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Abstract
Purpose of Review The number of deaths due to hepatocellular carcinoma (HCC) continues to rise. Chemoprevention may 
be a useful strategy to prevent HCC.
Recent Findings We summarize recent clinical and translational studies on the chemoprevention of HCC from the aspects 
of etiology-specific and generic chemoprevention in the context of contemporary HCC etiologies.
Summary Use of safe and effective HCC chemopreventive agents may reduce the burden of HCC, but more data are required 
before these can be recommended in routine clinical practice.

Keywords Chemoprevention · Hepatocellular carcinoma · Etiology · Generic

Introduction

Hepatocellular carcinoma (HCC) accounts for more than 
80% of primary liver malignancies and is the third leading 
cause of cancer-related deaths worldwide [1]. HCC is more 

prevalent in patients with hepatitis B virus (HBV), hepati-
tis C virus (HCV), excessive alcohol intake, and metabolic 
dysfunction–associated steatotic liver disease (MASLD)/
metabolic dysfunction–associated steatohepatitis (MASH) 
[2]. Substantial changes in the etiology of HCC over the 
past decade have occurred, with a decline in HCV infec-
tion with the widespread use of new-generation anti-HCV 
drugs (direct-acting antivirals; DAAs). However, HCC risk 
post-HCV cure remains high for nearly a decade when cir-
rhosis is present [3]. HBV-induced HCC is currently the 
most prevalent etiology for HCC and the dominant cause in 
Southeast Asia and sub-Saharan Africa. However, the rates 
have been steadily declining owing to interferon-/nucleot(s)
ide analogs (NAs)–based suppression of HBV replication 
and universal vaccination [4].

An emerging major cause of HCC has been attributed 
to MASLD/MASH with a pooled global prevalence of 
MASLD being approximately 30% [5, 6]. A recent analysis 
by Tan et al. found that the prevalence of MASLD-related 
HCC is rising, with an increased risk of HCC developing 
in people without cirrhosis [5]. Despite the current signifi-
cant advances in the treatment of HCC, the prognosis for 
patients with HCC remains poor with a 5-year survival rate 
of <20% with a high recurrence rate [2]. As such, there has 
been an increased interest in HCC chemoprevention, par-
ticularly amongst patients with cirrhosis. Chemoprevention 
approaches aimed at preventing, delaying, or suppressing 
tumor development using synthetic or natural bioactive 
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agents (as seen in Fig. 1). This review is based on the cur-
rent status, limitations, and future directions of HCC chemo-
prevention, emphasizing the potency of phytochemicals as 
effective chemopreventives.

Etiology‑Specific Chemoprevention

HBV

The implementation of universal HBV vaccination intro-
duced in more than 180 countries worldwide has signifi-
cantly reduced the rate of new HBV infections by substan-
tially reducing neonatal HBV vertical transmission resulting 
in a lower risk of HBV-related HCCs [7, 8]. Taiwan was 
among the first to initiate nationwide neonatal HBV vacci-
nation and national antiviral therapy programs in 1984 and 
2003. Chiang et al. showed the percentage of chronic HBV 
infections in patients with HCC sharply decreased from 
83.3% (born in 1980–1984) to 55.6% (born in 2000–2004) 
[9]. Another Taiwanese population-wide intervention study 
on the long-term effectiveness of HBV vaccination showed 
a reduction in HCC incidence by approximately 15% in the 
young and middle-aged groups [10]. Wong and colleagues 
observed HBV vaccination reduced HCC development 
from 0.4 to 0.1% in Hong Kong [11]. In patients who have 
already acquired HBV, advancements in the field of antiviral 

therapies have been shown to reduce the rate of HCC devel-
opment, particularly with tenofovir [12•]. The potential util-
ity of antiviral therapy for chemoprevention in patients with 
chronic hepatitis B stems from its ability to control viral 
replication, which is a major risk factor for HBV-related hep-
atocarcinogenesis. Although the current HBV therapeutics 
(e.g., pegylated-interferon-α and NAs) enabled potent viral 
suppression and improved prognosis in patients with chronic 
hepatitis B, they rarely achieve HBV cure and thus require 
long-term treatment to maintain a virologic response [13]. 
In addition, even though obtaining spontaneous hepatitis B 
surface antigen seroclearance, HCC continues to develop at 
an estimated rate of 0.86%/year in certain situations [14]. 
To reduce HBV-related HCC, several novel agents are cur-
rently under development including DAAs and immune 
modulators.

