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Abstract

Introduction Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality in the world, and it has limited
treatment options. Understanding the molecular drivers of HCC is important to develop novel biomarkers and therapeutics.
Purpose of Review HCC arises in a complex background of chronic hepatitis, fibrosis, and liver regeneration which lead to
genomic changes. Here, we summarize studies that have expanded our understanding of the molecular landscape of HCC.
Recent Findings Recent technological advances in next-generation sequencing (NGS) have elucidated specific genetic and
molecular programs involved in hepatocarcinogenesis. We summarize the major somatic mutations and epigenetic changes have
been identified in NGS-based studies. We also describe promising molecular therapies and immunotherapies which target
specific genetic and epigenetic molecular events.

Summary The genomic landscape of HCC is incredibly complex and heterogeneous. Promising new developments are helping
us decipher the molecular drivers of HCC and leading to new therapies.
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Introduction

The global incidence of hepatocellular carcinoma (HCC), the
most common primary liver malignancy and the 6th most
common cancer worldwide, is expected to significantly in-
crease over the next 10 years [1, 2]. Unfortunately, HCC sur-
vival still remains dismal, with 5-year survival rates of 32.6%,
10.8%, and 2.4% for localized, regional, and distant stages of
disease, respectively [3]. Hepatitis B virus (HBV) and hepati-
tis C virus (HCV) are the most common risk factors for HCC,
and the incidence of HCC has historically mirrored the inci-
dence of these infectious diseases [4]. With the advent of the
HBYV vaccine and HCV antiviral therapy, there is hope that the
burden of hepatitis-related HCCs will decrease. However, vi-
ral hepatitis is still expected to drive increased incidences of
HCC over the next 10 years [2, 5]. Furthermore, alcoholic
liver disease (ALD), obesity, and nonalcoholic fatty liver dis-
ease (NAFLD) remain important risk factors for HCC, and
these etiologies are actually increasing in incidence [6, 7].

Even though risk factors for HCC vary from region to
region, the mechanisms of hepatocellular carcinogenesis
mostly converge on the processes of chronic liver inflamma-
tion and regeneration. Chronic liver injury secondary to either
virus-induced inflammation, alcohol-induced hepatocellular
damage, or lipotoxicity-induced oxidative stress lead to a vi-
cious cycle of regeneration and fibrosis that increases the risk
of genomic instability and hepatocarcinogenesis [8, 9]. These
pathogenic mechanisms underscore why 80-90% of HCC
arise in a cirrhotic liver [10]. However, HCC can also arise
in the non-cirrhotic liver, especially in patients with HBV or
NAFLD [11, 12]. Thus, the genomic landscape in which
hepatocarcinogenesis occurs is incredibly complicated.

Currently, the only definitive therapeutic cure for HCC is
liver transplantation (LT), and even LT is associated with
recurrence rates of 10—15% [13]. For unresectable tumors,
few therapies exist. The oral multi-kinase inhibitor sorafenib
has been the therapeutic workhorse for unresectable HCCs
ever since it was approved by the Food and Drug
Administration (FDA) in 2007. However, its therapeutic effi-
cacy has been greatly limited by rapid drug resistance and
toxicities [14, 15]. Despite the recent approval of new first
line therapies like atezolizumab/bevacizumab or lenvatinib
and second-line therapies like regorafenib, nivolumab, and
cabozantinib, there still remains a pressing need for effective
therapeutics that can significantly improve long-term survival
[16-18].

Genomic Landscape of HCC
The dearth of therapeutic options for HCC continues to propel

research into the mechanisms of hepatocarcinogenesis. Over
the last 5 years, significant progress has been made in the

identification of somatic mutations, copy number variations
(CNVs), and epigenetic modifications that drive
hepatocarcinogenesis and contribute to disease outcomes
(Table 1). Improvements in genome-wide screening and
high-throughput genomics have led to the identification of
new gene signatures and proteomic targets that can help to
diagnose and prognosticate HCC. Recent developments in
single-cell RNA sequencing (scRNA-Seq) are opening a win-
dow into the pathophysiology of tumor heterogeneity. This
review summarizes the genomic landscape of HCC (Fig. 1)
and identifies studies that have recently expanded our under-
standing of hepatocarcinogenesis in a meaningful way.

