on methods for combining EMR data with additional data sources (e.g., social media, geospatial
data) and studying how to effectively implement predictive models for HIV care into clinical practice.
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Introduction

Electronic medical record (EMR) adoption has expanded rap-
idly in the USA in the past decade. As of 2017, 86% of office-
based physicians and 96% of US hospitals had adopted ad-
vanced EMR systems [1]. Because EMRs are now utilized by
the vast majority of HIV medical providers, electronic data
captured in EMRs can greatly enhance understanding of
HIV epidemiology. Recent advances in artificial intelligence
and machine learning methods allow for detection of complex
relationships within EMR data. Beyond elucidating patterns in
HIV care, EMRs can also be utilized to enact interventions for
improving patient health. In providing care for patients, med-
ical providers spend a significant amount of time interacting
with the EMR. Clinical informatics tools embedded within the

EMR can give relevant information to providers at the point of
care. For example, clinical decision support tools can assist
providers with identifying patients at risk for HIV or people
living with HIV who are in need of relinkage to care. Machine
learning algorithms utilizing EMR data can accurately predict
potential future events, such as risk for virologic failure, and
this information can be shown to providers to allow them to
intervene to improve outcomes for patients in real time.

In this review, we discuss the use of EMR data for HIV-
related care and research along the HIV care continuum. We
specifically focus on the use of machine learning methods
applied to EMR data as well as clinical informatics interven-
tions to improve care continuum outcomes. We also discuss
challenges in using EMR data and machine learning for HIV
research as well as promising future directions for harnessing
these technologies to enhance knowledge and improve quality
of care for people living with HIV (PLWH).

HIV Diagnosis

To identify PLWH who are as of yet undiagnosed with HIV,
EMR data have been utilized for targeted HIV testing pro-
grams. Ahlstrom et al. used machine learning algorithms to
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create models predicting HIV status within Danish EMR reg-
istries [2]. They found that models utilizing past medical his-
tory data within the EMR had higher accuracy for identifying
undiagnosed PLWH than models only utilizing demographics
and history of sexually transmitted infections. In addition to
data documented within structured EMR fields (e.g., “past
medical history,” “problem list,” medications, laboratory
values), natural language processing (NLP) of unstructured
text of clinical notes in the EMR may be able to detect nu-
anced risk factors for HIV acquisition. Indeed, Feller et al.
found that an algorithm utilizing both structured fields and
NLP of unstructured clinical notes to predict risk for HIV
acquisition was more accurate than an algorithm using struc-
tured EMR data alone [3]. Machine learning models for iden-
tifying undiagnosed PLWH can be calibrated to different
thresholds of sensitivity and specificity depending on a
healthcare system’s resources for HIV testing.

Beyond targeted HIV screening, EMRs have also been
used to facilitate universal HIV screening. To improve rates
of HIV diagnosis among PLWH, the Centers for Disease
Control and Prevention and United States Preventive Task
Force recommend that all patients be screened for HIV [4,
5]. Despite these recommendations, HIV screening rates in
healthcare settings remain low [6]. EMR-based clinical deci-
sion support (CDS) tools that prompt providers to order HIV
screening have been successfully utilized to improve HIV
screening rates in a variety of settings including primary care
practices and emergency departments [7, 8]. For example, Lin
et al. utilized an EMR-driven clinical decision support tool
that linked HIV screening with other routine blood tests in
the emergency department to increase monthly HIV screening
from an average of 7 HIV screens per month to an average of
550 HIV screens per month [7].

Retention in Care

In addition to aiding diagnosis of HIV among PLWH, EMR
data have also been utilized to facilitate relinkage to care for
PLWH not engaged in medical care. Ridgway et al. developed
an EMR algorithm to identify PLWH not engaged in care who
presented to the emergency department or were hospitalized
[9]. The algorithm included laboratory data, billing diagnoses,
past medical history, problem list, and medications. At their
institution, an HIV care navigator utilized the EMR algorithm
to identify PLWH in need of relinkage to care. In the first year
of use, the algorithm facilitated relinkage of two-thirds of out-
of-care patients. Other healthcare systems have used EMRs to
coordinate supportive care services for PLWH and improve
communication between case managers and other supportive
service providers; this intervention was associated with signif-
icantly improved retention in care [10].

