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Abstract
Purpose of Review Pulmonary hypertension due to left heart disease (PH-LHD) is the most common cause of pulmonary
hypertension worldwide, yet therapies used to treat pulmonary arterial hypertension have failed to show efficacy in this popu-
lation. Proper hemodynamic assessment and differentiation of pulmonary hypertension phenotypes is therefore critical for both
current clinical practice and future research and therapeutic efforts.
Recent Findings Substantial recent efforts have sought to improve the hemodynamic characterization of pulmonary hypertension
for both diagnostic and prognostic purposes. These efforts include identifying occult LHD using provocative maneuvers as well
as sub-classifying PH-LHD based on the presence or absence of a pre-capillary component. How to best define the pre-capillary
component remains controversial as several studies have drawn conflicting conclusions. The lack of standardization of hemo-
dynamic measurements as well as measurement fidelity concerns may explain some of the discrepant results. Non-hemodynamic
methods of PH-LHD classification may also have an emerging role. Despite recent advances, therapeutic studies have largely
remained disappointing.
Summary In this review, we discuss the nuances and controversies surrounding diagnostic and prognostic hemodynamic char-
acterization of PH-LHD as well as summarize the recent therapeutic efforts and ongoing challenges in this population.
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Introduction

Pulmonary hypertension (PH) associated with left heart dis-
ease (PH-LHD) is the most common form of PH worldwide
and is associated with a worse prognosis than LHD without
PH. Further, the presence of a pre-capillary component por-
tends an even worse prognosis [1–3]. Despite its increasing
recognition, there is lack of well-defined therapeutic options,
and its hemodynamic assessment provides unique challenges.
Here we review contemporary literature describing the recent
advances in this field and the complexities in the hemodynam-
ic assessment and management of PH-LHD.

Hemodynamic Definition and Classification
of PH-LHD

PH-LHD is defined as a mean pulmonary arterial pressure
(mPAP) ≥ 25 mmHg at rest, in the presence of elevated pul-
monary arterial wedge pressure (PAWP) or left ventricular end
diastolic pressure (LVEDP) > 15 mmHg [2, 4]. An increase in
left-sided filling pressures differentiates this from World
Health Organization (WHO) Group 1 pulmonary arterial hy-
pertension (PAH). PH-LHD can be associated with heart fail-
ure with reduced ejection fraction (HFrEF), HFwith preserved
EF (HFpEF), left-sided valvular disease, or congenital cardio-
myopathies [5].

An increase in PAWP initially causes a passive increase
in pulmonary pressure or “isolated post-capillary PH
(IpcPH)”, where the pulmonary pressures typically nor-
malize with a reduction in PAWP. The diastolic pulmonary
gradient (DPG = diastolic pulmonary artery pressure
[dPAP] − PAWP), the transpulmonary gradient (TPG =
mPAP − PAWP), and the pulmonary vascular resistance
(PVR = TPG/cardiac output [CO]) are not significantly
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elevated (DPG < 7 mmHg, TPG < 12–15 mmHg and PVR
< 3 Woods Unit [WU]) [2].

The prevailing paradigm is that persistent elevation in
PAWP and ongoing heart failure provokes alveolar wall inju-
ry, pulmonary vasoconstriction, and sometimes, remodeling
of the small resistance pulmonary arteries (PA) [6]. This leads
to development of a pre-capillary component where pulmo-
nary pressures increase out of proportion to PAWP. This has
been coined “combined post- and pre-capillary PH (CpcPH)”
and is characterized by an elevated DPG, TPG, and PVR.
Interventions directed towards acute reduction in PAWP may
not necessarily normalize pulmonary pressures [2], and
CpcPH is associated with worse prognosis than IpcPH as well
as LHD without PH [3]. Recent studies investigating hemo-
dynamic classification and outcomes in PH-LHD are summa-
rized in Table 1.

Diastolic Pulmonary Gradient and Updated
Classification of PH-LHD

At the 5th World Symposium on PH in Nice, France, it was
proposed that DPG should be the sole discriminator of
IpcPH (DPG < 7 mmHg) and CpcPH (DPG ≥ 7 mmHg)
[1]. This proposal was based on sound physiologic ratio-
nale: elevated left heart filling pressures lower pulmonary
arterial compliance (PAC) independent of resistive load,
increasing the pulmonary pulse pressure. As pulse pressure
increases, mPAP increases out of proportion to dPAP,
thereby indirectly raising the TPG and PVR [18]. The
DPG is assessed during cardiac diastasis, eliminating con-
tributions of flow state and the arterial Windkessel model.
The dPAP is approximately equal to the PAWP and DPG is
< 5 mmHg in most patients with LHD [8, 19].