Somatic Mutations

The normal aging liver is thought to acquire 3040 somatic
mutations per year, either induced by genotoxic stress or ran-
dom mutations arising from DNA replication [78, 79].
Hepatic stem cells and differentiated hepatocytes have both
been shown to acquire these mutations, with a recent study
revealing that mature hepatocytes in the normal liver have
twice the rate of somatic mutations as hepatic stem cells
[80]. Still, compared to other tissues heavily dependent on
stem cell regeneration, the overall mutational burden and ma-
lignant potential of the normal adult liver remains low [78,
79]. In the setting of chronic liver disease and inflammation,
however, hepatocytes are susceptible to additional
proliferation-induced mutagenesis by way of mitochondrial
damage and oxidative/endoplasmic reticulum stress [81].
Another mechanism of mutagenesis is via genomic viral inte-
grations as seen in HBV-HCCs, which typically have the
highest rates of somatic mutation [82]. HCV, on the other
hand, typically promotes HCC carcinogenesis through double
strand breaks that result in missense mutations. Lastly, somat-
ic mutations in NAFLD, ALD, and toxin-driven HCCs are
typically caused by direct DNA damage through chronic in-
flammation and reactive oxygen species.

Clinically significant driver mutations in HCC have been
shown to involve these major pathways: tumor suppressor
genes (TP53, ARID 1/2, RBI, TSC1/2), telomerases (TERT/
TERC), the Wnt/(G-catenin pathway (CTNNBI, AXINI,
AXIN2), PI3K/Akt/mTOR pathways, MYC pathway, JAK/
STAT pathways (JAK, IL6R, IL6ST), oxidative stress path-
ways (KEAPI, NFE2L2), RAS/RAF/MAP kinases
(RPS6KA3), and the MET pathway. We will now discuss
the mutations in these major pathways in further detail.

Tumor Suppressor Genes
As the “guardian of the genome,” the 7P53 tumor suppressor

gene is responsible for the regulation of cellular processes like
cell death and angiogenesis. It is the most frequently altered
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Fig. 1 Major genetic alterations
in human hepatocellular
carcinoma (HCC)

Major Genetic Alterations in Human Hepatocellular Carcinoma (HCC)
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gene in human cancer, with the International Agency for
Research on Cancer (IARC) reporting over 29,000 7P53 mu-
tations in human cancers [83]. 7P53 is altered or inactivated in
30-50% of all HCCs—80% of aflatoxin B1-HCCs, 45% of
HBV-HCCs, and 13% of HCV-HCCs [83-85]. Notable gain
of function (GOF) mutations in HCC include TP53 V157F
and TP53 R249S, the latter being associated with aflatoxin
and hepatitis B exposure [83, 86, 87].

Clinically, mutations in the 7P53 family (including p63
and p73), activator pl4ARF and inhibitors MDM2 and
MDM4, are associated with higher expression of stem cell-
like markers, high Edmonson grade, high rates of recurrence,
lower disease-free survival, and therapy resistance [19-22].
TP53 may also downregulate the immune response [23], mak-
ing these HCCs a potential target for immunotherapy [25].
Therapies targeting 7P53 are aimed at supplementing wild-
type p53 or blocking its interaction with cytoplasmic partners.
Palbociclib, an oral cyclin-dependent kinase 4/6 inhibitor, has
been shown to inhibit p53 DNA-damage partner ataxia telan-
giectasia mutated (A7M) and to increase radiosensitivity of
HCC cell lines, with the potential implication that gain-of-
function p53 expression can be suppressed [26].
Furthermore, recombinant adenovirus p53, when combined
with transarterial chemoembolization (TACE), has been
shown to increase overall survival (OS) and disease-free sur-
vival (DFS) in patients with HCC [88].