HCV

A recent modeling study estimated that 56.8 million (71 mil-
lion in 2015) individuals are affected with viremic HCV 
infection globally [15]. While HCV clearance by DAAs 
can significantly reduce the risks of HCC incidence, the 
risk of HCC cannot be completely eliminated [3]. A recent 
systematic review and meta-analysis (44 studies, 107,548 
person-years of follow-up) revealed the incidence of HCC 
was 2.1/100 person-years (95% confidence interval (CI), 
1.9–2.4) among patients with cirrhosis and 0.5/100 person-
years (95% CI, 0.3–0.7) among patients with F3 fibrosis, 
respectively [16]. The development of a prophylactic HCV 
vaccine is a promising primary prevention strategy for 
HCV-related HCC. Targeting host genes/proteins, such as 
viral entry factors, may be a candidate or complementary 
antiviral strategy [17]. Additionally, utilizing experimen-
tal rodent models such as an infection of rats by an HCV-
related hepacivirus, a mechanistic platform for vaccine is 
being developed [18, 19]. Recently, several types of vaccines 
such as permuted HCV glycoprotein nanoparticle vaccine 
and subviral particle-based DNA vaccine were developed 
[20, 21]. Then, a phase I trial of a therapeutic DNA vaccine 
for preventing HCC from chronic HCV infection is currently 
underway [22].

MAFLD/MASH

With the growing population of HCC patients with a back-
ground of metabolic diseases such as MAFLD/MASH, 
many drugs that aim to ameliorate MAFLD/MASH have 
been tested in clinical trials. However, none has currently 
met regulatory approval [23]. Based on the interim analy-
sis of a randomized global phase III trial (REGENERATE, 
NCT02548351), rapid and sustained improvements in vari-
ous non-invasive tests were observed with obeticholic acid 

Fig. 1  Strategy for HCC chemoprevention. Abbreviations: IFN, 
interferon; NA, nucleot(s)ide analog; DAA, direct-acting antivirals; 
MASLD, metabolic dysfunction-associated steatotic liver disease; 
MASH, metabolic dysfunction-associated steatohepatitis; OCA, obet-
icholic acid; THR, thyroid hormone receptor; FGF, fibroblast growth 
factor; ICI, immune checkpoint inhibitor; BCAA, branched-chain 
amino acids
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(OCA) treatment [24]. A meta-analysis with 1878 individu-
als showed OCA could be used in chronic liver disease safety 
[25•]. A recent preclinical study uncovered that microbiota-
induced lipid peroxidation impairs OCA-mediated antifi-
brotic effect towards MASH in mice [26]. In an ongoing 
phase III study of the MASH population, MAESTRO-NASH 
(NCT03900429) supported the efficacy and safety of resme-
tirom (MGL-3196), a thyroid hormone receptor β agonist, 
with significant reduction of hepatic fibrosis [27]. Recent 
experiment using MASH model mouse revealed that resme-
tirom could improve MASH by recovering RGS5 expression 
and subsequently inactivating the signal transducer and acti-
vator of transcription 3 (STAT3) and nuclear factor-kappa B 
(NF-κB) signaling pathways [28].