Gerges et al. have demonstrated a worse prognosis in pa-
tients with PH-LHD and an elevated DPG ≥ 7 mmHg, both in
the setting of an elevated TPG (≥ 12mmHg) and whenDPG is
considered in isolation [7•, 20]. However, many other studies
have failed to reproduce the prognostic value of DPG in both
HFrEF and HFpEF [8, 9•, 10, 13, 21]. There are several fac-
tors that likely contribute to the discrepant results. First, as
heart rate increases and diastole shortens, the gradient between
dPAP and PAWP increases, irrespective of presence or ab-
sence of pre-capillary disease. Thus, significant tachycardia
can raise the DPG [22]. Second, right ventricular (RV) func-
tion and adaptation to its afterload may have a more signifi-
cant impact on prognosis than pulmonary vascular pressures
(or disease) alone [23, 24]. Incorporation of flow (via stroke
volume—a marker of ventricular function) may explain why
PVR has proven to be a more robust prognostic marker than
DPG or TPG. The fact that prognosis is also poorer in the
setting of very low or negative DPG [9•] may suggest that
LHD drives outcomes independent of pulmonary vascular
disease. These data also remind us that the lack of a clear

prognostic signal does not necessarily preclude the use of
DPG as a diagnostic variable. Finally, the observation of fre-
quent negative DPG values illustrates the challenges in accu-
rately measuring the DPG [8, 9•, 12]. Lack of measurement
standardization and artifact associated with use of fluid filled
catheters undoubtedly contribute and will be discussed in sec-
tions below.

Recognizing some of the limitations of DPG, in 2015,
European Society of Cardiology (ESC)/European
Respiratory Society (ERS) guidelines redefined CpcPH as
mPAP ≥ 25 mmHg, mean PAWP > 15 mmHg, DPG
≥ 7 mmHg, and/or PVR > 3 Wood units. [4] There are ongo-
ing concerns that the “or” portion of this definition can signif-
icantly raise the number of patients with CpcPH, based on an
increase in PVR alone [25]. Additionally, Palazzini and col-
leagues did not find the new ERS/ERS definition predictive of
worse outcome in their cohort [13•]. Most recently, Guazzi
and Naeije have proposed defining CpcPH as DPG
≥ 7 mmHg and PVR > 3 Wood units, reasoning that an ele-
vated DPG in the setting of a normal PVR is likely a false
positive [23]. Whether this provides superior prognostication
remains to be studied.

Despite the complexities in defining CpcPH, the data in
totality show us that CpcPH has a worse prognosis as com-
pared to Ipc-PH [13•] with a distinct pathophysiology. In an
exploratory analysis of CpcPH patients, Assad et al. found
genes and biological pathways in the lung known to contribute
to PAH pathophysiology [11•]. Exercise breathing patterns in
CpcPH are also more similar to PAH than IpcPH with a re-
duced prevalence of exercise oscillatory breathing [17].
Because of the outlined limitations of a purely hemodynamic
definition, there is an ongoing need to develop biomarker or
non-hemodynamic strategies to more precisely phenotype and
accurately define CpcPH.

Pulmonary Arterial Compliance

PVR only describes the load imposed on the RV during
steady-state blood flow. Pulmonary arterial compliance
(PAC) is a second determinant of afterload that accounts for
the pulsatile nature of blood flow. PAC specifically quantifies
the distensibility of the pulmonary vasculature relative to
changes in volume. PAC can be estimated a number of ways,
most simply as stroke volume [SV]/PA pulse pressure. In the
normal lung, PVR and PAC are inversely related and their
product (RC time) is nearly constant. Thus, an increase in
PVR is accompanied by a proportional decrease in PAC, over
a wide range of severities of PH [26]. However, in LHD, an
increase in PAWP further lowers PAC for any given PVR,
thereby increasing RV pulsatile afterload [18]. Thus, in the
unique setting of LHD, PAC bundles the effect of two hemo-
dynamic measurements (PAWP and PVR), and is a more com-
plete marker of total RV afterload. Not surprisingly, PAC is a
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superior prognostic marker to both PVR and DPG in
predicting RV failure and adverse outcomes in PH-LHD
[10•, 14, 27, 28]. It however is not helpful in differentiating
IpcPH and CpcPH.