The tumor suppressors ARID1A and ARIDIB are compo-
nents of SWI/SNF complexes that allow DNA repair

MicroRNA changes
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machinery to access chromatin. Loss-of-function mutations
in these genes have historically been associated with alcoholic
liver disease and HBV infection [89, 90], and recent studies
suggest ARID I may contribute to the development of hepatic
steatosis [24, 91]. ARID mutations typically occur in the later
stages of HCC development and result in larger, more aggres-
sive tumors [92-94] with high tumor mutational burdens and
increased angiogenesis, both of which potentially make them
susceptible to immunotherapy and anti-angiogenic therapies
[27, 95].

Telomerases

Telomeres are repetitive nucleotide sequences that provide a
docking location for the DNA polymerase complex during
replication and also protect chromosomes from deterioration
or fusion. When telomeres shorten beyond a critical length
after successive rounds of DNA replication, the telomerase
complex, composed of a core catalytic telomerase reverse
transcriptase (TERT) and RNA template telomerase RNA
component (TERC), is activated to lengthen telomeres and
restore the liver’s regenerative capacity. The TERT promoter
mutation is one of the most common genetic alterations in
HCC, with an overall frequency of 30-60% [28]. Its presence
in low-grade and high dysplastic nodules reveal its role in the
early stages of hepatocarcinogenesis [29, 30], which is to
drive malignant transformation by selecting for those HCC
precursors that escape apoptosis with indefinite telomerase
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activity. Ironically, loss of function of telomerase gene vari-
ants also predisposes hepatocytes to malignant transformation
by impairing hepatocyte response to chronic injury and accel-
erating cirrhosis [31].

Clinically, TERT promoter mutations are associated with
shorter DFS and late intrahepatic recurrence after surgical re-
section [96]. They are also more frequent in patients with older
age, African or European ancestry, and HCV-HCC [32-34].
Other clinically meaningful TERT gene alterations include
HBYV viral integrations at the TERT gene promoter locus
and TERT gene amplifications [96], both of which are asso-
ciated with decreased OS [97, 98]. The therapeutic promises
of TERT mutations are yet to be realized. There are currently
no approved therapies targeting TERT mutations, although a
phase I clinical trial with an immunotherapeutic agent against
hTERT in solid tumors is currently in progress [38]. TERT
mutations in circulating DNA may also be a novel way of
screening for patients at high-risk patients for HCC [39, 99].

Whnt/B-Catenin Pathway

The Wnt/3-catenin pathway, which in normal tissues are crit-
ical for embryonic body axis patterning, cell migration, and
cell fate specification, is commonly exploited in
hepatocarcinogenesis. CTNNBI, which encodes p-catenin, a
multifunctional protein that links the intracellular actin cyto-
skeleton to adherens junctions and also serves as a key nuclear
effector of canonical Wnt signaling [100], is mutated in 20—
40% of all HCCs [35, 40]. Missense mutations in CTNNBI
result in higher nuclear and cytoplasmic g-catenin expression
in HCCs compared to normal liver, para-carcinoma tissue, and
cirrhotic liver [36]. Nuclear expression in HCCs has been
associated with more aggressive histopathologic features,
such as micro- and macrovascular invasion, increased patho-
logic grade, increased tumor size, multifocal disease, and tu-
mor recurrence [33, 37]. Furthermore, mutations in any of the
proteins responsible for the activation or destruction of g-ca-
tenin can lead to aberrant nuclear accumulation. For example,
loss-of-function mutations in the APC, AXINI, and AXIN2
genes result in the sustained activation of the Wnt pathway
by disruption of the multiprotein destruction complex that tags
p-catenin for degradation. Other recently identified members
of the Wnt/p-catenin pathway upregulated in HCC include
protein regulator of cytokinesis 1 (PRCI), AKIPI, and
thioredoxin protein TXNDC12 [41, 42, 101]. Germline muta-
tions in the microRNA processing gene DICER! have also
been associated with CTNNBI mutations in familial HCC,
although the mechanistic relationship remains unclear [102].
So far, Wnt pathway proteins and genes have not proved to be
druggable targets. An antibody that currently targets DKK1, a
protein regulator of the Wnt pathway, is currently in phase I
clinical trials for HCCs [103].

