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Abstract The natriuretic peptide system (NPS) is intimately
involved in cardiorenal homeostasis in health, and dysregula-
tion of the NPS plays an important role in the pathophysiology
of heart failure (HF). Indeed, the diuretic, vasorelaxation, ben-
eficial remodeling, and potent neurohumoral inhibition of the
NPS support the therapeutic development of chronic augmen-
tation of the NPS in symptomatic HF. Further, chronic aug-
mentation of the protective NPS and in early stages of HF may
ultimately prevent the progression of HF and reduced subse-
quent morbidity and mortality. In the current manuscript, we
review the rationale for as well as previous and current efforts
aimed at chronic therapeutic augmentation of the NPS in HF.
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Introduction

The mainstay of the current guideline recommended heart
failure (HF) therapy is neurohumoral inhibition including
beta-receptor blockers and inhibitors of the renin-
angiotensin-aldosterone system (RAAS) [1, 2]. Despite these
effective neurohumoral inhibitors, the prevalence and burden
of HF continues to rise [3–5]. This is not for lack of effort on
behalf of the scientific community which has devoted im-
mense resources and effort to the development of HF thera-
peutics but which unfortunately has resulted in no new novel

therapies and little impact on long-term prognosis [6]. It has
now been over a decade since the last HF pharmacologic
therapy was approved and there is a clear unmet need for
novel therapeutics. The lack of progress in the HF arena is in
part related to the multitude of etiologies leading to HF. HF is
the final common phenotype for various pathophysiologic
mechanisms ranging from ischemic heart disease to rare ge-
netic anomalies to age-related cardiac remodeling and diastol-
ic dysfunction. A key challenge in the HF community is
therefore to develop novel therapeutics which can be applied
to the appropriate patient at the ideal time. One such potential
therapeutic target is the natriuretic peptide system (NPS). The
NPS is intimately involved in cardiorenal homeostasis in
health, and dysregulation of the NPS plays an important role
in the pathophysiology of HF. Chronic augmentation of the
protective NPS and activation of the endogenous particulate
guanlylyl cyclase (GC)/cyclic guanosine monophosphate
(cGMP) pathway in the early stages of HF may ultimately
prevent the progression of HF and reduce subsequent morbid-
ity and mortality. In the current manuscript, we review the
rationale for as well as previous and current efforts aimed at
chronic therapeutic augmentation of the NPS in HF.

An Overview of the Natriuretic Peptide System

The first report of a NP produced in the heart appeared more
than 30 years ago when researchers in Canada and Japan
reported almost simultaneously reported the gene for atrial
natriuretic peptide (ANP) [7, 8]. We now know the NP family
consists of three structurally similar although genetically and
physiologically distinct peptides: ANP, B-type (or brain) na-
triuretic peptide (BNP), and C-type natriuretic peptide (CNP).
All three play an important role in cardiorenal homeostasis
and possess cardiorenal protective properties particularly in
cardiovascular disease.
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Both ANP and BNP are produced in the cardiomyocyte as
preprohormones. Traditionally, it was thought that ANP is
secreted into circulation as biologically active ANP1–28.
However, recent data suggest proANP1–126 is also secreted
into circulation where it has distinct biologic actions in addi-
tion to undergoing cleavage to ANP1–28 [9]. BNP is secreted
into circulation as BNP1–108 which possesses limited biologic
actions and then cleaved by corin or furin into potently bio-
logically active BNP1–32 and biologically inactive NT-
proBNP [10]. ANP and BNP preferentially bind the GC-A
receptor and activate the second messenger molecule cGMP.
Binding to GC-A and activation of cGMP results in diuresis/
natriuresis, vasorelaxation, inhibition of the RAAS, inhibition
of vascular/renal/cardiac fibrosis, and positive lusitropy [11,
12•, 13, 14].

CNP differs from ANP and BNP as it is preferentially
produced in the endothelial cell and binds preferentially to
the GC-B receptor [15, 16]. While both GC-A and GC-B
activate cGMP, they are differentially expressed thereby
resulting in markedly distinct biologic actions. CNP is a
venodilator and has more potent antifibrotic actions compared
to ANP and BNP but lacks renal actions [17–19].

All three NPs are cleared from the circulation by the NP
receptor C (NPR-C) which is not cGMP-linked although it has
been shown to have anti-proliferative properties, particularly
related to CNP binding [20, 21]. All three peptides also
undergo proteolytic degradation by the ectoenzyme neutral
endopeptidase 24.11 (NEP) which is also known as neprilysin
and the zinc metalloprotease insulin-degrading enzyme (IDE)
[12•, 22–24]. NEP is most abundant in the kidney but is
widely expressed [25–27]. NEP cleaves the ring structure of
ANP, BNP, and CNP thereby rendering the peptides unable to
bind to GC-A and GC-B and therefore essentially inactive
[28–30]. Importantly, the C-terminus tail of the NP is impor-
tant in providing resistance to NEP degradation. Thus, CNP
which has no C-terminus is rapidly degraded when compared
to ANP or BNP and in particularly to chimeric peptides such
as CD-NP (cenderitide) or M-ANP [28, 30–32] which have
elongated C-terminus tails. ANP is the preferred substrate for
IDE versus BNP and CNP. There is also exciting data sug-
gesting the IDE cleavage may modulate the GC-A and GC-B
response to the NPs. Specifically, BNP induced GC-A activa-
tion is enhanced by IDE (and decreased by IDE inhibition)
suggesting that IDE cleavage of BNP results in a variant
which is a super GC-A activator [23, 25]. In contrast, IDE
inhibition increases GC-A and GC-B activation by ANP and
CNP respectively.

