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Abstract
Purpose of Review Right ventricular (RV) failure is increasingly recognized as a major cause of morbidity and mortality. 
When RV failure is refractory to medical therapy, escalation to right-sided mechanical circulatory support (MCS) should 
be considered. In this review, we begin by recapitulating the hemodynamics of RV failure, then we delve into current and 
future right-sided MCS devices and describe their hemodynamic profiles.
Recent Findings The field of temporary right-sided MCS continues to expand, with evolving strategies and new devices 
actively under development. All right-sided MCS devices bypass the RV, with each bypass configuration conferring a unique 
hemodynamic profile. Devices that aspirate blood directly from the RV, as opposed to the RA or the IVC, have more favorable 
hemodynamics and more effective RV unloading. There has been a growing interest in single-access MCS devices which 
do not restrict patient mobility. Additionally, a first-of-its-kind percutaneous, pulsatile, right-sided MCS device (PERKAT 
RV) is currently undergoing investigation in humans.
Summary Prompt recognition of refractory RV failure and deployment of right-sided MCS can improve outcomes. The field 
of right-sided MCS is rapidly evolving, with ongoing efforts dedicated towards developing novel temporary devices that are 
single access, allow for patient mobility, and directly unload the RV, as well as more durable devices.

Keywords Mechanical circulatory support · Right-sided · Right ventricle · Right ventricular failure · Right ventricular 
assist device (RVAD) · Hemodynamics

Introduction

Right ventricular (RV) failure is a major cause of morbidity 
and mortality. Once a marginalized chamber, there has been 
mounting evidence for the prognostic importance of RV fail-
ure in various disease states, including myocardial infarction 
(MI), cardiogenic shock, pulmonary embolism (PE), pul-
monary hypertension (PH), chronic left-sided heart failure, 
valvular disease, congenital heart disease, after implantation 

of durable left-ventricular assist devices (LVAD), and in the 
acute respiratory distress syndrome [1–11].

RV failure can manifest acutely with profound hemody-
namic compromise, but it can also present insidiously with 
progressive end-organ dysfunction – ultimately leading 
to increased mortality [12]. The first attempt at managing 
RV failure is often medical therapy, which centers around 
treating reversible causes, optimizing the failing RV’s load-
ing conditions, and augmenting its contractility. Not infre-
quently, however, RV failure can be refractory to medical 
therapy alone. In these cases, mechanical circulatory sup-
port (MCS) should be considered to restore adequate sys-
temic perfusion and promote decongestion. When promptly 
deployed, right-sided MCS has been shown to improve 
short-term survival [13–16].

Prior to delving into current right-sided MCS options and 
their hemodynamic impact, it is important to review normal 
RV mechanics, the different mechanisms of RV failure, and 
the associated hemodynamics. Some of these topics have 
been discussed in greater detail in other parts of this issue, 
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but a brief overview within the framework of the RV pres-
sure–volume domain will facilitate understanding of differ-
ent right-sided MCS strategies in different clinical settings.

RV Failure – Mechanisms, Hemodynamics, 
and Diagnosis

Pathological changes of RV preload, afterload, or contrac-
tility can lead to RV failure, especially when they persist 
for prolonged periods of time. RV preload and afterload 
can be quantified via right heart catheterization (RHC), 
which provides direct measurements of RV, pulmonary 
artery (PA), and wedge pressures, as well as cardiac out-
put, the latter of which is used to assess pulmonary vas-
cular resistance [17]. While RHC-derived end-diastolic 
pressures can be an adequate estimation of preload, it is 
important to note that RHC-derived PA pressures offer 
one measure of RV afterload. Indexes such as resistance, 
compliance, and impedance allow for characterization 
of pulmonary vasculature properties independent of RV 
preload and contractility [18]. RV contractility is tradi-
tionally assessed via noninvasive imaging – commonly 
echocardiography and cardiac magnetic resonance imag-
ing. However, measures of RV function derived from non-
invasive imaging – including stroke volume (SV), ejec-
tion fraction (EF), fractional area change (FAC), tricuspid 
annular systolic velocity (S′), and tricuspid annular plane 
systolic excursion (TAPSE) – are all dependent on loading 
conditions and, thus, not reliable estimates of contractil-
ity [19]. Assessment of RV end-systolic elastance (Ees) 

via pressure–volume (PV) analysis, where a conductance 
catheter is placed within the RV, is considered the gold 
standard, load-independent index for quantifying RV con-
tractility (Fig. 1A, B) [20]. PV analysis is also the most 
accurate means of assessing diastolic function as well 
as the efficiency of ventriculo-arterial interactions (i.e., 
RV-PA coupling) [21].