Hemodynamic Assessment of PH-LHD

Right heart catheterization (RHC) is the gold standard for
diagnosis of PH. It is safe even in the setting of severe PH
and is associated with low morbidity at experienced centers
[4]. A RHC should always be performed before any PH-
specific therapy is initiated. Preferred access sites include right
internal jugular vein or antecubital vein, with the femoral vein
as an alternative. Local anesthesia is used to facilitate line

placement. Systemic sedation should generally be avoided,
with preference for oral sedative medications, if needed. The
patient remains supine with legs flat during the study. Blood
pressure (BP) and systemic arterial oxygen saturation should
be monitored. Care must be taken to properly flush pressure
lines and ensure equipment calibration is up to date. The pres-
sure transducer should be zeroed at the level of the left atrium
which corresponds to the mid-thoracic line (halfway between
the anterior aspect of the sternum and the table surface) [1,
29]. Pressures should always be accompanied by a simulta-
neous ECG recording and are recorded in the right atrium
(RA), right ventricle (RV), pulmonary artery (PA), and the
wedge positions while the patient is breathing spontaneously.
Breath hold maneuvers are not recommended [30, 31].
Waveforms are analyzed at end-expiration when intra-

Table 1 Recent studies investigating hemodynamic classification and outcomes in PH-LHD

Diagnostic/prognostic studies

Study Major findings

Vachiery et al.
J Am Coll Cardiol, 2013. 62(25 Suppl): p. D100-8 [1]

• 5th World symposium on PH
• Proposed new classification schema for PH-LHD

Gerges et al.
Chest, 2013. 143(3): p. 758–766 [7•]

• Found that in patients with post-capillary PH and TPG > 12 mmHg,
DPG ≥ 7 mmHg was associated with a worse median survival

• In 18 patients, lung tissue in patients with elevated DPG was
evaluated and showed advanced remodeling of the vasculature.

Tedford et al.
J Heart Lung Transplant, 2014. 33(3): p. 289–97 [8]

• DPG did not predict post-transplant survival after heart transplant
in a patient population with pre-transplant PH (UNOS database).

Tampakakis et al.
JACC Heart Fail, 2015. 3(1): p. 9–16 [9•]

• In a retrospective, largely HFrEF cohort, DPG was not associated
with mortality in PH-LHD. TPG and PVR both predicted mortality.

• 36% of PH-LHD patients had a negative DPG.

Al-Naamani et al.
JACC Heart Fail. 2015 Jun;3(6):467–474 [10•]

• Pulmonary vascular compliance was the best predictor of mortality
in a PH-HFpEF cohort. DPG did not predict outcome.

• Acute vasodilator response was not associated with improved survival
(inhaled NO).

Galie et al.
Eur Heart J, 2016. 37(1): p. 67–119. [4]

• ESC/ERS guidelines for PH.
• Most recent classification of PH, pre-capillary PH, post-capillary PH,

isolated post-capillary PH, and combined post- and pre-capillary PH

Assad TR
J Am Coll Cardiol. 2016 Dec 13;68(23):2525–2536 [11•]

• Patients with Cpc-PH had genetic polymorphisms shared with PAH
that were not present in Ipc-PH patients.

Nagy et al.
Eur J Heart Fail. 2017 Jan;19(1):88–97. [12]

• Negative DPG was associated with large PAWP V-waves and carried
a better prognosis than a positive DPG.

Palazzini M et al.
Eur J Heart Fail. 2017 May 2. https://doi.org/10.1002/ejhf.860.

[Epub ahead of print]. [13•]

• In PH-LHD patients, using the revised ESC/ERS guidelines, no
difference in survival was noted between Cpc-PH and Ipc-PH.

• PVR had a better predictive value than DPG in PH-LHD patients.

Adir et al.
Am Heart J. 2017 Oct;192:120–127. [14]

• DPG was higher in PH-HFpEF than in PH-HFrEF patients
• Pulmonary vascular compliance predicted survival; DPG did not.

Wright et al.
Circ Heart Fail. 2017 Sep;10(9). [15•]

• Employing QRS-gated methods to assess the PAWP led to overall
higher DPG values, a greater proportion of Cpc-PH patients,
and fewer negative DPG
values compared to usual methods.

Ghio et al.
Eur J Heart Fail. 2017 Nov 16. doi: 10.1002/ejhf.1067 [16]

• During vasodilator challenge, Cpc-PH patients demonstrate more
improvement in PVR, TPG, and DPG compared to Ipc-PH patients.

Caravita et al.
J Heart Lung Transplant. 2017 Jul;36(7):754–762 [17]

• Patients with Cpc-PH had similar exercise-induced ventilatory patterns
(less oscillatory breathing, more hyperventilation) to PAH patients
when compared to Ipc-PH patients.
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thoracic pressures have the least effect on resting pressure
measurements. A PAWP saturation (blood sample taken from
the distal port while in the wedge position) should always be
checked to ensure an adequate wedge, particularly when the
PAWP is elevated. The PAWP saturation should be within 5%
of the systemic oxygen saturation. An LVEDP should be mea-
sured when PAWP cannot be measured or the measured
PAWP seems inconsistent with the clinical picture.

