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Abstract

Purpose of the Review This review aims to elucidate the transformative impact and potential of machine learning (ML)
in the diagnosis, prognosis, and clinical management of myelodysplastic syndromes (MDS) and acute myeloid leukemia
(AML). It further aims to bridge the gap between current advances of ML and their practical application in these diseases.
Recent Findings Recent advances in ML have revolutionized prognostication, diagnosis, and treatment of MDS and AML.
ML algorithms have proven effective in predicting disease progression, optimizing treatment responses, and in the stratifi-
cation of patient groups. Particularly, the use of ML in genomic and epigenomic data analysis has unveiled novel insights
into the molecular heterogeneity of MDS and AML, leading to better-informed therapeutic strategies. Furthermore, deep
learning techniques have shown promise in analyzing complex patterns in bone marrow biopsy images, providing a potential
pathway towards early and accurate diagnosis.

Summary While still in the nascent stages, ML applications in MDS and AML signify a paradigm shift towards precision
medicine. The integration of ML with traditional clinical practices could potentially enhance diagnostic accuracy, refine
risk stratification, and improve therapeutic approaches. However, challenges related to data privacy, standardization, and
algorithm interpretability must be addressed to realize the full potential of ML in this field. Future research should focus on
the development of robust, transparent ML models and their ethical implementation in clinical settings.
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Introduction

Hematologic malignancies such as acute myeloid leukemia
(AML) and myelocytic dysplastic syndrome (MDS) are
complex and heterogeneous diseases that present signifi-
cant challenges to oncologists and researchers [1-3]. These
diseases involve various clinical and molecular alterations
that contribute to treatment resistance and relapse, making
it difficult to understand the disease and improve patient
outcomes [4, 5].
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Fortunately, recent advancements in artificial intelligence
(AI) and machine learning (ML) offer hope in overcom-
ing these challenges. AI and ML are technologies that use
computer algorithms to mimic human thinking and learn-
ing processes, and they have shown tremendous potential in
healthcare [6, 7]. AI and ML are often confused, but ML is
a branch of Al that involves models or algorithms that can
learn from data and perform tasks more flexibly than being
directly programmed [8]. As the volume and complexity of
medical data increase, Al and ML can extract useful results
from vast amounts of data, accelerate discovery, optimize
patient care, and reduce human labor in the medical field [9].

In the case of hematologic malignancies, Al and ML have
shown promise in diagnosis, risk stratification, predicting
prognosis, and treatment and drug discovery [9]. For exam-
ple, Al can analyze patient data and predict the likelihood of
relapse or response to therapy, helping oncologists to make
informed decisions about treatment [10]. Al can also identify
genetic mutations that contribute to drug resistance, leading
to the development of more effective treatments [11].
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This review article aims to explore the potential of Al in
AML/MDS and how it can revolutionize the management
of these complex diseases. With the growing availability of
electronic medical records and genomic data, Al and ML
offer exciting opportunities to transform healthcare and
improve patient outcomes in hematologic malignancies.

A Brief Introduction to Al Terminologies
Machine Learning

The field of Al has made significant strides in recent years,
with ML being a prominent area of application in healthcare.
ML algorithms can process a wide range of data types, either
individually or in combination, to produce outcomes that are
not easily achievable through traditional methods.
Supervised and unsupervised algorithms are two types of ML
algorithms that are widely used in healthcare applications [12,
13]. In supervised algorithms, the desired outcome is known,
and the algorithm is trained to achieve the best results possible.
This is typically accomplished through the use of regression or
classification techniques. In contrast, unsupervised algorithms
are used when the desired outcome is unknown, and the algo-
rithm is trained to explore and identify new patterns in the data.
Unsupervised algorithms can be used to identify novel features
within histological sections to diagnose specific diseases that
have not been identified previously. Despite the potential ben-
efits, it is crucial to note that the use of unsupervised algorithms
requires careful consideration by domain experts to determine
if the results are meaningful or not. Nevertheless, the use of ML
in healthcare continues to be an exciting and growing area of
research that holds promise for improving patient outcomes in
hematologic malignancies and other diseases [14].