Fibroblast growth factor 21 (FGF21) is a pleiotropic hor-
mone with various beneficial effects on glucose metabolism, 
sugar intake, and preference, which can be regulated by a 
variety of mechanisms, such as adipose-derived circulating 
microRNAs, genetic polymorphism (rs838133), and the 
underlying protective effects of time-restricted feeding [29]. 
In rodent models, the lack of FGF21 is known to accelerate 
liver injury and the development of MASH and HCC [29]. A 
recent phase II trial of efruxifermin, a long-acting Fc-FGF21 
fusion protein showed (NCT03976401) [30]. A recent pro-
spective cohort study with 825 HCC individuals revealed 
that patients . A synthetic FGF21 protein, LY2405319, 
reduces transforming growth factor β1 (TGFβ1) and col-
lagen I expression as well as NF-κB p65, c-Jun N-terminal 
kinase 1/2 (JNK1/2), and p38 phosphorylation, and inhibits 
MASH progression in diet-induced MASH mouse model, 
suggesting that FGF21 may play a role in the chemopreven-
tion of HCC [31].

Incretin-based therapies (e.g., dipeptidyl peptidase-4 
inhibitors (DPP-4i) and glucagon-like peptide-1 (GLP-1) 
receptor agonists) might reduce HCC risk, especially in 
patients with MAFLD/MASH [32]. A phase III trial that 
semaglutide, a GLP-1 receptor agonist, with lifestyle inter-
vention for overweight or obesity participants showed sus-
tained and clinically relevant reduction in body weight [33]. 
However, in a recent phase II trial, semaglutide did not sig-
nificantly improve fibrosis or achievement of MASH reso-
lution for patients with MASH and compensated cirrhosis 
[34]. In a MASH mouse model, liraglutide, a GLP-1 receptor 
agonist, significantly ameliorated steatosis, inflammation, 
and hepatocyte ballooning of non-tumorous lesions, result-
ing prevention of HCC progression [35]. Using MASH-
related HCC mouse model, Kawaguchi et al. showed that 
DDP-4i suppressed the pentose phosphate pathway by 
downregulating the p62/Keap1/Nrf2 pathway, or activating 
lymphocyte chemotaxis, and thereby preventing MASH-
related HCC progression [36, 37]. Despite the promise of 
these novel agents for preventing HCC, clinical data remains 
limited, and prospective clinical studies are required.

Generic Chemoprevention for HCC

Anti‑inflammatory Drugs

Chronic hepatic inflammation is a well-established driver 
of hepatocarcinogenesis; therefore, anti-inflammatory 
therapies may be effective strategies for HCC chemopre-
vention. Preclinical and clinical studies have suggested 
that aspirin use is associated with reduced risk of devel-
opment and recurrence of several cancer types including 
HCC [38, 39]. An in vitro experiment showed that aspirin-
induced ferroptosis through inhibited NF-κB p65-activated 
SLC7A11 transcription [40] and HCC cell proliferation via 
inducing cell cycle arrest and apoptosis [41]. As shown in 
multiple systematic reviews and meta-analyses, evidence 
is accumulating that aspirin, but not other non-steroidal 
anti-inflammatory drugs (NSAIDs), reduces the risk of 
developing HCC [42, 43••, 44]. Cyclooxygenase (COX)-2 
promotes HCC initiation and progression through suppres-
sion of tumor suppressor genes, activation of oncogenic 
pathways, and impairment of antitumor immunity via vari-
ous mechanisms that involve tet methylcytosine dioxyge-
nase 1 (TET1), long non-coding RNA HULC and immu-
nosuppressive cell populations such as myeloid-derived 
suppressor cells (MDSCs) and regulatory T cells (Tregs) 
[45, 46]. Hepatic translocation of intestinal lipoteichoic 
and deoxycholic acids enhances COX-2-mediated suppres-
sion of antitumor immunity in a mouse model of obesity/
MASLD-related HCC [47]. An in vitro experiment showed 
that COX-2 formed a regulatory loop with YAP to pro-
mote the proliferation and tumorigenesis of HCC [48]. 
A phase III trial of another COX-2 inhibitor, celecoxib, 
with or without metformin therapy for tertiary prevention 
in patients who have undergone curative HCC resection, 
is currently underway (NCT03184493). However, in the 
clinical setting, patients with cirrhosis are often compli-
cated by thrombocytopenia and portal hypertension and 
are at higher risk for both HCC development and gastro-
intestinal bleeding.