@ Springer

Other Notable Mutations

Several other notable pathways have been implicated in
hepatocarcinogenesis. Mutations in RPS6KA3, a MAP/ERK
pathway kinase that was recently shown to be mutated in 4—
10% of HCCs, were associated with poor differentiation,
macrovascular invasion, high proliferation, and chromosomal
instability [104—106]. Genome-wide screening revealed mu-
tations in KEAPI1, a master regulator and ubiquitinator of
antioxidant gene NFR2, to be the top cause of acquired resis-
tance to sorafenib, lenvatinib, and regorafenib in HCC cell
lines [107]. HNF1A is a liver-enriched transcription factor
(TF) that regulates cellular homeostasis and metabolism.
Inactivated or mutated HNFIA has been found in HCCs in
patients with negative viral status, female sex, and no cirrhosis
[43, 44, 108]. A specific point mutation (c.A1532>T/
p-Q511L) causes reduced expression, proliferation, migration,
and invasion in HCC cells, while forced expression induces
differentiation of these cells into mature hepatocytes [109].
Additionally, the combinatorial transduction of TFs NF4A,
HNF1A, and FOXA3 was shown to suppress cellular prolif-
eration of HCC cells [110]. Lastly, the transmembrane recep-
tor Janus kinases (JAKs) and the signal transducers STATs are
commonly deregulated in HCC [111]. STAT3 mutations pro-
mote a number of cancer hallmarks, such as proliferation,
angiogenesis, and metastasis [45—48, 112]. Several small mol-
ecule STAT inhibitors, including Stattic, OPB-111077, OPB-
31121, Napabucasin, and AZD9150 are currently in preclini-
cal or phase I clinical trials for HCC [49-53].

Thus, recent NGS-based studies have allowed a compre-
hensive understanding of the somatic mutation landscape of
HCC. Although none of the major mutations are directly
druggable at present, there are several promising candidates
in the pipeline.

Copy Number Alterations

Somatic copy number alterations (SCNAs) result from the
gain or loss of individual genes, or more commonly, entire
chromosomal arms. The molecular consequence of SCNAs is
the potential activation of oncogenes and loss of tumor sup-
pressors, both of which drive carcinogenesis. Multiple studies
have shown that copy number gains in chromosomes 1q and
8¢, and losses in 8p and 17p, are the most frequent chromo-
somal arm level alterations in HCC [104, 113, 114]. Apart
from the arm-level changes, gene-level changes are also im-
portant to identify. The well-known driver oncogenes
CCNDI, FGF19, MYC, MET, VEGFA, MCLI, and TERT
were recently shown to be significantly amplified in HCCs
[104]. Amplification of MYC, a transcription factor known
to regulate all of the programs that are hallmarks of cancer,
is thought to be an early genomic event in liver
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carcinogenesis. It has been found in both chronic liver disease,
and in 70% of viral and alcohol-related HCCs [115]. MYC
amplification at 8q24.1 has been repeatedly associated with
large undifferentiated liver tumors, poor prognosis, metasta-
sis, and HCC recurrence [116—118]. Other well-known CNV
amplifications include RB-regulated transcription factors
E2F1 and E2F3. Amplification of these genes resulted in
spontaneous HCC in murine models, and queries of the
Cancer Genome Atlas (TCGA) datasets revealed a significant
increase in the E2F family gene dosage in tumors of patients
with advanced HCC [119]. Furthermore, copy number in-
creases in matrix metalloproteinase-9 (MMP9), which pro-
motes tumor metastasis via the breakdown of the extracellular
matrix, were also shown to be associated with key clinicopath-
ological features of HCC such as alpha-fetoprotein (AFP) lev-
el, tumor size, differentiation, invasion, and stage [120]. The
selective presence of MMP9 CNVs in tumor tissue over nor-
mal tissue makes it a potentially promising diagnostic bio-
marker for HCC. On the other hand, analysis of HCC tumors
has also revealed significant gene deletions in CDKN2A and
tumor suppressors like ERRFII, NCORI, and RBI [121], the
latter of which is a common mechanism for the development
of HBV and HCV HCCs [122].