Deep Learning

Deep learning (DL) has been widely adopted in healthcare
due to its ability to analyze complex and heterogeneous data
sets, including text, images, and numerical data [15]. DL is
based on neural network algorithms, inspired by the neu-
ronal system in the human body. These algorithms consist
of an input layer that receives various types of data, a hid-
den layer that processes the input, and an output layer that
produces the desired results.

One type of neural network algorithm that has been
widely used in healthcare is the convolutional neural net-
work (CNN), which is commonly used for image analysis.
CNNs are designed with convolutional layers that extract
features from images, similar to the way the human visual
system works. Radiologists have benefited the most from Al,
with CNNs used for X-ray interpretation and the diagnosis of
various radiological images [16ee]. Moreover, CNNs have
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been used in histopathology to classify and predict the out-
come of different pathologies and tumors, including evalua-
tion of normal and abnormal cells in the bone marrow [17].

Another type of neural network algorithm is the recurrent
neural network (RNN), which is typically used in natural lan-
guage processing. The RNN algorithm is suitable for sequen-
tial tasks as it can remember previous inputs and use them to
guide the processing of the following task. For instance, RNNs
have been used to predict the development of complications or
mortality in patients by analyzing electronic medical records.
Moreover, RNNs have been used to predict the response to
hypomethylating agents in MDS patients using 90-day com-
plete blood count (CBC) data [18ee].

Transformer Models

Transformers are a type of neural network architecture that
has become increasingly popular in natural language pro-
cessing tasks such as language translation, text summariza-
tion, and question-answering. However, their application has
now extended to other fields, including healthcare [19, 20].
Transformers have shown promising results in tasks such as
medical image analysis, clinical diagnosis, and electronic
health record analysis. These models have the ability to learn
complex relationships in large datasets, making them a valu-
able tool for data-driven healthcare. These algorithms are
the backbone of recent advances in Al that include large
language models such as ChatGPT [19, 21, 22e, 23].

Machine Learning in AML and MDS

Artificial intelligence (AI) has shown promise in this field,
with potential applications for diagnosis, risk stratification,
predicting prognosis, and treatment and drug discovery.
With the increasing volume and complexity of medical data,
Al could help extract useful results from this vast amount
of data, accelerating discovery, optimizing patient care, and
reducing human labor in the medical field, specifically for
hematological disorders. The application of Al in AML and
MDS can be summarized in several aspects as shown below.

ML in Diagnosis

Computer vision has the potential to provide a more objec-
tive and standardized analysis of images and other types
of data than traditional methods. Several studies have used
computer vision to analyze bone marrow aspirate and biopsy
images, as well as peripheral blood smears and flow cytom-
etry data to improve the diagnostic accuracy of MDS and
AML (Table 1).

Kimura et al. used a DL algorithm to analyze periph-
eral blood smear images from 3261 patients with various
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hematological disorders, including MDS and AML. The
algorithm achieved an overall area under the curve of 0.99
[24]. Acevedo A et al. used convolutional neural network
(dsyplasiaNet) to analyze 20,670 images to differentiate
MDS with a sensitivity of 95.5%, specificity of 94.3%, and
a global accuracy of 95% (Table 1) [25]. Another study by
Eckardt et al. used a machine learning algorithm to analyze
bone marrow aspirate images from AML, and APL patients
as well as healthy donors. The algorithm was able to distin-
guish APL and AML from healthy donors with AUC of 0.86
and 0.96, respectively (Table 1) [26].