Immune Checkpoint Inhibitors

Immune checkpoint inhibitors (ICIs) have been rapidly 
incorporated into the HCC treatment algorithm as a front-
line treatment [49]. Recent early-phase clinical trials have 
shown promising antitumor efficacy of ICI-based regimens 
as neo/adjuvant therapies along with surgical treatment. In 
a study of atezolizumab plus bevacizumab versus active 
surveillance as adjuvant therapy in patients with HCC at 
high risk of recurrence after surgical resection or abla-
tion, combination therapy showed that improvement in 
recurrence-free survival, meeting the primary end point of 
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the IMbrave050 study (NCT04102098) [50]. Cemiplimab 
(anti-programmed death receptor-1 (PD-1) antibody) as a 
neoadjuvant therapy before surgical resection achieved a 
tumor necrosis rate of 70% [51]. Nivolumab (anti-PD-1 
antibody) with or without ipilimumab (anti-cytotoxic T 
lymphocyte-associated antigen 4 (CTLA4) antibody) as 
neoadjuvant plus adjuvant therapy achieved an objective 
response rate of 30% [52]. In a recent systematic review 
and meta-analysis, Zhao et al. identified that neoadjuvant 
ICIs were well-tolerated in patients with resectable HCC 
and conferred therapeutic benefits [53].

Statins

Statins, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-
CoA) reductase inhibitors, are primarily used for the pri-
mary and secondary prevention of cardiovascular diseases 
by inhibiting cholesterol biosynthesis. In addition, statins 
are known to have antineoplastic properties through anti-
proliferative, proapoptotic, antiangiogenic, immunomodula-
tory, and anti-infective effects [54, 55]. Cancer cells depend 
on the mevalonate metabolic pathway for growth and sur-
vival and HMG-CoA reductase is the rate-limiting enzyme 
in the pathway. Therefore, cancer cells may be susceptible 
to statin therapies that inhibit HMG-CoA reductase [56, 
57]. Experimental studies have shown these effects multi-
faced as follow; statins inhibit oncogenesis drivers such as 
Myc, Akt, Rho-dependent kinase, NF-κB, tumor necrosis 
factor (TNF)–mediated interleukin (IL)6 production, the 
Hippo pathway, and extracellularsignal–regulated kinase 
1/2 (ERK1/2) [58]. In addition, statins reduce liver fibrosis 
by inhibiting hepatic stellate cell activation via nitric oxide 
synthase and induction of peroxisome proliferator-activated 
receptors (PPARs) in diet/chemical-induced rodent models 
[59]. In addition to the accumulation of preclinical evidence, 
the chemopreventive efficacy of statins has been clarified in 
clinical settings. Although the existence of marked heteroge-
neity in the study population (e.g., etiology) and confound-
ing factors, several meta-analyses, and nationwide cohort 
studies reproduced the trend that statin use is associated with 
reduced risk of HCC development by 42–48% compared 
with non-statin users [43••, 60, 61]. A phase II trial for veri-
fying the chemopreventive effects of atorvastatin on HCC is 
also currently underway (TORCH; NCT05028829).

Antidiabetic Therapies

Type 2 diabetes is widely and clinically recognized as a 
predisposing factor for HCC, which approximately doubles 
the risk, suggesting that antidiabetic therapies may reduce 
the risk of HCC [62]. Aside from GLP-1 inhibitors which 
are currently undergoing evaluation in MASH, metformin, 
a traditional first-line pharmacological treatment for type 

2 diabetes is well known to exert anticancer effects against 
HCC in experimental rodent models through upregulating 
hippo signaling pathway, AMPK-mediated inhibition of 
the Shh pathway or NF-κB signaling [63, 64]. Long-term 
metformin use may improve clinical outcomes in diabetic 
patients with MASH or post-cured HCV and bridging fibro-
sis or compensated cirrhosis [65]. Several meta-analyses 
showed that metformin use was associated with lowered 
HCC risk and all-cause mortality. However, in a recent meta-
analysis by Zeng and colleagues, metformin use was not 
associated with reduced overall risk of HCC (HR, 0.57; 95% 
CI, 0.31–1.06) [43••, 65, 66]. One of the reasons why the 
discordant results between meta-analysis might be derived 
from the inability to rule out imbalances in baseline char-
acteristics between study groups in some of the previous 
meta-analyses.