Other recently identified clinically significant CNVs in-
clude UBE2QI1, EXT1, WNK2, and JAGGEDI. UBE2QI is
an E2 ubiquitin-conjugating enzyme thought to promote car-
cinogenesis via the p-catenin/EGFR-PI3K-Akt-mTOR signal-
ing pathway. Copy number gains in this gene are associated
with poorer OS and DS [123]. EXT1, which encodes an en-
doplasmic reticulum glycosyltransferase, has previously been
shown to prognosticate breast cancer, cholangiocarcinoma,
and acute lymphoblastic leukemia (ALL). EXT/ mRNA was
recently shown to be correlated with serum AFP, and its up-
regulation was found to be associated with worse DFS [124].
Analysis of 736 primary HCC samples revealed copy number
loss of WNK?2, a potential tumor suppressor, to be associated
with early tumor recurrence, macrophage infiltration, tumor
growth, and metastasis, likely via ERK1/2 signaling activation
[125]. Amplifications of JAGGEDI, which encodes a
NOTCH pathway ligand, were also recently shown to be as-
sociated with poor OS and early HCC recurrence. Lastly, copy
number mutations can also have positive therapeutic conse-
quences. Increased FGF19 copy numbers were associated
with a complete response after sorafenib treatment [126].

Epigenetic Modifications

Epigenetic changes, which can occur via DNA methylation,
histone modification, chromatin remodeling, and non-coding
RNAs, alter the way that genetic code is expressed, rather than
directly affecting the nucleotide sequence. Dysregulated DNA
methylation has been shown to be an important early event in

the pathogenesis of HCC. Studies have noted greater global
hypomethylation in HCC tumor tissue, particularly CpG di-
nucleotides within CpG islands, compared to adjacent tissue,
with anywhere from 500 to 684 CpG sites being significantly
hypermethylated in matched HCC and normal adjacent tissue
comparisons [127, 128]. A 2012 study suggested that these
hypermethylated genes may be good early biomarkers for
HCC, and five randomly selected genes (CDKL2, STEAP4,
HISTIH3G, CDKN2A, and ZNF154) from the top 18
hypermethylated genes in their study were detectable in the
plasma of 63% of patients [127]. A more recent study identi-
fied 6 hypermethylated genes (NEBL, three FAMS55C sites,
GALNT3, and DSE) from 375 HCC samples that, when used
as biomarkers for HCC, achieved a 98% specificity for HCC
[54]. Other individual genes historically found to be
hypermethylated in HCC include APC (81.7%), GTPI
(33.3%), RASSFla (66.7%), p16 (48.3%), COX2 (35.0%),
and Cadherin-1 (CDHI) (33.3%) [55, 127]. A meta-analysis
of 12 relevant HCC studies covering 981 patients showed that
CDH 1 hypermethylation was significantly higher in HCC tis-
sues compared to normal liver and was correlated with worse
OS [56].

Epigenetic changes in HCC can potentially be targeted
using small molecule inhibitors of DNA methytransferases
(DNMTs), which have historically been used in the treatment
of myelodysplastic syndrome. Several first-generation
DNMTs like azacitidine and decitabine have been shown to
reduce tumor formation by inducing hepatic cell differentia-
tion and increasing cell sensitivity to sorafenib in preclinical
studies, with decitabine phase I/II clinical trials revealing ac-
ceptable safety and toxicity [57, 58]. Second-generation
DNMTs like guadecitabine and zebularine were created to
improve upon the short half-lives of first-generation DNMTs
and are also being tested in phase I/II clinical trials [59].