Other researchers tried to use different types of data to
improve the diagnostic accuracy of MDS and AML. Rada-
kovich N et al. used clinical data from CBC and genomic
data to build a ML to distinguish MDS from other myeloid
malignancies. The authors used an explainable ML approach
to identify 15 clinical and genomic data that were used to
build the final model. When applied to the test and valida-
tion cohorts, the model achieved AUROC of 0.951 (0.934
to 0.966) for test cohorts, and AUROC of 0.926 (0.916 to
0.937) for the training cohorts without the need to have a
bone marrow biopsy data [27]. Using explainable ML, the
authors also showed that when NGS data and patient sex
were used as inputs, the model was able to predict whether
the patient has a complex karyotype with AUROC of 0.821,
normal karyotype with an AUROC of 0.790, and abnormal
karyotype with an AUROC of 0.761 [27]. In another study,
Warnat-Herrsethal S et al. used RNA-seq data from 105 dif-
ferent studies to differentiate AML and MDS from other
myeloid malignancies. The final model mean accuracy was
0.99. Further, the model was able to distinguish AML sub-
types with mean accuracy of 0.92-0.97 across three different
datasets [28e].

ML in Prognosis

Machine learning models that predict survival for patients
with myelodysplastic syndromes and acute myeloid leu-
kemia are becoming increasingly important in the field of
hematology. These models can analyze vast amounts of
data and identify prognostic factors that are often difficult
to detect using traditional methods. By providing more accu-
rate and personalized prognostic information, these models
can aid in treatment decision-making and ultimately improve
patient outcomes (Table 2).

Nazha A et al. developed a personalized prediction model
to risk stratify patients with MDS based on their unique
clinical and molecular characteristics. The researchers used
a cohort of 1471 MDS patients to develop the model and
validate it in multiple patient cohorts from different aca-
demic centers in the USA, which incorporated various fac-
tors such as age, cytogenetics, and gene mutations. The per-
sonalized model demonstrated a higher C-index of 0.74 in
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predicting overall survival compared to the commonly used
Revised International Prognostic Scoring System (IPSS-R)
with a C-index of 0.66. Moreover, the personalized model
improved risk stratification and patient outcome prediction,
especially for those with low-risk IPSS-R scores [29ee].

Eckardt J et al. developed machine learning models to
predict complete remission and 2-year overall survival in a
large cohort of 1383 AML patients who received intensive
induction therapy [30]. Nine machine learning models were
used to predict the outcomes, incorporating clinical, labo-
ratory, cytogenetic, and molecular genetic data [30]. The
models identified significant predictive markers for com-
plete remission and 2-year overall survival, including estab-
lished markers of favorable or adverse risk and markers of
controversial relevance. The models showed feasibility for
risk stratification in AML, demonstrating the clinical appli-
cability of machine learning as a decision support system
in hematology [30]. The areas under the receiver operating
characteristic curves ranged between 0.77 and 0.86 for com-
plete remission and between 0.63 and 0.74 for 2-year overall
survival in the test set, and between 0.71-0.80 and 0.65-0.75
in the external validation cohort [30].

In another study, Tazi Y et al. aimed to integrate AML
molecular classes into prognostic models for clinical man-
agement [31]. The researchers compared prognostic mod-
els based on genetic features to class-based models and
found that a simple model based on class membership and
FLT3ITD status captures the same prognostic information
as more complex genetic models [31]. They also included
clinical features such as age, gender, blast, antecedent
hematologic disorder, performance status, white blood
cells, hemoglobin, and platelet, which achieved the high-
est improvement in model discrimination [31]. The study
also presented a multi-state model for disease progression
that provides a detailed resolution of anticipated transitions
across molecular subgroups and endpoint-specific outcomes
for different AML classes [31].

ML in Treatment Selection and Drug Discovery

Machine learning plays a crucial role in predicting response to
cancer treatment and drug discovery by analyzing large datasets
and identifying patterns that can inform treatment decisions.
Its ability to rapidly process and integrate diverse data sources,
such as genomics, proteomics, and clinical records, can accel-
erate the development of precision medicine approaches and
ultimately improve patient outcomes (Table 3).