If tracings appear dampened (e.g., loss of a dicrotic notch in
the PAP tracing or blunted RVend-diastolic pressure inflection
point), catheter and tubing should be flushed to remove any
air. Catheter whip may occur in high CO states and is mini-
mized by relocating the catheter to a less turbulent area. More
common than catheter whip, catheter ringing occurs as the
heart rate approaches the inherent resonant frequency of the
fluid filled catheter system. Microbubbles in the fluid-filled
catheter exacerbate this issue by increasing the compliance
of the system [32]. After thoroughly flushing the system, if
catheter ringing is still present, a filter can be introduced [33]
or more commonly a small amount of denser fluid (blood or
contrast) can be added to the catheter [34]. However, the latter
strategy can result in over-dampening of the waveform, with a
resultant decrease in the sPAP and increase in the dPAP
(Fig. 1a, b). This further illustrates the inherent limitation of
using DPG as a diagnostic or prognostic marker in PH-LHD.

Measurement of PAWP—Important Considerations
and Caveats

The PAWP should be measured at end-diastole to reflect the
LVEDP and confirmed with a wedge saturation, especially
when the PAWP is elevated. Several publications have
highlighted the lack of standardization of the PAWP measure-
ment and the potential impact on pre-capillary parameters,

especially the DPG [12, 15•, 35–38]. Use of the “mean”-
PAWP value, which is averaged over the entire cardiac cycle
and incorporates the V wave, results in lower or even negative
DPG values when compared to measuring PAWP at end-
diastole (typically as mean of the “a” wave or pre c-wave)
and can significantly vary from measured LVEDP, leading to
misclassification of PH [39]. This is particularly relevant in
the presence of atrial fibrillation [35] and prominent V waves
[12], where end-diastolic PAWP correlates best with LVEDP
[40]. Wright and Mak recently proposed a novel approach to
estimate PAWP near end-diastole with EKG gating [15•]. At
least for the purposes of assessing for a pre-capillary compo-
nent of PH where high accuracy and reproducibility in dPAP
and PAWP is required, estimating PAWP at end-diastole ap-
pears to be the most appropriate technique. Perhaps just as
relevant, they also described the impact of a fluid-filled cath-
eter artifact on the dPAP [15•]. Whether more standardized
approaches to measure the PAWP or the use of high-fidelity
catheters to minimize artifact would improve the prognostic
value of the DPG requires further study.

Estimation of Cardiac Output

The gold standard for estimating CO is the direct Fick method
that involves measuring VO2 or oxygen consumption [CO =
VO2 / systemic arteriovenous oxygen difference] [41]. As the
required equipment for measuring oxygen consumption is
cumbersome and not widely available, thermodilution (TD)
[42] and the estimated Fick method are commonly used.
TDCO should be measured in triplicate at end-expiration [4,
43]. Although the validity of TDCO has been questioned in
the setting of low or high CO or severe tricuspid regurgitation
[44–46], other studies have reported an agreement between
TD and direct Fick, validating its use even under those

EKG leads EKG leads

Ringing artifact

Mean pressure lineMean pressure line
Ringing artifact

Blood introduced into fluid-filled catheter to reduce ringing

Dichrotic notch maintained

a b

Fig. 1 Pulmonary artery (PA) tracings from the same patient during a
single right heart catheterization procedure. a A high degree of
“ringing” artifact when using a fluid-filled catheter. Note the difficulty
this poses in determining both the systolic and diastolic PA pressures. b
PA tracing after a small amount of blood was aspirated into the catheter to
change the compliance of the catheter. Note the reduced ringing artifact.

However, now the systolic pressure is lower, and the diastolic pressure is
higher. It is possible to over-dampen the tracing by this method, and a
false elevation in the diastolic pressure may lead to a falsely elevated
diastolic pulmonary gradient, misclassifying a patient as Cpc-PH. Note
that the mean PA pressure is nearly the same in both tracings
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circumstances [41, 47]. TDCO may be inaccurate in the pres-
ence of intra-cardiac shunts and should not be used in this
circumstance. The estimated Fick method relies on estimating
VO2 and is prone to error in heart failure, PH, or abnormal
body habitus [48–50]. Discrepancies between different
methods have a wide range of implications for the diagnosis
andmanagement of PH-LHD [51]. In an analysis of more than
15,000 adults undergoing RHC, TDCO and estimated Fick
methods correlated poorly, varying by > 20% in a third of
the patients. TDCO estimates were superior to estimated
Fick in predicting all-cause mortality [52]. In the absence of
an intra-cardiac shunt, TD is the recommended method to
assess CO [30, 31].