Under normal physiologic conditions, the RV is cou-
pled to a low-resistance and high-compliance pulmonary 
circulation. In contrast to normal left ventricular (LV) 
physiology, the isovolumetric contraction and relaxation 
phases can be very brief. In addition, blood continues to 
flow out of the RV after the point of peak elastance on the 
PV diagram, such that the end-ejection and end-systolic 
coordinates are considerably different. As such, pressure 
at end-ejection may decay to the point that it approaches 
the end-diastolic pressure, giving the normal RV PV loop 
its prototypical, trapezoidal shape [22] (Fig. 1A). Like 
the LV, when transitioning from rest to peak exercise, the 
normal RV has the ability to substantially augment con-
tractility and lusitropy. In a study of 9 healthy individuals 
who underwent invasive PV loop assessment during car-
diopulmonary exercise testing, RV dP/dtmax, the rate of 
change of systolic pressure (i.e., contractility), increased 
fourfold from rest to peak exercise, and dP/dtmin, the rate 
of change of diastolic pressure (i.e., lusitropy), increased 
threefold from rest to peak exercise [23].

While volume overload, pressure overload, and reduced 
contractility often co-occur in various forms of RV failure, 
for the purpose of simplicity, we will briefly review the 
hemodynamics of each state separately.

Fig. 1  Basic elements of the right ventricular pressure–volume loop. 
Two fundamental relationships create boundaries for the pressure–
volume (PV) loop: the end-systolic PV relationship (ESPVR), which 
describes ventricular contractile properties, and the end-diastolic PV 
relationship (EDPVR), which describes ventricular diastolic func-
tion (A). ESPVR connects the ESPV coordinate with the volume-
axis intercept (V0), or the unstressed blood volume of the ventricle. 
Afterload can be characterized by the effective arterial elastance 
(Ea), which connects the end-systolic coordinates and the V0 at end-
diastolic volume (Ved, 0). The slope of the ESPVR is also known as 

end-systolic elastance (Ees) and is a measure of right ventricular (RV) 
contractility. The ratio of Ees to Ea represents an index of RV-pulmo-
nary arterial (PA) coupling, which reflects the efficiency of energy 
transfer from the RV to the PA (B). The PV loop also provides a basis 
for better understanding myocardial energetics. The space within the 
loop is stroke work (SW), and the potential space bound within the 
ESPVR and the EDPVR, but outside the loop, is the potential energy 
(PE). The sum of SW and PE is the PV area (PVA), which correlates 
with total mechanical energy generated by ventricular contraction and 
is linearly related to myocardial oxygen consumption (C)
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The Volume Overloaded RV

The normal RV is a thin-walled compliant chamber (low ΔP/
ΔV ratio) able to accommodate large increases in preload 
without significant changes in pressure. In cases where vol-
ume overload is the primary pathology, such as in primary 
tricuspid regurgitation (TR), pulmonic insufficiency (PI), or 
atrial left-to-right shunting, the shape of the RV PV loop 
resembles that of the normal RV (Fig. 2A) [22, 24]. This 
is only the case, however, for fairly acute changes in vol-
ume. As volume overload becomes more severe and persists 
for longer, progressive RV dilation ensues. This results in 
increased pericardial restraint, increased RV wall tension, 
and increased RV stroke work (SW) which, altogether, ulti-
mately leads to RV systolic dysfunction [25, 26]. Increased 
RV SW leads to an increase in pressure–volume area (PVA), 
which correlates with total mechanical energy generated by 
ventricular contraction and is linearly related to myocardial 
oxygen consumption (Fig. 1C) [27]. In addition, leftward 
shift of the interventricular septum can occur with severe RV 
volume overload, leading to LV diastolic dysfunction, under-
filling, and progressive hemodynamic compromise [28].