Non-coding RNAs, which include microRNAs (miRNAs)
and long non-coding RNAs (IncRNAs), constitute a well-
studied class of epigenetic regulators in HCC. Upregulated
expression of mIR-21, mIR-221/222, and mIR-224 have been
associated with increased HCC proliferation and migration,
while decreased expression of mIR-26, mIR-122, and mIR-
199 have been shown to suppress HCC proliferation and an-
giogenesis [60]. The downregulated expression of mIR 200a
was also recently shown to inhibit cell growth, migration, and
invasion [61]. These miRNAs may prove to be promising
therapeutic targets. Anti-mIR-221 is currently in pre-clinical
trials, and treatment with miravirsen, a mIR 122 inhibitor that
has completed phase Ila trials, resulted in a substantial and
prolonged decrease in plasma mIR-122 in patients with
HCV [62, 65]. Notable upregulated IncRNAs include HULC
and HOTAIR [63, 64]. HULC is thought to promote HCC
proliferation and carcinogenesis indirectly by activating the
CREB transcription factor and is also associated with the
epithelial-to-mesenchymal transition and angiogenesis [63].
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HOTAIR, on the other hand, is thought to maintain the tumor
microenvironment via CCL2 expression [64], and its loss was
shown to sensitize HCC cells lines to chemotherapy [63, 129].
Histones are protein octamers that help to condense DNA.
Modifications to the histone tails that protrude from the DNA/
histone nucleosome structure play an important role in the
regulation of gene transcription and expression. The place-
ment and removal of acetyl groups from these histone tails
by histone acetyltransferases (HATs) and histone deacetylases
(HDAC:S) are often dysregulated in HCC. Even though in-
creased expression of histone deacetylase 3 (HDAC3) has
repeatedly been shown to promote HCC proliferation and pre-
dict HCC recurrence, deficiency of HDAC3 was recently
shown to promote HCC carcinogenesis in a murine model
via a defect in the H3K9ac/H3K9me3 transition [130, 131].
Upregulated HDACs 1 and 2 have also been shown to predict
mortality in patients with HCC, and they may regulate doxo-
rubicin sensitivity in HCC cell lines [132]. Although they
have been used in the treatment of hematological malignan-
cies, HDAC inhibitors have unknown efficacy in HCC.
Panobinostat is currently in the preclinical phase of investiga-
tion, whereas Belinostat, Resminostat, and CUDC-101 are
currently in phase I/II clinical trials [66, 67, 133, 134].

Gene Signatures

Transcriptomic studies in HCC have helped identify gene sig-
natures, or clusters of differentially expressed genes, that can
diagnose and prognosticate HCC, and also predict therapeutic
response. Historically, gene signatures in HCC have focused
on hepatocyte proliferation gene clusters and the EPCAM-
positive hepatic cancer stem cell (hCSC) gene clusters. The
proliferation cluster, which is expressed across a broad spec-
trum of human malignancies, includes the A- and B-type
cyclins that control the cell cycle at G1/S and/or G2/M tran-
sition (CCNA2, CCNB2), cell division cycle proteins (CDC2,
CDC7, CDC14, CDC20), heterohexamer DNA helicase
minichromosome maintenance protein complex (MCM3-7),
proliferating cell nuclear antigen (PCNA), and DNA topo-
isomerase 2 « (TOP2A), among others [135, 136]. HCCs that
express this gene signature, which largely mirrors a c-MYC-
regulated gene signature, are associated with poorer OS and
were more likely to also have decreased expression of liver-
specific genes that promoted hepatocyte dedifferentiation.
The hCSC gene cluster, on the other hand, was more likely
to have increased expression of cell adhesion molecule
EpCAM, epithelial marker CK 19, and AFP and has clinically
been associated with chemotherapeutic resistance [137, 138].
A recent study determined that EpCAM-regulated
intramembrane proteolysis helps to drive the hCSC signature
and can potentially be targeted for inhibition in HBV-HCCs
[68]. The molecular consequence of an hCSC gene signature
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is de-differentiation of tissues and loss of epithelial morphol-
ogy, both of which promote malignant tumor behaviors and
predict a worse prognosis for patients with HCC [69].
Moreover, hCSC signatures may also be correlated with che-
mokine networks thought to create a hospitable inflammatory
niche for tumor progression and metastasis [70]. A recent
study identified an eight gene signature (7K1, CTTN,
CEP72, TRIP13, FTHI, FLADI, CHRM2, AMBP) in HBV-
HCC tumors similar to that found in a previous study that is
controlled by transcription factor OCT4, which is abundantly
expressed in pluripotent stem cells [71].