Sodium-glucose cotransporter 2 inhibitors (SGLT2i) also 
show a reduction in HCC development by inhibiting adeno-
sine triphosphate-generating system [67]. From national 
database from Taiwan (31,215 patients received SGLT2i) 
showed that the overall HRs showed a significantly lower 
risk of HCC in SGLT2i users in comparison to a reference 
group of beta-blocker users with an adjusted HR of 0.27 
(95% CI, 0.21–0.34) in patients with HBV/HCV infection 
and diabetes [68]. A territory-wide cohort study in Hong 
Kong showed SGLT2i use lowered the risk of incident HCC 
(HR, 0.54; 95% CI, 0.33–0.88) [69]. A national Surveillance, 
Epidemiology and End Results (SEER)-Medicare-linked 
data in the USA (3,185 patients) showed SGLT2i initia-
tion was associated with significantly lower mortality risk 
after adjusting for potential confounders (HR, 0.68; 95% CI, 
0.54–0.86) with a stronger association for a longer dura-
tion of use (HR, 0.60; 95% CI, 0.41–0.88) [70]. A nation-
wide study from Taiwan showed that dipeptidyl peptidase 
4 inhibitor (DPP4i) users had a significantly lower risk of 
HCC, especially long-term its use >1.49 years also had 
significantly lower risks of HCC compared to DPP4i non-
users [71]. A recent retrospective cohort study revealed that 
DPP-4i users showed a significant reduction in HCC risk 
(adjusted HRs 0.53; 95% CI, 0.44–0.65) in type 2 diabetes 
patients with chronic HBV infection [72].

Molecular Targeted Agents

In rodent models, it has been shown that activation of epi-
dermal growth factor receptor (EGFR) signaling in hepatic 
stellate cells and macrophages promoted HCC development 
[73]. Erlotinib, a small molecule EGFR inhibitor, reversed 
a high-risk liver transcriptome pattern and suppressed HCC 
development in rodent models of fibrosis-driven carcino-
genesis [74]. Based on these animal studies, a phase I HCC 
chemoprevention trial was initiated using transcriptome 
signature as a companion biomarker (NCT02273362). In 
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addition, a phase II trial to evaluate the HCC chemopreven-
tive effects of erlotinib is going (NCT04172779).

The phosphoinositide 3-kinase (PI3K)/AKT/mammalian 
target of rapamycin (mTOR) pathway is involved in cell sur-
vival, and AKT has been identified as a key HCC risk driver 
by a human hepatic transcriptome meta-analysis, therefore, 
this pathway is one of the candidates for HCC chemopre-
vention target [75]. In chemical/obesity-driven HCC animal 
models, sirolimus (rapamycin) reduced HCC development 
risks through inhibiting IL-6/STAT3 axis [76]. In the clini-
cal setting, mTOR inhibitors, such as sirolimus and everoli-
mus, are widely used after liver transplantation to exert their 
immunosuppressive effects. Sirolimus use for ≥3 months 
after liver transplantation for HCC independently benefited 
the most with regard to overall survival, disease-free sur-
vival, and HCC recurrence [77]. A systematic review and 
meta-analysis to investigate the potential survival benefits 
of mTOR inhibitors for liver transplantation recipients with 
HCC showed that the 1-, 2-, and 3-year overall survival and 
recurrence-free survival were improved with a lower risk of 
renal toxicity [78].