The Pressure Overloaded RV

Normally coupled to the low-resistance pulmonary circula-
tion, the RV is poorly adaptable to changes in afterload. The 
PV loop of the pressure-overloaded RV more closely resem-
bles that of the normal LV, with discernable periods of iso-
volumetric relaxation and contraction (Fig. 2B) [22]. An acute 
rise in afterload, such as in massive PE, can lead to rapid 
RV dilation and an abrupt reduction in RV stroke volume. In 
states of chronically elevated afterload, such as in pulmonary 
arterial hypertension, the RV has time to adapt via concentric 
hypertrophy and eccentric remodeling, both of which tend to 

reduce RV wall stress, per Laplace’s law, though this is almost 
always imperfect and wall stress remains elevated [29]. Addi-
tionally, as the pressure overload state persists, the RV loses 
its contractile reserve, undergoes further eccentric remodeling 
and dilation, and ultimately fails [30].

The Hypocontractile RV

Ischemia, whether acute or chronic, and various nonischemic 
cardiomyopathies can result in intrinsic compromise of RV 
contractility. The hypocontractile RV is particularly prone 
to ventriculo-arterial uncoupling in the setting of high after-
load, whereby ventricular SW cannot be efficiently trans-
ferred to the PA, leading to LV underfilling and systemic 
hypotension. This is particularly true when the RV loses 
contractility abruptly, such as with acute RV MI. In extreme 
cases, the RV essentially functions as a passive conduit and 
becomes highly dependent on preload in order to maintain 
adequate LV filling (Fig. 2C).

Diagnosing RV Failure

Despite the wealth of information that can be obtained from 
invasive PV loop analysis, it remains a tool reserved for 
highly specialized research settings. The clinical diagnosis 
of RV failure continues to rely on a combination of findings 
from physical examination, laboratory studies, and nonin-
vasive imaging, as well as RHC-derived hemodynamic data 
[31]. Several hemodynamic measures can be used to detect 
RV dysfunction. These include an elevated right atrial pres-
sure (RAP) to pulmonary artery wedge pressure (PAWP) 
ratio, a low RV stroke work index (RVSWI), and a low pul-
monary artery pulsatility index (PAPi), the latter of which 
has been shown to reflect RV contractile dysfunction at the 
sarcomeric level [32]. While various cutoffs have been found 

Fig. 2  Pressure volume loops reflecting various mechanisms of 
right ventricular failure. The pressure volume (PV) loop of the vol-
ume overloaded right ventricle (RV) resembles that of the normal 
RV, but is rightward shifted along the end-diastolic PV relationship 
(EDPVR), reflecting increased RV end-diastolic volume and pressure 

(A). The PV loop of the pressure overloaded RV more closely resem-
bles that of the left ventricle, with a higher effective arterial elastance 
(Ea) slope, reflecting higher afterload (B). The hypocontractile RV 
has a lower end-systolic PV relationship (ESPVR) slope (known as 
end-systolic elastance or Ees), reflecting loss of contractility (C)
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to be indicative of severe RV failure in different clinical sce-
narios, an RAP/PAWP ratio > 0.86 or PAPi < 1.5 should alert 
the clinician to the potential need for escalation to right-
sided MCS [33, 34].

Right‑Sided Mechanical Circulatory Support

Mechanistically, all right-sided MCS devices support the circu-
lation by bypassing the failing RV, either directly, by drawing 
blood from the RA or RV and transferring it to the PA, or indi-
rectly by shifting blood from the right-sided circulation to the 
left-sided circulation (Table 1). By circumventing the failing RV, 
these devices are able to (1) increase LV preload with the goal 
of augmenting cardiac output (CO) and improving end-organ 
perfusion and (2) decongest the end-organs by unloading the 
right heart.

With few exceptions, right-sided MCS devices rely on a 
rotary pump to generate flow. As for all rotary-flow MCS 
devices, flow (Q) is related to the pump motor’s rotations per 
minute (RPM) and the pressure gradient between its inflow 
(preload) and outflow (afterload) [35]. This pressure gradient 
is referred to as the pressure head (H). As H rises, Q through 
the impeller drops. An understanding of this concept will be 
helpful in understanding device function in different settings.

The majority of right-sided MCS devices are only intended 
for temporary use, and patients receiving them must remain 
in the hospital, often in the intensive care unit setting. Several 
dedicated, surgically implantable, durable right-ventricular 
assist devices (RVADs) have been investigated but did not 
make it to market [36]. As an alternative, the commercially 
available durable LVADs have been used in the right-sided 
position to support long-term isolated RV or biventricular 
failure [37, 38].