In a recent study by Radakovich et al. (2022), machine
learning approaches were used to predict the response of
myelodysplastic patients to hypomethylating agents [18ee].
The study analyzed serial complete blood count data over
a 90-day period from 514 patients, using 5-cross-folds and
multiple models including RF, GBDT, XGBoost, lightGBM,
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RNN, and CNN. The results showed that RF, XGBoost, and
lightGBM models had higher AUROC and precision-recall
AUROC values in the training/test set, with the random for-
est model showing the highest values [18e].The independent
validation set also confirmed the robustness of these models,
with improved AUROC and precision-recall AUROC val-
ues. However, due to poor performance, the RNN and CNN
models were excluded from the analysis [18ee]. These find-
ings suggest that machine learning approaches can be valu-
able tools for predicting patient response to cancer treatment,
potentially leading to improved clinical outcomes.

Fuse et al. (2019) aimed to develop a machine learning
algorithm to predict relapse in acute leukemia patients who
had undergone allogeneic hematopoietic stem cell transplan-
tation, while accounting for various prognostic factors [32].
The researchers used an alternating decision tree model and
found that the algorithm achieved an accuracy of 78.4%,
and AUC of 0.746, in the training set [32]. However, the
performance of the model decreased in the validation set,
with an accuracy of 71.0%, and AUC of 0.667. The model
also identified the branching point of patients, indicating the
optimal time to adjust treatment plans and improve patient
management [32].

The study conducted by Shouval et al. (2015) aimed to
predict the 100-day post-HSCT mortality using machine
learning techniques in a large cohort of 28,236 patients,
with a validation cohort of 19,765 patients and a test cohort
of 8471 patients [33].The study employed an alternating
decision tree model, which achieved an AUC of 0.697 for
predicting the 100-day mortality, comparable to the Cox
regression model [33]. Moreover, the machine learning
model achieved an AUC of 0.648 for predicting the 2-year
overall survival, close to the AUC of 0.653 obtained by the
Cox regression model [33]. Herold et al. (2018) developed
a machine learning classifier to predict resistance to AML
treatment using a combination of clinical and laboratory var-
iables [34]. The LASSO model identified several significant
predictors, including PS29MRCdic, age, NPM 1, RUNX1,
and TP53 mutations, with PS29MRCdic having the highest
predictive power [34]. The classifier achieved an accuracy
of 77% in categorizing AML patients as high or low risk for
treatment resistance, which could improve risk stratification
and ultimately lead to better treatment outcomes [34].

In another study, Nazha et al. developed a novel frame-
work to explore the association of multiple mutations with
resistance to hypomethylating agents (HMAS) in patients
with MDS [35]. The approach is analogous to recommender
systems used in commerce, in which customers who buy
products A and B are likely to buy C [35]. The authors
screened a cohort of 433 patients with MDS who received
HMAs for the presence of common myeloid mutations in
29 genes obtained before therapy. The Apriori market bas-
ket analysis algorithm was used to assess the association

between mutations and response. The authors identified sev-
eral genomic combinations that were highly associated with
no response [35]. These molecular signatures were present
in 30% of patients with three or more mutations per sample
and had an accuracy rate of 87% in the training cohort and
93% in the validation cohort [35].

Challenges and Limitations of Al
in Healthcare

While the application of ML in healthcare holds immense
potential for improving diagnostics, treatment planning, and
patient outcomes, several significant challenges and limita-
tions persist. A primary constraint is the quality of data uti-
lized in the predictive models. Inaccurate, incomplete, or
biased data can lead to flawed predictions, potentially jeopard-
izing patient’s outcomes. Additionally, the lack of inclusion of
socioeconomic factors in these models often results in solu-
tions that are not universally applicable, potentially reinforc-
ing health inequities. This is because these models typically
fail to consider how variables such as income, education, and
geography might influence health outcomes. On the ethical
and legal front, using information derived from ML models
presents another challenge. The use of patient data raises con-
cerns about privacy and consent, and the opacity of some
machine learning processes (often referred to as the “black
box” problem) may lead to decision-making processes that are
not transparent or explainable. Furthermore, the legal respon-
sibility when Al-driven decisions lead to incorrect diagnosis
or treatment remains a largely unexplored and contentious
issue. Balancing these challenges with the potential benefits
of ML is a crucial task for healthcare professionals, data sci-
entists, ethicists, and policymakers alike.