While the above examples highlight the use of EMR data
for relinkage within individual healthcare systems, data shar-
ing among different healthcare systems and/or with the public
health department can provide further support for relinkage to
care. One of the first examples of such a data sharing approach
was the Louisiana Health Information Exchange (LaPHIE), a
bi-directional data exchange platform that linked HIV surveil-
lance data from the Louisiana Office of Public Health with
patient-level EMR data from Louisiana State University
Health Care Services Division (LSU HCSD) [11]. Public
health surveillance data were used to identify PLWH out of
care (i.e., no HIV viral load or CD4 count reported in the past
12 months). When patients accessed care at any LSU HCSD
location, their name and demographics were matched with the
out-of-care list. For out-of-care patients, a real-time EMR-
based alert with clinical decision support was sent to the pro-
vider to prompt them to re-engage the patient in care.

More recently, public health departments have placed
greater emphasis on data sharing as a strategy to improve
relinkage to care through Data to Care initiatives [12, 13].
Through Data to Care, HIV care providers share their list of
out-of-care patients with public health departments. Public
health departments then match this “out-of-care” list with
HIV surveillance data and send data back to HIV care pro-
viders regarding whether these patients are in care elsewhere.
By forming this feedback loop, both public health depart-
ments and HIV care providers can improve the quality of their
HIV surveillance and care data and target relinkage resources
toward patients who are truly out of care, rather than those
who have moved or transferred care [14].

Data to Care initiatives identify patients in need of
relinkage after they have fallen out of care, but recent studies
have focused on developing predictive models to identify
PLWH at risk for retention in care failure before they disen-
gage from care [15, 16]. Ramachandran et al. utilized EMR
data combined with geospatial features and American
Community Survey data to create a machine learning system
to predict retention in care in an urban HIV clinic [15]. They
compared the performance of various machine learning
models including random forest models and logistic regres-
sion. Random forest is a machine learning method that com-
bines the output from decision trees that are individually
trained using sub-samples of data and features. The final pre-
diction is made using the average of all tree predictions for
regression models or using a majority vote for classification
models. Ramachandran’s study found that a random forest
model had higher positive predictive value for flagging the
top 10% highest risk patients compared to a logistic regression
model [15]. Predicting retention in care in PLWH can also be
done using unstructured text. Oliwa et al. used NLP of clinical
notes to create a retention in care prediction model among
PLWH [17]. They found that certain phrases within texts of
notes, such as “syphilis,” “K103N,” “substance abuse,” and
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“stigma” were predictive of future lack of retention in care.
Such models could be implemented within an HIV care clinic
to allow retention resources to be directed toward patients
most at risk for retention failure.

Viral Suppression

PLWH who achieve viral suppression with antiretroviral ther-
apy experience improved health outcomes and are no longer
able to transmit HIV to others. Thus, several studies have used
EMR data to identify risk factors for virologic failure and to
develop viral suppression predictionmodels [18–21]. Robbins
et al. developed and validated a 1-year virologic failure pre-
diction model using EMR data [21]. They then converted their
model into a clinical prediction rule that providers can utilize
to understand risk factors for virologic failure. The clinical
prediction rule includes variables such as prior viral load,
CD4 count, ART regimen, drug and alcohol abuse, and
missed visits [21]. A recent study by Semerdjian et al. utilized
NLP of clinical notes to predict HIV outcomes including viral
suppression [22]. They found that a model using NLP of clin-
ical notes had higher performance than a model based on
demographics (AUC 0.83 vs. 0.75). Words/phrases found to
be predictive of viral suppression included “migraine,” “ver-
ruca,” and “negative anxiety.” Some of these NLP-detected
terms may not seem to have a clinical association with viral
suppression; i.e., it is unclear why a patient with migraines
would be more or less likely to be virally suppressed than a
patient without migraines. However, it is important to note
that NLP algorithms do not necessarily detect that a patient
has a certain condition, but only documentation of the condi-
tion in the clinical notes. It may be that providers who perform
a detailed medical history and take the time to discuss minor
medical conditions such as migraines with their patients are
more likely to provide ART adherence support and resources
for patients to facilitate viral suppression.