Overview of Current Right‑Sided MCS Devices, 
by Bypass Configuration

A) RA to PA

Impella RP The Impella RP (right peripheral; Abiomed Inc., 
Danvers, MA) is a percutaneous, single-access, microaxial-
flow catheter. It uses a 22F pump mounted on an 11F cath-
eter, and it aspirates blood from the RA (inflow) and expels 
it into the PA (outflow), bypassing the RV. The device is 
inserted into a single venous access point (most commonly 
right femoral vein) via a 23F peel-away sheath. It is then 
advanced antegrade, under fluoroscopic guidance over a 
monorail wire, through the tricuspid and pulmonic valves 
and ultimately into the PA. At 33,000 RPM, the Impella 
RP can deliver up to 4 L/min of blood from the RA to the 
PA. It is not compatible with an oxygenator and thus cannot 
be used to support concomitant hypoxic respiratory failure.

The Impella RP was prospectively studied in 2015 in the 
RECOVER RIGHT trial in 30 patients with medically 
refractory RV failure. Impella RP support led to reduction 
in RAP (19.2 ± 0.7 to 12.6 ± 1 mmHg, P < 0.0001), improve-
ment in cardiac index (1.82 ± 0.04 to 3.3 ± 0.23 L/min/m2, 
P < 0.001), and 73% of patients survived to 30 days or hos-
pital discharge [39]. In 2018, Impella RP was prospectively 
studied in a larger cohort of 60 patients (including those 
from the RECOVER RIGHT trial) with redemonstration of 
the aforementioned results [13].

The hemodynamic effects of Impella RP are characterized 
by a reduction in RA pressure, an increase in PA pressures, 
and an increase in LV preload (Fig. 3A–C). Successful use of 
the Impella RP has been reported in RV failure due to acute 
MI, massive PE, post-cardiotomy syndrome, following LVAD 
implantation, and in primary graft dysfunction after orthotopic 
heart transplantation, among others [15, 40–43]. The most 
common adverse events are bleeding and hemolysis [13]. In 
the previously mentioned prospective analysis of 60 patients 
treated with Impella RP, major bleeding events occurred in 
48% of patients and hemolysis occurred in 22% [13]. A nota-
ble limitation of Impella RP is the need for femoral access, 
which limits patient mobility. To allow for patient ambulation, 
a novel version of the Impella RP which can be inserted via 
right internal jugular approach is currently under development.

TandemHeart‑RV Assist Device and Protek Duo Cannula The 
TandemHeart-RVAD is a dual-access, extracorporeal cen-
trifugal-flow pump that can deliver up to 4 L/min of blood 
flow. It uses two 21F cannulae – the tip of one is placed in 
the RA (inflow), typically via left femoral vein approach, and 
the tip of the other is placed into the PA (outflow), typically 
via right femoral vein approach. When anatomic limitations 
preclude delivery of the outflow cannula via the femoral vein 
(e.g., patient height, presence of deep vein thrombosis or infe-
rior vena cava filter), a right internal jugular approach can be 
used [44]. Use of the internal jugular vein ultimately led to 
the development of the Protek Duo cannula, which is a 29F or 
31F dual lumen cannula inserted percutaneously via the right 
internal jugular vein and advanced into the PA [45]. The inflow 
lumen is positioned in the RA and the outflow lumen in the 
PA. These lumens are then attached to the TandemHeart pump 
which facilitates delivery of up to 4 L/min of blood from the 
RA to the PA. The major advantage of the Protek Duo cannula 
is the elimination of femoral access, thus allowing the patient to 
mobilize. Both TandemHeart-RVAD and Protek Duo-Tandem 
Heart can accommodate the introduction of an oxygenator into 
the circuit. Known as “oxy-RVAD,” this configuration can be 
used to support concomitant hypoxic respiratory failure [46]. 
The hemodynamic profile of TandemHeart-RVAD/Protek 
Duo is similar to that of Impella RP, with a reduction of RA 
pressures, an increase in PA pressures, and an increase in LV 
preload (Fig. 3A–C).
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PERKAT RV The PERKAT RV is the first percutaneous, pul-
satile, right-sided MCS device. It is inserted into the femoral 
vein via an 18F catheter, and the outflow portion is advanced 
into the PA under fluoroscopic guidance, bypassing the RV. 
The PERKAT RV system relies on a standard intra-aortic 
balloon pump (IABP) connected to an external IABP con-
sole. The balloon is encased within a 2.2-m self-expand-
ing nitinol stent cage, which itself is covered in one-way 