Vasodilator Testing

Vasodilator testing is recommended during RHC in heart
transplant candidates with CpcPH as absence of reversibil-
ity precludes eligibility for heart transplantation (HT) [53,
54]. The risk of early death presumably from RV failure is
elevated when PVR > 5 WU or TPG > 15 mmHg [55, 56],
and the risk increases incrementally with increasing PVR
[57]. In a classic study of 293 patients undergoing evalua-
tion for HT with vasodilator testing using intravenous (IV)
nitroprusside [53], mortality was highest in patients whose
PVR failed to drop below 2.5WU, followed by patients in
whom the PVR was ≤ 2.5 WU, but nitroprusside adminis-
tration resulted also in systemic hypotension (systolic BP
(SBP) to < 85 mmHg). Short-term survival was similar in
patients with an appropriate decrease in PVR without sys-
temic hypotension compared with patients with normal
PVR at baseline. Several subsequent studies have used
various other vasodilators (nitroglycerin), inotropes (dobu-
tamine, milrinone), inhaled nitric oxide (iNO), prostaglan-
din E1, inhaled or intravenous prostacyclin, and sildenafil
for the evaluation of the reversibility of PH with varying
effects on hemodynamics [58–62]. A contemporary meta-
analysis revealed that sodium nitroprusside resulted in the
most profound lowering of PAWP, while PAWP increased
with iNO [63]. Nitroprusside and milrinone led to a most
significant increase in cardiac output while prostacyclin
and prostaglandin E1 exerted the most reduction in PVR.

The International Society for Heart and Lung
Transplantation (ISHLT) recommends PVR > 5 WU or TPG
> 15 mmHg as a relative contraindication to HT, although
many centers consider extending this to a PVR > 3WU [54].
If PVR can be reduced to ≤ 2.5 WU without systemic hypo-
tension, patients can be accepted as candidates. The guidelines
do not provide recommendations on which vasodilator to use,
and the choice is often determined by the center’s practice.

In general, for HT candidates with PVR > 3–5 WU and
TPG > 15 mmHg, with elevated PAWP and systemic vascular
resistance (SVR), and SBP > 90 mmHg, IV nitroprusside is

our initial vasodilator of choice (prostaglandin E1 is an accept-
able alternative). Elevation in PAWP alone can raise the PVR
by multiple mechanisms [18, 64–66]. If PVR remains high
despite lowering PAWP, we would consider addition of iNO
or inhaled prostacyclin. In the absence of significantly elevat-
ed PAWP, and especially if CO is very low and mPAP is
modestly elevated, we would consider the use of IVmilrinone
[58] with possible addition of iNO. In the absence of a reduced
CO and normal or near normal PAWP, we consider the use of
more selective pulmonary vasodilators including IVor inhaled
prostacyclin, with preference for inhaled prostacyclin or iNO
if SBP is low.

When an acute vasodilator challenge is unsuccessful,
prolonged administration of vasodilators over 24 to 48 h
maybe necessary. Some patients require longer duration of
vasodilator therapy over days to weeks with serial RHC
[67], and if still unsuccessful, are classified as irreversible
PH-LHD, needing consideration for mechanical circulato-
ry support (MCS) [2]. Most patients with “irreversible”
PH-LHD still normalize PVR after MCS support, suggest-
ing that a persistent “functional” component of PH exists
in these patients [68–70] rather than significant pulmonary
vascular remodeling.

In a retrospective analysis of the United Network of
Organ Sharing (UNOS) data, an elevated DPG (using mul-
tiple cutoffs), even in combination with elevated PVR or
TPG, failed to predict post-transplant mortality [8]. Using
the updated classification of PH-LHD, Ghio et al. recently
found that CpcPH patients had more significant improve-
ment in PVR, TPG, and DPG during vasoreactive testing
as compared to IpcPH patients [16]. Thus, the new classi-
fication of CpcPH does not help to identify irreversible
PH-LHD. Al-Naamani and colleagues also found that
vasoreactivity did not predict prognosis in their cohort of
HFpEF patients with CpcPH [10•]. Currently, outside of
assessing transplant candidacy, there is no clinical role
for vasodilator testing in PH-LHD.

Provocative Testing

In the context of LHD, provocative testing during RHC with
fluid challenge or exercise is helpful for evaluating exertional
dyspnea of unknown origin with normal resting hemodynam-
ics, in identifying early stages of LHD [71], and differentiating
HFpEF from PAH in patients with normal PAWP at rest
(Table 2) [77]. PAWP of course may be reduced to <
15 mmHg with diuresis or afterload reduction prior to RHC,
leading to misclassification of PH [9•]. Provocative testing
may also be helpful in identifying exercise induced PH
(EIPH) [78, 79], preload insufficiency [80], and defining RV
contractile reserve [81], though these latter topics are beyond
the scope of the current review.
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Fluid Challenge