In addition to identifying risk factors for virologic failure or
predicting viral suppression, other studies have investigated
how clinical informatics interventions can be implemented to
improve rates of viral suppression. Puttkamer et al. developed
a prediction model for viral suppression including predictors
such as consistency of ART medication pickups as well as
clinical and social factors [23]. They then calculated a risk
score and classified patients based on risk for future treatment
failure. They incorporated the risk score into a best practice
alert within the EMR to inform providers of patients’medica-
tion adherence and treatment failure risk. Providers received
training for counseling at risk patients about medication ad-
herence. The EMR alert and associated counseling were asso-
ciated with a 15% greater likelihood of achieving viral sup-
pression for patients who received the intervention.

Several additional studies have used machine learning
models to not only predict virologic failure but to also deter-
mine the optimal intervals at which viral load tests should be
collected [24–26]. Petersen et al. used the super learner ma-
chine learning algorithm with medication event monitoring
systems (MEMS) data to develop a model of virologic failure
[26]. The model was then used to predict the proportion of
HIV viral load tests that could have been avoided based on the
probability that they would have shown viral suppression. The
study found that 25–31% of viral loads could have been
avoided, allowing for savings of $16–$29 dollars per per-
son-month.

Challenges in Utilizing EMRData andMachine
Learning for HIV Care

Inconsistent EMR Documentation

The development of reliable EMR algorithms depends on the
presence of accurate information within the EMR.
Unfortunately, EMRs often contain incorrect or missing doc-
umentation of factors relevant for HIV care. For example,
despite recommendations from the National Academy of
Medicine and the Joint Commission [27–29], many EMRs
do not have a systematic way for documenting sexual orien-
tation or gender identity. PLWH are disproportionately im-
pacted by psychiatric illness compared to the general popula-
tion. However, Brown et al. found that psychiatric illness and
substance use disorder are under-documented in structured
fields in EMR records for PLWH [30].

One strategy to overcome EMR under-documentation is to
utilize algorithms that incorporate multiple EMR fields for
relevant conditions. For example, to identify patients with
psychiatric illness, an algorithm could take into account diag-
nostic codes, documentation of mental illness in the problem
list or past medical history, mental health screening results,
prescription of psychiatric medications, or clinical encounters
in the Psychiatry department. Moreover, use of natural lan-
guage processing can detect factors present in clinical notes
that are not documented in structured EMR fields. Ridgway
et al. found that among patients with psychiatric illness or
substance use disorder detected by NLP of clinical notes, only
half had these behavioral health disorders documented in
structured EMR fields [31].

Even something as foundational as identifying people who
have tested positive for HIV may require multi-step algo-
rithms due to incomplete EMR data. Paul et al. developed
two EMR-based algorithms that included HIV antibody test
results, viral load test results, antiretroviral therapy prescrip-
tions, and ICD-9 codes [32]. Their algorithms had high spec-
ificity of 99–100% but lower sensitivity of 77–78% for accu-
rately identifying PLWH within an EMR database. The most
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common reasons for the algorithms failing to identify PLWH
were missing laboratory or medication data from the EMR
and patients being diagnosed with HIV at an outside
institution.

Barriers to Data Sharing

An additional challenge related to use of EMR data for HIV
patient care and epidemiologic and clinical research is the lack
of data sharing between healthcare systems. PLWH often re-
ceive care at different healthcare facilities and may have lab-
oratory results and/or clinical notes in different healthcare sys-
tems’ EMRs that may not be linked. Healthcare data
fragmented in disparate EMR systems results in a lack of a
complete clinical picture at any given healthcare site.

Data sharing among healthcare organizations requires sig-
nificant resources such as informatics support for harmonizing
data across different platforms. There are also data security
considerations and protections that must be in place to support
privacy and confidentiality of data, particularly related to HIV
status which is highly sensitive health information.
Permissions for data sharing may not be uniform across
healthcare systems, and public health institutions may have
policies against disclosing HIV data to clinical entities.
Moreover, healthcare systems frequently update or change
their EMR systems, and processes for data sharing must be
continually maintained through these updates. Despite these
challenges, several groups have formed data sharing platforms
for HIV data, such as the LaPHIE HIV care system to improve
retention in care that was previously mentioned [11]. Several
EMR-based HIV research cohorts have also been developed
with data from multiple HIV care sites. These include the
Center for AIDS Research Center Network of Integrated
Clinical Systems (CNICS) cohort and the DC cohort [33,
34]. Such cohorts require resources and commitment from
all participating sites as well as continued funding to support
ongoing collaboration. More support and incentives are need-
ed to facilitate data sharing for PLWH to improve quality of
data and ultimately quality of care for PLWH.