foil valves. The IABP balloon is electrocardiogram-gated, 
inflating during diastole and deflating during systole. When 
the balloon is deflated, blood flows from the IVC and dis-
tal veins, through the foil valves, into the stent cage. When 
the balloon is then inflated, the foil valves close and blood 
is displaced by the balloon into the PA. The PERKAT RV 
can generate nearly 4 L/min of flow [47, 48•]. Features of 
the PERKAT RV system include its smaller bore access 

Fig. 3  Pressure volume loops reflecting the hemodynamic impact of 
various forms of right-sided mechanical circulatory support. Right 
atrial (RA) to pulmonary artery (PA) bypass (e.g., Impella RP, Pro-
tek Duo) leads to reduction in right-ventricular end-diastolic pressure 
and volume (RVEDP and RVEDV), with concomitant increase in 
right ventricular (RV) afterload (A–C). RV to PA bypass (e.g., Cen-

triMag, Spectrum Medical dual lumen cannula) leads to more effec-
tive RV unloading with further reduction in RV end-systolic volumes 
(D–F). RA to aorta (Ao) bypass (e.g., peripheral VA ECMO) leads to 
reduction in RVEDP without a concomitant increase in RV afterload, 
assuming normal left ventricular function (G–I). EDPVR, the end-
diastolic PV relationship; ESPVR, the end-systolic PV relationship
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compared to other percutaneous right-sided MCS devices, 
as well as its ability to provide pulsatile support to the failing 
RV while avoiding microvascular dysfunction that has been 
reported with continuous flow devices [49]. The PERKAT 
RV was evaluated in an animal model of right heart fail-
ure due to acute PE and was able to increase cardiac output 
by 60%, interestingly with no observed change in mean PA 
pressures [47]. This device is not yet approved for clinical 
use but is currently undergoing investigation in humans.

CentriMag‑RVAD The CentriMag is an extracorporeal centrif-
ugal-flow pump that can generate up to 10 L/min of flow. The 
RA and PA are surgically cannulated via sternotomy or thora-
cotomy [50]. This proximal cannulation allows for the use of 
shorter and larger bore cannulae that facilitate the generation 
of much higher flows than percutaneously deployed devices, 
though this comes with the increased risks of bleeding and 
infection [51]. The clinical settings in which CentriMag-RVAD 
has most commonly been used are post-cardiotomy cardiogenic 
shock, primary graft dysfunction after orthotopic heart trans-
plantation, and RV failure post-LVAD implantation [14].

Durable RVAD Currently, there are no durable devices in clini-
cal use that are specifically designed to support the right heart. 
In cases where long-term, durable, biventricular, or isolated 
right-sided support is needed, the current strategy is to utilize 
an LVAD in the right-sided position, with the inflow can-
nula in the RA or RV, and the outflow cannula in the PA 
[37]. Because the inflow cannula of the LVAD is designed 
to pass through a thicker and more muscular LV apex, its 
use on a much thinner RA or RV can result in protrusion into 
the inflow chamber with resultant frequent suction events. As 
such, the LVAD inflow cannula typically requires shortening 
prior to right-sided implantation, or is not fully inserted into 
the right-sided chamber as it would be into the LV [52]. Addi-
tionally, the high RA pressures and sub-systemic PA pressures 
commonly seen in severe RV failure result in low pressure 
head (H) and high flows (Q) which can further predispose to 
suction events and flow rates that can overwhelm the LV. For 
this reason, the LVAD outflow graft is often also restricted in 
order to increase resistance and reduce flow. There is ongoing 
debate as to whether the inflow cannula should be placed in 
the RV which, in principle, achieves more effective unloading, 
or in the RA which, in principle, potentially minimizes suction 
and pump thrombosis events [37, 53].