Dietary and Nutritional Agents

Coffee consumption is known to lower hepatic 
inflammation, liver stiffness, and incidence of HCC via 
inhibition of PI3K/AKT/mTOR pathway [79]. Although 
both caffeinated and decaffeinated coffee was associated 
with a reduction in HCC risk, caffeinated coffee and higher 
intake (>3 cups/day) have stronger associations with a 
reduction of HCC [80]. Based on the reproducible inverse 
association that several analyses [81, 82], the European 
Association for the Study of the Liver (EASL) practice 
guideline and American Association for the Study of Liver 
Diseases (AASLD) practice guidelines encourage coffee 
consumption [83, 84].

Branched-chain amino acids (BCAA) supplementation is 
widely used in cirrhotic patients with improvement of event-
free survival and overall survival [85]. BCAA enhances 
mTOR signaling-mediated cellular senescence and reduces 
liver fibrosis and HCC [86]. In obese mouse models, BCAA 
increased the expression of PPAR, p21, and p27, whereas 
suppresses IL6, IL1β, IL18, and TNF expression, resulting 
reduction of inflammation and spontaneous hepatic carcino-
genesis [87]. In a Japanese multicenter prospective obser-
vational study, BCAA supplementation was associated with 
less frequent HCC development and death [88]. A systemic 
review with meta-analysis with a short follow-up period 
(1–3 years) showed that no significant effect was found in 
occurrence rates of HCC; therefore, long-term BCAA sup-
plementation administration and long-term observation is 
needed [85].

Vitamin D might help in cancer management by regulat-
ing cell proliferation and differentiation, as well as exerting 
anti-inflammatory, and antifibrotic effects [89, 90]. 1α,25-
Dihydroxyvitamin D3 (calcitriol) supplementation attenu-
ated HCC aggressive behavior by IL-6 expression reduc-
tion, suppressing epithelial-mesenchymal transition in vitro 
[91]. Vitamin D3 upregulated protein 1 (VDUP1) suppresses 
TNF and NF-κB signalling and protects mice from chemi-
cal-induced hepatocarcinogenesis [92]. 1,25-(OH)2D3, the 
active form of vitamin D, is involved in anti-fibrosis and 
partially improves liver function [93]. Administration of 
1,25-(OH)2D3 exerted the anti-apoptotic effect via decre-
ment of caspase-3 and MPST expression and abolished the 
MASLD changes in 4 weeks of high-fat diet (HFD)–fed rats, 
and markedly attenuated the changes in 12-week HFD-fed 
[94]. Lower 25-OH vitamin D levels are associated with the 
development of HCC [95]. A phase IV trial of vitamin D3 
is planned to prevent HCC in patients with chronic hepatitis 
B receiving NA treatment (VDHCC trial; NCT02779465).

HCC Chemoprevention Recommendation 
in Academic Society Guidelines (AASLD, EASL, 
and APASL)

Based on the evidence previously described, several aca-
demic society guidelines including AASLD, EASL, and 
the Asian Pacific Association for the Study of the Liver 
(APASL), recommend HCC chemoprevention [83, 84, 96]. 
Vaccination for HBV infection and antiviral therapies for 
HCV and HBV infection are recommended in these guide-
lines [83, 84, 96]. Coffee consumption is recommended in 
AASLD and EASL practice guidelines [83, 84]. Whereas, 
solely usage of statins, aspirin, or metformin are not rec-
ommended in HCC chemoprevention in AASLD practice 
guideline [84].

Conclusion

With decreasing viral hepatitis-related HCC and increas-
ing carcinogenesis based on MAFLD/MASH, half of the 
population is suffering from metabolic disorders. Available 
HCC chemopreventive agents are increasingly important to 
effectively control the HCC burden and mortality. Although 
experimental and retrospective studies have shown that com-
monly used drugs and/or lifestyle interventions are useful 
chemopreventive agents, no convincing evaluations have 
been made owing to the heterogeneity among studies and 
conflicting observations. The widespread use of safe and 
potent generic HCC chemopreventive agents could contrib-
ute to breakthroughs in improving the prognosis of patients 
with HCC.
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