Challenges in Utilizing Clinical Decision Support Tools

Clinical decision support tools have the potential to improve
care for PLWH by guiding providers regarding care for their
patients. However, it can be challenging to build and imple-
ment these tools. Healthcare systems may have competing
priorities and may prioritize other EMR tools over those for
HIV care. Moreover, providers may not utilize the tools or
respond to the alerts. “Alert fatigue” describes the phenome-
non in which providers become desensitized to repeated alerts
in the EMR, prompting them to override and ignore such
alerts [35, 36]. In clinical practice, the majority of CDS alerts
are overridden, thereby limiting their utility [37].

To successfully improve care, CDS tools must follow clin-
ical informatics best practices (i.e., fitting into the provider’s
workflow and minimizing extra “clicks”) [38]. Alerts that do
not follow these best practices will likely fail to improve HIV
care. For example, one institution found their EMR HIV
screening alert to be ineffective because it prompted providers
to enter documentation of patients’ verbal consent for HIV
testing after providers had finished speaking with patients.
Because this alert failed to fit into providers’ workflow, it
was ignored over 99% of the time [39]. Similarly, important
metrics for prediction such as number needed to screen, sen-
sitivity, and positive predictive values must be reported by
studies that build prediction models.

Potential for Bias in Machine Learning

Machine learning algorithms have enormous potential for im-
proving HIV care but can also pose additional challenges.
Although algorithms may avoid biases in diagnosis and treat-
ment by objectively synthesizing and analyzing data, they can
also perpetuate bias among historically marginalized commu-
nities, many of whom are disproportionately affected by HIV
[40]. Machine learning algorithms used for risk prediction can
reflect human biases in decision-making and exhibit substan-
tial racial or gender bias, inadvertently perpetuating or exac-
erbating health disparities [40–44]. Bias within machine learn-
ing in healthcare can exist in the design, data, and deployment
of a model [43] and is usually associated with missing data
and certain groups or individual patients not being identified
by algorithms, sample size underestimation, and misclassifi-
cation and measurement error [40]. For instance, machine
learning models utilize historically collected data, meaning
that vulnerable groups who have endured human and structur-
al biases are subject to harm by either incorrect predictions or
withholding of certain resources [43].

HIV disproportionately impacts Blacks/African Americans,
who account for a higher proportion of new HIV diagnoses
compared to people of other races/ethnicities and are most vul-
nerable to machine learning bias [45]. A study assessing algo-
rithm performance for HIV risk prediction found that a majority
of the machine learning models based on variables related to
sexual orientation and STIs had lower sensitivity for Black
patients than White patients [46]. This disparity could result
from a lack of traditional HIV risk factors documented within
the medical records of Black people due to factors such as
stigma and medical mistrust [47] and structural racism within
the healthcare system [48] that can impact the accuracy of the
information within their medical records [49]. In addition to
race, the study evaluated predictive performance by sex and
found none of the algorithms used in their healthcare setting
predicted HIV acquisition among women, further demonstrat-
ing bias inherent within their machine learning algorithms [46].
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When machine learning algorithms are biased, they can
further perpetuate inequalities. Machine learning algorithms
for HIV care must be developed, implemented, and evaluated
with principles of distributive justice [43]. The investigators
who design machine learning algorithms must understand and
address potential biases, such as structural racism, misogyny,
and discrimination against sexual and gender minorities, and
ensure algorithms will advance health equity and benefit all
patients [50]. Strategies to address and overcome bias in ma-
chine learning include engaging various stakeholders in the
design and implementation process, measuring algorithm per-
formance across diverse groups, and monitoring patient out-
comes [15, 43]. Properly designed and utilized machine learn-
ing could help to resolve disparities in healthcare, especially
those related to the HIV epidemic, if algorithms remedy
known biases and highlight areas for future research [42].