B) RV to PA

The hemodynamic profile of RV to PA bypass differs from that 
of RA to PA bypass in important ways. Direct unloading of the 
RV via an RV inflow leads to more effective chamber decompres-
sion and reduction in myocardial afterload to a greater extent 

than seen with an RA inflow (Fig. 3D–F). Additionally, the pres-
sure–volume loops lose their isovolumetric phases, as volume 
decreases during both contraction and relaxation phases due to 
the continuous nature of the flow through the device; as such, the 
loops become more triangular.

Both CentriMag RVAD and durable RVAD – discussed 
above – can be configured such that the inflow cannula is in 
the RV rather than the RA.

Spectrum Medical Dual Lumen RV‑PA Cannula Spectrum 
Medical (Cheltenham, England) recently developed a novel 
dual lumen cannula that directly drains the RV. The can-
nula comes in 31F, 27F, or 24F sizes, which can provide 
approximately 5, 4, and 3 L/min of blood flow, respectively. 
This cannula can be connected to any extracorporeal cir-
cuit containing a rotary-flow pump and an oxygenator. The 
Spectrum cannula is inserted into the right internal jugular 
vein and advanced under fluoroscopy, with the inflow por-
tion positioned in the RV and outflow in the PA. This dual 
lumen cannula provides the double advantage of direct RV 
decompression combined with internal jugular access which 
allows for patient mobilization.

C) RA to Aorta (Ao)

Peripheral VA‑ECMO Venoarterial extracorporeal membrane 
oxygenation (VA-ECMO) is commonly used for isolated LV 
failure or RV failure, biventricular failure, or other causes of 
cardiopulmonary collapse. Peripheral VA-ECMO systems 
typically employ a centrifugal pump which drains blood 
from the venous system, passes it through an oxygenator, 
and reinfuses it back into the arterial system to support both 
circulation and oxygenation. It consists of at least two can-
nulae – a drainage cannula (inflow) within the RA, typi-
cally inserted via a femoral vein approach, and a reinfusion 
cannula within the descending aorta, typically positioned in 
the iliac artery. Advanced ECMO strategies include a triple 
cannulation approach, such as veno-arterial-venous ECMO 
(VAV-ECMO) or veno-venous-arterial ECMO (VVA-
ECMO). VAV-ECMO consists of venous drainage followed 
by reinfusion of oxygenated blood back into both the aorta 
and the RA, with the goal of better supporting oxygenation. 
VVA-ECMO consists of venous drainage from both the IVC 
and either the RA or PA, with reinfusion of blood into the 
aorta, with the goal of better unloading the right heart.

The hemodynamic impact of VA-ECMO on right-sided 
hemodynamics is a reduction in RAP with variable effect on 
PA pressures (Fig. 3G–I). On the one hand, VA-ECMO may 
lead to reduction in PA pressures via right-sided unloading 
and resultant reduction in RV SV. On the other hand, VA-
ECMO increases LV afterload and, in cases of LV dysfunc-
tion, may lead to a significant rise in left atrial pressure (LAP) 
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and secondary post-capillary pulmonary hypertension, if the 
LV is not adequately unloaded. As such, when LV dysfunc-
tion is present, VA-ECMO is often deployed concomitantly 
with another percutaneous device to decompress the LV, 
such as an IABP or left-sided Impella. Left atrial VA-ECMO 
(LAVA-ECMO) is a unique ECMO configuration which uses 
a venous cannula that is inserted from a femoral vein into the 
left atrium via single trans-septal puncture. The cannula has 
multiple fenestrations as it courses through the atria in order 
to unload both the right- and left-sided circulations. It has 
the major advantage of facilitating LV unloading without the 
need for a second device (i.e., IABP or Impella), which would 
require a second point of arterial access [54•, 55].

Special Considerations in Device Selection

Tricuspid Regurgitation

TR often complicates right heart failure. While primary TR 
leading to longstanding volume overload can be the cause of 
RV dysfunction, this accounts for only 8–10% of TR cases [56]. 
Much more commonly, TR is secondary to RV dysfunction caus-
ing progressive tricuspid annular dilatation and leaflet tethering. 
In patients with secondary TR, more severe RV dysfunction is 
associated with worse long-term survival [9]. When right-sided 
MCS devices that traverse the tricuspid valve are used, there is 
concern that existing TR may become worse or that new TR may 
be introduced [57]. However, this should not serve as a deterrent 
to using these devices, for several reasons. First, in the presence 
of an RV bypass device sourcing blood from the RA, TR serves 
to further unload the RV (Fig. 4). Second, by contributing to an 
ongoing state of right-sided preload excess, TR drops the pres-
sure head across rotary-flow MCS devices that directly bypass 
the RV, which leads to stable, if not slightly increased, flows 
through these devices. Third, TR may improve with RV unload-
ing resulting in reversal of tricuspid annular dilatation.