Heart Failure: a Natriuretic Peptide Deficiency State

Following the seminal discovery of ANP, numerous studies
quickly established that ANP and BNP levels are markedly

elevated in the HF patient and have subsequently played an
important role in the diagnosis and risk stratification in HF
[33–39]. The activation of the NPS initially serves as a counter
mechanism to the profound humoral and inflammatory milieu
of HF. However, it is now clear that activation of fetal gene
pathways and altered proteolysis renders the vast majority of
measured ANP and BNP in HF patients biologically inactive.
Therefore, these patients do not benefit from the pleiotropic
anti-proliferative, cardiac unloading, and RAAS-inhibiting
properties of biologically active ANP1–28 and BNP1–32.
Based on the phenomena of high measured NP levels with
little biologic activity, we and others have therefore proposed
that HF is a relative NPS deficient state.

High-sensitive mass spectrometry data supports the con-
cept of a relative NPS deficiency state in HF. Hawkridge et al.
[40] demonstrated an absence of BNP1–32 from the plasma of
patients with NYHA class IV HF. Furthermore, Niederkofler
and colleagues compared a point-of-care BNP assay with
mass spectrometry and found that the point of care assay
grossly overestimates the amount of biologically active
BNP1–32 [41]. Additional studies suggest the majority of
measured BNP among HF patients is proBNP [42, 43] or
altered BNP molecular forms including 3–32, 4–32, 5–32,
5–31, 1–25, and 1-26 [44–47]. Importantly, these altered
BNP molecular forms less potently activate GC-A than
BNP1–32 [48, 49] and do not result in the same beneficial
cardiorenal effects. The exact mechanism of the predomi-
nance of the altered BNP forms remains to be elucidated but
is in part secondary to abnormal glycosylation [50, 51] and
processing within the myocyte and in the plasma [45, 52].
Studies suggest corin and dipeptidyl peptidase IV (DPP4) may
also play a role in the abnormal NP processing in HF. DPP4
converts BNP1–32 to BNP3–32 and inhibition of DDP4 results
in improved cardiorenal function in experimental HF [53].
Over expression of corin which cleaves proANP and
proBNP to the active molecular forms is associated with
improved cardiac function in an animal model of HF [54].
Importantly, a preponderance of these altered molecular forms
may explain the paradox of elevated NP levels in HF without
the associated beneficial cellular and hemodynamic actions.
This paradox also explains the acute response to exogenous
NP administration despite elevated NP levels in HF.

Beyond overt HF, in both preclinical (stage B) systolic and
diastolic HF we have demonstrated an impairment of the NPS
particularly in response to intravascular volume expansion
(i.e., a fluid challenge). Specifically, there is an inappropriate
diuretic and natriuretic response to volume expansion which is
associated with impaired activation of urinary cGMP. This
finding suggests there is impairment of the NPS in the early
stages of HF which results in altered volume handling. It is
tempting to speculate that NPS impairment which negatively
impacts volume handling in preclinical HF may play a role in
the development and progression of symptomatic HF.
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Importantly and with therapeutic implications, this NPS im-
pairment in stage B HF was overcome by a single dose of
exogenous BNP [55].

Exogenous Supplementation of the NP System

The pleiotropic beneficial cellular and cardiorenal actions of
the NPS make therapeutic augmentation an attractive pharma-
cologic target in HF. Indeed, exogenous intravenous BNP
(nesiritide) and ANP (carperitide) are approved for the treat-
ment of acute decompensated HF in the USA and Japan,
respectively. Nesiritide was approved in 2001 based on studies
which demonstrated a reduction in cardiac filling pressures
and improvement in dyspnea [56, 57]. However, a subsequent
meta-analysis of multiple small studies raised concern about
adverse renal effects and increased mortality associated with
nesiritide use [58, 59]. These concerns were the impetus for
the large ASCEND-HF study [60] with over 7000 participants
which compared a 72-h intravenous nesiritide infusion to
standard of care in acute decompensated HF. ASCEND-HF
demonstrated no increase in mortality or adverse renal effects
with nesiritide compared to standard of care. There was a
small but statistically significant improvement in dyspnea
with nesiritide. However, nesiritide did not improve mortality
or hospital readmission rates. Based on these results and the
recent ROSE study [61], the routine use of intravenous
nesiritide in the acute decompensated HF patient is not
guideline-recommended [62]. Intravenous carperitide con-
tinues to be used in the treatment of acute decompensated
HF in Japan. While no large clinical trials on the order
ASCEND-HF have been completed with carperitide, smaller
studies suggest improvement in functional class during hos-
pitalization and improvement in mortality without adverse
renal effects [63, 64]. Some authors have postulated
carperitide compares favorably to nesiritide in that it has a
short half-life, does not mandate a bolus infusion which is
associated with hypotension and adverse renal effects, and is
used as a single agent (not as an addition to conventional
diuretic therapy) [64]. Nonetheless, large randomized clinical
trials are needed to makemore definitive recommendations on
the routine use of carperitide in HF.