Several clinically meaningful gene signatures have recently
been identified. Through the application of two different algo-
rithms to screen for differentially expressed genes in paired and
unpaired HCC, Zhang et al. identified a 14-gene signature in the
cell cycle-related gene cluster (BIRCS5, BUBIB, CDC45, DTL,
GINS2, KIF23, KIF2C, MAD2L1, MCM4, OIPS5, PLK4,
PTTGI, and ZWINT) that predicts poor OS and HCC recur-
rence [72]. Another study revealed evidence of network
reprogramming in carbon metabolism and cancer pathway
genes through the identification of a 22-carbon metabolism
gene signature that predicts poorer OS and DFS [73]. Li et al.
identified a DNA repair-related prognostic signature of seven
genes (ADA, FENI, POLR2G, SAC3D1, UPF3B, SF3A3, and
SEC61A1) that, when used to stratify patients into high-risk and
low-risk groups, predicts survival in HCC [74]. None of the
gene signatures have yet been validated or approved for clinical
use, but significant progress is being made towards this goal.

Proteomics

Genetic, epigenetic, and post-translational dysregulation in
HCC ultimately results in changes in protein expression levels
and protein-protein interactions. Early proteomic studies in
HCC, while useful in identifying potential protein targets relat-
ed to early HCC diagnosis, were limited by smaller sample
sizes, lack of validation, and absence of additional functional
characterization [75]. These limitations have largely been ad-
dressed by advances in high-throughput protein analysis tech-
niques and have resulted in detailed proteomic maps of HCC.
Recently, a proteomic and phosphoproteomic comparison be-
tween 110 paired HBV-HCC and non-tumor tissues revealed
enrichment of cell cycle, integrin, PDGF signaling, MAPK,
TNF, and MET pathways, as well as hyperphosphorylation of
the p38, RHO, myosin, RB1, and IL1 pathways [139].
Metabolic reprogramming was found to be a key feature of
HBV-HCC 1 on paired tumor and adjacent non-tumor liver
tissues of 316 patients [140]. Forty-two proteins known to play
a role in amino acid metabolism and oxidoreductase activity
were dysregulated in HCC. Importantly, the study found that
with the exception of a few key metabolic enzymes (SOATI,
SOAT2, GLS, GLUD2), most proteins in liver-specific
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pathways, including gluconeogenesis, detoxification, and
ureagenesis-ammonia, were significantly decreased in tumors.

Many other proteomic studies are focused on identifying
protein targets for either diagnostic or therapeutic purposes.
Using an absolute quantitation-based multidimensional liquid
chromatography-tandem mass spectrometry technique, Liu
et al. identified 27 differentially abundant proteins, mostly in
the ERK1/2 and nuclear factor-? beta (NF-KB) pathways, in
the serum of patients post-radical resection that were associ-
ated with HCC early recurrence [141]. PGK1, a glycolysis
enzyme that has been detected in the serum of patients with
a broad spectrum of malignancies [76], was specifically iden-
tified as an independent predictor of HCC recurrence and OS.
Zhao et al. used a high-throughput urinary proteome analysis
platform to compare the urine of 74 HCC and 82 high-risk
patients with HBV-HCC to identify seven features that distin-
guish HCC from the high-risk control population in a non-
invasive fashion [77]. Thus, large-scale proteomics are adding
to our understanding of the functional pathways activated in
HCCs and are identifying promising diagnostic and predictive
biomarkers for HCC.

Conclusions

HCC is a heterogeneous disease with such a complex genomic
landscape. Understanding the molecular drivers of HCC car-
cinogenesis is essential both to identify biomarkers and to
develop molecular targeted therapies. Promising new devel-
opments in this field is enabling us to develop therapies that
can target the various drivers of HCC and evolve personalized
therapeutic strategies. Future genomic studies promise to ad-
vance our understanding of this malignancy in meaningful
ways and will hopefully ultimately lead to improvement in
clinical outcomes for patients with HCC.
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