It is important to remember that PAWP increases in healthy
patients in response to a fluid bolus. However, patients with
HFpEF exhibited a steeper increase in PAWP relative to the
infused volume, as compared to healthy controls [82]. The
volume and rate of fluid administration have clinical rele-
vance, as slower infusions can lead to re-distribution into
intra-vascular spaces [83], while more rapid infusions maybe
poorly tolerated in HF [73, 82, 84]. In a retrospective analysis
of 287 patients, including 202 patients labeled as non-group 2
PH, with mPAP ≥ 25 mmHg and PAWP ≤ 15 mmHg at rest, a
fluid challenge of 500 cm3 of normal saline over 5–10 min led
to a re-classification of 22% of patients as having occult pul-
monary venous hypertension, based on an increase in PAWP
to > 15 mmHg [73]. These patients had clinical, echocardio-
graphic, and hemodynamic characteristics comparable to
HFpEF patients, suggesting a distinct phenotype from PAH.
However, a PAWP > 15mmHgwith fluid bolus can be seen in
normal controls where a PAWP > 18 mmHg was not
witnessed in healthy controls [63].

More recently, D’alto et al. studied 212 patients referred for
RHC for evaluation of PH who underwent hemodynamic
measurements before and after the administration of 7 ml/kg
of saline over 5–10 min (~ 500 cm3) [72•]. After fluid admin-
istration, 8 and 6% of patients initially classified as no-PH and
pre-capillary PH, respectively, were re-classified as post-
capillary PH based on an increase in PAWP > 18 mmHg.
Similar to prior studies [82], patients with PH-LHD had a
steeper increase in PAWP, while the PAWP in patients without
PH did not increase to > 18 mmHg. Interestingly, the DPG
decreased with fluid challenge, as an acute rise in PAWP can
be accompanied by a slower rise in dPAP due to the preserved
distension of the resistive PAs [85].

The effect of pericardial constraint on ventricular interac-
tion can also increase PAWP in response to a fluid challenge,
in patients with normal hemodynamics [82] as well as RV
pressure overload [83, 86]. RAP approximates pericardial
pressure, and thus an increase in LV transmural pressure
(PAWP −RAP) is suggestive of LHD as opposed to pericar-
dial constraint. In the study by D’Alto et al., this increased
only in patients with either overt or occult PH-LHD [72•].

In summary, an increase in PAWP > 18 mmHg in response
to a fluid challenge with 500 cm3 of saline administered over
5–10 min may be useful to identify occult PH-LHD, particu-
larly if accompanied increasing LV transmural pressure.
Although exercise may be a more sensitive provocative test
than fluid challenge to identify PH-LHD [84], the potential
advantages of a fluid challenge include less variation with HR
and blood pressure, less catheter artifact and dependence on
patient’s exercise capacity, and the widespread availability of
necessary equipment compared to what is required for
exercise.

Exercise RHC

Exercise induces elevation in CO, PAWP, and/or PAP in
normal subjects with increasing age [87], and those with
HF or PH [71, 88, 89]. It is typical to perform an exercise
RHC under a ramp protocol of incremental workloads (2–
3 min per stage) with measurement of RAP, PAWP, mPAP,
and CO at each stage [31]. Accurate leveling of the trans-
ducer is mandatory, and may be particularly challenging
for upright exercise [31]. Bicycle exercise is preferred to
upper extremity exercise, to avoid increased systemic vas-
cular resistance with the latter. Fluid-filled catheters often
result in excessive ringing and motion artifacts during
exercise; therefore, only mean pressures should be

Table 2 Provocative studies and major findings

Provocative studies

Study Major findings

D’Alto et al.
Chest, 2017. 151(1): p. 119–126 [72•]

• Using a cutoff of 18 mmHg for the PAWP, fluid challenge with 7 mL/kg of saline allowed
reclassification of 6–8% of patients from precapillary PH or normal to PH-LHD

Robbins et al.
Circ Heart Fail, 2014. 7(1): p. 116–22. [73]

• After 500 cm3 normal saline fluid challenge, > 22% of patients originally classified as PAH
were reclassified as post-capillary PH using a cutoff of PAWP of > 15 mmHg

Hsu et al.
Pulm Circ. 2017 Mar; 7(1): 253–255. [74•]

• Compared with direct Fick, thermodilution underestimated cardiac output during exercise.

Wright et al.
Heart, 2016. 102(6): p. 438–43 [75•]

• Described the pulmonary pressure response to sustained, submaximal exercise in healthy
volunteers. Found that PAWP may routinely increase to > 20 mmHg early in exercise,
and that PAWP and PA pressures may decline during continued exercise

Wolsk E et al.
JACC Heart Fail, 2017. 5(5): p. 337–346 [76]

• Despite similar baseline hemodynamics in healthy controls, there was a marked difference
in exercise response in patients based on age. Older patients had increased filling pressures
and diminished cardiac output with leg raise. 30% of older patients reached a PAWP
of ≥ 25 mmHg.