Specific Challenges for the Application of Al in AML/
MDS

The application of Al in the research and clinical realms of
AML and MDS presents a multifaceted array of challenges.
Notably, the limited datasets available for these conditions
can hinder the development and refinement of Al models.
The scarcity of data becomes especially pronounced when
considering the intricate nuances and subtypes of these
malignancies. Furthermore, the diagnosis of MDS based on
histological slides is inherently challenging due to the sub-
tle morphological changes that characterize the condition.
Employing computer vision algorithms to identify blasts
or dysplastic cells can lead to misleading results given the
nuanced variations that even experienced hematopatholo-
gists sometimes grapple with. Additionally, there is a per-
tinent risk associated with biases in the available data. If
datasets used to train Al models predominantly represent
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certain patient demographics or disease subtypes, the result-
ant models can produce skewed or non-generalizable out-
comes. As such, while Al offers promise in revolutionizing
AML and MDS research, it is imperative to approach its
integration with a discerning and critical lens.

Future Directions for Al and Machine Learning
in Healthcare and Oncology

The future of Al and ML in healthcare appears promising,
with the potential to reshape various aspects of care delivery,
disease prevention, and health promotion. The integration of
large language models (LLMS) can significantly contribute
to this transformation. LLMS, with their capacity to learn
and adapt over time, can enhance AI’s potential in health-
care, allowing it to provide dynamic solutions that evolve with
new data and changing contexts. This could lead to improved
prediction and diagnosis of diseases, personalized treatment
plans, and the optimization of healthcare operations.

The continuous learning feature of LLMS could help
address one of the key challenges in healthcare: data het-
erogeneity and temporality. These algorithms could accom-
modate and learn from the constantly evolving nature of
patient data, therefore refining their predictive models over
time. This evolution could lead to more precise, personal-
ized care that adjusts to patients’ changing health conditions.

To optimize the outcome of using Al in healthcare, several
next steps should be considered. Firstly, ensuring the qual-
ity of data inputted into the models should be prioritized, as
the performance of Al and ML models heavily relies on the
accuracy and completeness of the data they are trained on.
Moreover, to address the problem of model interpretability
or the “black box” issue, efforts should be directed towards
developing explainable Al models. This would allow health-
care professionals to understand and validate the predictions
made by these models, thereby building trust and promoting
their wider adoption. Lastly, it’s crucial to establish legal and
ethical guidelines for the use of Al and ML in healthcare.
These should include procedures for obtaining informed con-
sent from patients, safeguards to protect patient privacy, and
regulations defining the responsibilities of different stakehold-
ers when Al-driven decisions lead to medical errors.

The future of Al in the realms of MDS and AML is
undeniably promising. Envisioning a new era of preci-
sion medicine and large language models that are poised to
enhance diagnostic accuracy by processing vast amounts of
medical literature, patient data, and clinical insights. More
revolutionary, however, is the emergence of multimodal Al
approaches, which can use image-based, clinical, genomic,
and other types of data. By synthesizing information from
histopathological slides, patient clinical histories, and
genomic markers, these models offer unparalleled granular-
ity in diagnosis and prognosis. As the fields of hematology
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and Al converge, a new paradigm of patient-centric, data-
driven care emerges, holding the potential to radically trans-
form the management of MDS and AML.

Conclusion

In summary, the article discusses the application of Al in
AML and MDS and the potential benefits it can offer not
only in these diseases but across many other specialties in
healthcare. These benefits include improved accuracy and
efficiency in diagnoses, personalized treatment plans, and
enhanced patient outcomes.

Further, the article emphasizes that Al has enormous
potential to revolutionize healthcare by improving the qual-
ity and efficiency of care. However, careful consideration
and planning are necessary to ensure that Al is integrated
responsibly and effectively into healthcare systems. This
requires collaboration between healthcare providers, data
scientists, policymakers, and patients to address the chal-
lenges and limitations of Al and leverage its potential to
improve healthcare outcomes for all.
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