Concomitant LV Dysfunction

The status of the LV is a major consideration when selecting 
a right-sided MCS device, each of which can influence left-
sided hemodynamics. RA-PA and RV-PA bypass devices will 
increase LV preload which, in the presence of LV dysfunction, 
may lead to a significant rise in LAP, pulmonary edema, and 
post-capillary pulmonary hypertension. RA-Ao devices such 
as VA-ECMO can lead to significant increases in LV after-
load pressure, which can result in LV distention and, similarly, 
elevated left-sided filling pressures and pulmonary edema. 
As such, when concomitant LV dysfunction is identified, 
biventricular support should be considered rather than iso-
lated right-sided MCS. Many configurations for biventricular 

support have been employed, including bilateral TandemHeart 
devices, bilateral Impellas (BiPella), TandemHeart-RVAD 
plus left-sided Impella, or VA-ECMO plus LV vent (Impella 
or IABP), among others [58–62]. Although VA-ECMO with 
an LV vent is a commonly used strategy, advantages of the 
BiPella approach are the need for only one arterial access point 
and the ability to explant devices in a step-wise manner to 
monitor need for ongoing support.

Weaning Strategies

Prior to deployment of any MCS, the goal should be clearly 
defined – be that as bridge to recovery, more durable MCS, 
or transplantation. When the goal is recovery, frequent reas-
sessment of the ongoing necessity of MCS is crucial, par-
ticularly given the complications associated with prolonged 
use of these devices. Unlike left-sided MCS for which an 
abundance of device-based weaning protocols have been 
proposed, there is a paucity of data with regards to wean-
ing right-sided MCS. Although there will be variations by 
device type and indication for implant, the general principles 
for readiness-to-wean from right-sided MCS consist of an 
improvement in clinical status, hemodynamic parameters 
(RAP reduction, PAPi elevation), markers of end-organ per-
fusion (kidney and liver function), and ventricular function 
[63]. Weaning success and readiness-to-explant are assessed 
based on stability of the above parameters on minimal 
device flow [40]. Due to challenges with echocardiographic 

Fig. 4  Pressure volume loops reflecting the impact of tricuspid regur-
gitation on the supported right heart. Tricuspid regurgitation (TR) in 
the presence of a right ventricular (RV) bypass device can serve to 
further unload the failing RV and decrease total RV afterload. RVF, 
right ventricular failure; RA, right atrium, PA, pulmonary artery, 
EDPVR, the end-diastolic PV relationship; ESPVR, the end-systolic 
PV relationship

341Current Heart Failure Reports  (2022) 19:334–345

1 3



assessment of RV function – secondary to RV geometry, 
location behind the sternum, and load-dependent hemody-
namics – many studies have not used clear cutoffs to define 
what constitutes a sufficient improvement in RV function. 
With that said, most echocardiographic predictors of suc-
cessful right-sided MCS weaning come from studies on 
VA-ECMO, in which three-dimensional RV EF of > 24.6% 
or improvement in S′ > 10% from baseline have both been 
associated with higher weaning success [64, 65]. Overall, 
weaning protocols for right-sided MCS remains an ongoing 
area of investigation with need for device-based algorithms 
[66].

Conclusion

RV failure is a major cause of morbidity and mortality. 
Prompt recognition of refractory RV failure and deployment 
of right-sided MCS can improve outcomes. All right-sided 
MCS devices bypass the RV, with each bypass configuration 
conferring a unique hemodynamic profile. Devices that aspi-
rate blood directly from the RV, as opposed to the RA or the 
IVC, have more favorable hemodynamics and more effec-
tive RV unloading. The field of right-sided MCS is rapidly 
evolving, with ongoing efforts dedicated towards developing 
novel devices that are single-access and allow for patient 
mobilization, as well as more durable right-sided support.
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