Kovacs G. Eur Respir J. 2017 Nov 22;50(5) [31] • Position statement on invasive exercise hemodynamic testing
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measured. Large intra-thoracic pressure changes can occur
during exercise leading to over-estimation of pressures if
measured at end-expiration, especially in lung disease [90,
91]. Therefore, averaging the measurements over the re-
spiratory cycle is recommended. Lastly, care must be tak-
en to ensure an adequate PAWP. A recent position state-
ment on exercise hemodynamics details many of these
issues [31].

Exercise-Induced Changes in PAWP

An increase in PAWP of 10 mmHg or more may be ob-
served with exercise in healthy controls [84, 89, 92, 93],
with an average of 5 mmHg greater rise with supine vs
upright exercise, although the absolute change in PAWP is
similar [93]. However, there are several factors that affect
this response. Exercise-induced increase in PAWP is more
marked in older patients [76]. Changes in PAWP also vary
with the duration and intensity of exercise. PAWP may
exceed 20 mmHg early in exercise, but decline signifi-
cantly within minutes [75•]. Such brief and early increases
in PAWP may not be pathologic, and thus, measurements
at multiple time points may be helpful. Exercise can also
induce a ~ 2-fold greater increase in PAWP as compared
to fluid challenge in patients with HFpEF, although exer-
cise pressures were measured at end-expiration in this
study [84]. In general, we consider an abnormal PAWP
to be ≥ 25 mmHg with supine exercise or ≥ 20 mmHg
with upright exercise, averaged over the entire respiratory
cycle. In those over the age of 60, PAWP ≥ 25 has been
reported in up to 30% of subjects apparently free of car-
diovascular disease. Thus, exercise PAWP should be con-
sidered in the context of age [76], and age-specific defi-
nitions have also been proposed [94]. The effect of sig-
nificant pericardial constraint should be excluded by con-
sidering the transmural LV pressure [83].

Exercise-Induced Changes in Cardiac Output

CO during exercise is best measured with the direct Fick
method [31]. Oxygen saturations, hemoglobin concentra-
tion, and oxygen consumption should be measured. TDCO
is considered an alternative if equipment for direct Fick is
unavailable. However, the TD method can underestimate
the CO as compared to the direct Fick method, particularly
at higher outputs [74•].

Treatment Selection in PH-LHD

The primary treatment of PH-LHD is the management of the
underlying LHD. There are no PAH-specific therapies cur-
rently approved for PH-LHD; rather, interventions are

directed towards relieving symptoms of dyspnea and improv-
ing exercise capacity, or defining eligibility for HT [1, 2].

Treatment of PH-HFrEF

The cornerstone of treatment of PH-HFrEF is the use of
guideline-directed therapies including beta-blockers (BB),
angiotensin-converting enzyme inhibitors (ACE-I), or angio-
tensin receptor blockers (ARBs) or angiotensin receptor-
neprilysin inhibitor (ARNI), aldosterone-antagonists, and
hydralazine/nitrate combination [95, 96]. Relief of congestion
with diuretics and vasodilators can improve PAPs and may
require invasive monitoring [95, 97, 98]. Reducing left heart
filling pressures alone may significantly lower PVR as
discussed above. Non-pharmacologic therapies include
consideration for cardiac resynchronization therapy when
appropriate and MCS for suitable candidates [95].
Reversibility of fixed PH can occur with MCS, allowing
candidacy for HT [99, 100].

PAH-specific therapies have been trialed in PH-LHD on
the basis of PH being driven by increased endothelin-1 activ-
ity [101, 102] and impaired NO-dependent vasodilation [103].
However, studies involving parenteral prostacyclins [104] and
endothelin receptor antagonists (ERA) [105–108] in HFrEF
have demonstrated negative or neutral effects, and even trends
towards harm [109, 110].

Sildenafil, a phosphodiesterase-5-inhibitor (PDE-5-I), pro-
motes NO-dependent vasodilation by preventing the degrada-
tion of cyclic guanosine monophosphate (cGMP) [111]. In
single-center studies, sildenafil has been shown to decrease
TPG, increase CO [112], and improve exercise hemodynam-
ics, VO2 [113], exercise capacity, and quality of life in HFrEF
[114]. However, these studies used higher doses of sildenafil
(25 to 75 mg three times daily [TID]) than what is approved
for PAH therapy. A multicenter trial (SilHF, NCT01616381)
to evaluate a lower dose of sildenafil in PH-HFrEF is currently
ongoing. A retrospective study has suggested that sildenafil
lowers mPAP and PVR in those with persistent PH after MCS
implantation [115]. A randomized, placebo-controlled, multi-
center study (SOPRANO, NCT02554903) is currently inves-
tigating the use of the ERA Macitentan in this clinical
scenario.