Future Directions and Innovations

While EMR data are a rich source of information regarding
PLWH, they are limited in their ability to identify social and
structural factors that impact HIV care. The vast majority of
people’s lives are spent outside the healthcare system, and
EMR data only offer a snapshot of factors that impact overall
health. People generate enormous quantities of data outside of
the EMR in their daily lives through social media, internet
searches, geospatial tracking, etc. Future work should seek
to supplement EMR data with these additional data sources.

Research to date on the use of these additional data sources
for HIV-related data has been promising. One study used ma-
chine learned methods to examine patterns in HIV risk behav-
ior documented on Twitter and found that their models were
able to identify HIV-related Tweets with a mean accuracy of
85% [51]. Young et al. found that Facebook data including
Facebook group affiliations and social network structures are
associated with sex behaviors that may impact HIV transmis-
sion [52, 53]. Others have used internet search query data to
predict locations of new HIV diagnoses in China [54, 55]. Use
of social media data for HIV-related research poses unique
ethical considerations given that social media companies
may use or sell individuals’ personal data for profit. When
social media data are combined with health data, extra precau-
tions must be taken to ensure individuals’ privacy.

There has also been a recent recognition that geographic
and neighborhood factors may influence HIV care continuum
outcomes. At the individual level, geospatial analyses have
shown that longer travel time to HIV clinic is associated with
decreased retention in care [56]. Global Positioning System
(GPS) technology can be utilized to understand mobility with-
in neighborhoods and access to needed resources among peo-
ple living with or vulnerable to HIV [57]. At the community
level, geospatial analyses have shown that there exist

geographic “hot spots” wherein PLWH are less likely to be
retained in care or virally suppressed [58]. Community char-
acteristics such as lower walkability scores and more vacant
buildings have been associated with increased incidence of
HIV infection [59]. Individuals’ addresses can be mapped
onto community level data, including neighborhood and so-
cioeconomic data from the American Community Survey,
crime rates, rates of sexually transmitted infections, and other
public health data to better understand factors associated with
HIV care continuum outcomes among PLWH.

While there has been limited research to date combining
these various data sources with EMR data for HIV care con-
tinuum research, several promising studies are underway. In
South Carolina, one group is creating a database of PLWH
linking surveillance data from the state health department with
EMR data, crime and prison data from the Department of
Corrections, mental health data, and socioeconomic data from
American Community Survey [16]. They plan to use machine
learning techniques to characterize and predict HIV care con-
tinuum outcomes using the database.

Recent research has moved from using EMR data and other
sources for descriptive analytics, i.e., describing and under-
standing patterns in HIV epidemiology, toward predictive
analytics, i.e., predicting which patients are most likely to
experience poor HIV care continuum outcomes. More re-
search is needed to understand the best ways to utilize these
predictive models in practice. It is not known how these
models can best fit into care teams’ workflows and how they
can complement current tools and practices as well as pro-
viders’ own intuition regarding their patients’ likely out-
comes. Implementation science methods should be utilized
to guide their use. Research is also needed to understand the
perspectives of PLWH regarding the use of their personal
health data for predictive modeling, including concerns about
privacy and bias.

Conclusions

With the increase in utilization of EMRs and the application of
machine learning methods, EMR data are a rich data source
for expanding HIV-related knowledge. Predictive analytic
techniques combined with clinical informatics offer the poten-
tial for medical providers to intervene in real time to improve
HIV care continuum outcomes for at risk patients, from diag-
nosis to viral suppression. Working with EMR data does have
challenges, including missing documentation, difficulty har-
monizing data from different EMR systems, and privacy and
confidentiality concerns. Moreover, machine learning
methods can exacerbate disparities by perpetuating bias, and
researchers must analyze and correct for potential bias in their
models. Despite these challenges, research to date has
highlighted the promise of these technologies. Promising

Curr HIV/AIDS Rep (2021) 18:229–236 233



future areas of research include incorporating HIV-related
EMR data with other social and structural data sources, such
as social media data, geospatial data, and public health data.
More research is also needed to understand the best way to
implement HIV-related predictivemodels into clinical care for
PLWH to improve care across the HIV care continuum.
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