Riociguat, a soluble guanylate cyclase (sGC) stimulator,
sensitizes sGC to endogenous NO and directly stimulates
sGC independent of NO, inducing vasodilation [116]. In the
LEPHT trial, multiple doses of riociguat (0.5, 1, and 2 mg
TID) were compared to placebo in 201 patients with PH-
HFrEF. The study failed to meet the primary end point of
reduction in mPAP after 16 weeks, but improved cardiac in-
dex and PVR [117]. Similarly, in SOCRATES-REDUCED,
vericiguat did not meet the primary end point of reduction in
NT-proBNP [118] compared with placebo in 456 patients with
HFrEF (PH was not a requirement for study entry).
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Treatment of PH-HFpEF

The management of HFpEF is limited to diuretics for the
relief of volume overload and treatment of underlying con-
ditions including hypertension, coronary artery disease,
atrial fibrillation, and sleep apnea [95]. It is reasonable to
control BPs with BB, ACE-I, or ARBs, although none of
these drugs conclusively improve outcomes in HFpEF
[95]. Aldosterone antagonists are recommended to reduce
HF hospitalizations in eligible HFpEF patients [96, 119].
Nitrate therapy is ineffective in HFpEF to improve exercise
tolerance or quality of life [120].

PAH-specific therapies have been studied in HFpEF with
limited benefit. Sildenafil 50 mg TID improved hemodynam-
ics and echocardiographic measures of RV function, in a pla-
cebo-controlled, single-centered trial of 44 patients with
CpcPH inHFpEF at 6months, with continued benefit at 1 year
[121]. However, in a subsequent single-center study and in the
RELAX study, sildenafil did not improve mean PAP, PAWP,
CO, [122] exercise tolerance, or VO2 in HFpEF [122, 123].
Post hoc analysis from the RELAX study revealed that
sildenafil failed to result in any significant reduction in
RV afterload and likely reduced LV contractility [124].
The DILATE-1 trial compared multiple doses of riociguat
(0.5, 1, and 2 mg) to placebo in 39 patients with PH-
HFpEF including five with CpcPH. There was no signif-
icant change in mPAP at 6 h (primary end point) or PVR.
Riociguat 2 mg as compared to placebo increased SV,
lowered SVR, and decreased RV end-diastolic area, with-
out increasing PAWP [125]. In another phase 2 study
SOCRATES-PRESERVED, vericiguat did not change the
primary end points of NT-proBNP and left atrial volume at
12 weeks compared with placebo in 477 patients with
HFpEF (presence of PH was not an inclusion criteria),
although there were some improvements in quality of life
metrics [126].

Recent trials of ERAs in HFpEF have been largely dis-
appointing. A selective endothelin A receptor antagonist,
sitaxsentan, improved treadmill exercise time compared
with placebo in 192 patients with HFpEF after 6 months
of therapy, without an improvement in LV mass or diastolic
indices [127]. The BADDHY Trial evaluated 12 weeks of
therapy with bosentan vs placebo in 20 patients with PH-
HFpEF, including 4 with CpcPH, demonstrated worsening
PAP and RAP with bosentan [128]. The MELODY Trial
evaluating macitentan in 63 patients with CpcPH, LVEF >
30%, most of whom had HFpEF, demonstrated no signifi-
cant difference in the primary end point of worsening func-
tional class or fluid retention, although more patients re-
ceiving macitentan had worsening fluid retention, without
significant reduction in RAP or PVR after 12 weeks of
treatment [129] compared to placebo. This study is partic-
ularly notable since its careful inclusion criteria led to

selection of subjects with clear pre-capillary disease (aver-
age PVR of 5.8 WU, TPG of 27 mmHg, and DPG of
10 mmHg.), regardless of the definition used.

The recent clinical trials in both HFrEF-PH andHFpEF-PH
remind us that the use of PAH-specific therapies in PH-LHD
should only be in the context of clinical trials.

Conclusions and Future Directions

In recent years, there has been significant progress in the
classification and characterization of PH-LHD including
identification of a subset who merit special attention
(CpcPH). The significance of accurate hemodynamic as-
sessment for its diagnosis and prognosis cannot be
overstated. Currently, there are currently no approved
PH-specific therapies in the setting of LHD, and treatment
efforts remain limited to targeting underlying left heart
disease. Future research is needed to improve both hemo-
dynamic and non-hemodynamic characterization of PH-
LHD phenotypes as well as novel therapeutic strategies
to target these populations.
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