We and others have suggested that many of the beneficial
cardiorenal effects of the NPS in HF such as neurohumoral
inhibition, cardiac unloading, and antifibrosis may not be fully
optimized after 72 h of therapy as was performed in
ASCEND-HF. The same could be argued for ACE inhibitors
and beta-blockers. Therefore, we have hypothesized that
chronic NP administration will improve HF outcomes where
acute administration was not effective. Chen and colleagues
tested this hypothesis in symptomatic HF in the NICE study
[65•]. Patients with advanced (stage C) systolic HFwere given
either subcutaneous (SQ) BNP (10 μg/kg) twice daily or

placebo in addition to standard of care for 8 weeks. SQ BNP
was associated with improved left ventricular remodeling and
filling pressures, improved functional class, and greater
RAAS suppression than standard of care alone. Importantly,
SQ BNP was not associated with an adverse effect on renal
function. We have further assessed 12 weeks of SQ BNP
therapy compared to placebo in asymptomatic (stage B) sys-
tolic HF [66]. Our results suggest BNP is associated with
improved LV remodeling in stage B systolic HF. Further, the
cardiorenal response to volume expansion is improved with
chronic SQ BNP compared to placebo. Importantly, chronic
SQ BNP in stage B HF did not adversely affect renal function.
Chronic therapy may represent a new paradigm for exogenous
NP therapy [67], and these proof-of-concept studies in stage B
and C HF raise the specter that low dose, chronic exogenous
NP therapy may capitalize on the pleiotropic beneficial
cardiorenal actions of the NPS. Larger studies are planned
and clearly needed for more definitive conclusions.

A potential drawback to peptide versus small-molecule
therapeutics is the delivery mechanism as oral peptide admin-
istration is not currently cost effective [68]. Subcutaneous
administration is currently the most effective delivery mech-
anism, and exciting advances are underway with the advent of
pump-and-patch delivery systems. While the lack of an effi-
cient oral delivery mechanism is a potential drawback, there
are significant physiologic advantages to peptide therapy.
Specifically, peptide therapeutics are highly specific for their
receptors without significant cross reactivity which is com-
mon with small molecules.

NEP Inhibition

Beyond exogenous NP administration, inhibition of biologi-
cally active peptide degradation has significant therapeutic
potential. As reviewed above, the NPs are removed from
circulation via enzymatic degradation and the clearance re-
ceptor NPR-C. There are currently no therapeutic NPR-C
inhibitors. Of the inhibitors of enzymatic NP degradation,
the most clinically advanced are the NEP inhibitors. In exper-
imental HF, candoxatril, an orally available small molecule
NEP inhibitor, increased NP levels, promoted natriuresis/di-
uresis, and decreased aldosterone levels [69]. Candoxatrilat,
an intravenous NEP inhibitor, increased NP levels and pro-
moted diuresis in experimental mild HF but not in severe HF
[70]. Candoxatril and candoxatrilat results in human HF were
mixed. Small human studies with candoxatril demonstrated it
was well tolerated and increased exercise tolerance and im-
provement in HF symptoms [71–73]. However, other human
studies demonstrated systemic vasoconstriction and decreased
cardiac index in HF [74, 75]. Ecadotril, another NEP inhibitor,
was found to have limited beneficial effects on functional
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capacity and was associated with an increased risk of aplastic
anemia in a small HF study [76].

It is important to note that in addition to promoting degra-
dation of NPs, NEP also is involved in the degradation path-
ways of endothelin, angiotensin, and calcitonin gene-related
peptide [77]. Specifically, NEP inhibition increases circulating
plasma levels of endothelin and calcitonin gene-related pep-
tide which may counteract the beneficial actions of increased
NP levels [75]. NEP inhibition also impairs the degradation of
ANG-1 to ANG-(1–7). ANG-(1–7) has been described as a
potent diuretic and natriuretic agent [78–80]. It increases renal
blood flow [81] and produces afferent arteriolar relaxation
through specific receptor-mediated nitric oxide release [82]
in animal models. The increase in ET-1 and calcitonin gene-
related peptide as well as reduced ANG-(1–7) may counter the
beneficial cardiorenal effects of isolated NEP inhibition. Due
to increased levels of vasoactive peptides and a lack of con-
sistently beneficial clinical effects among HF cohorts, the
clinical development of isolated NEP inhibitors was
discontinued in favor of dual ACE/NEP inhibitors.

Combination ACE and NEP Inhibitors

The combination of NEP and ACE inhibitors was hypothe-
sized to limit the detrimental effects of increased angiotensin
II associated with isolated NEP inhibition thereby maximizing
the benefit of increased NP levels. This novel therapeutic class
consists of single-molecule inhibitors of both ACE and NEP
and is commonly referred to vasopeptidase inhibitors (VPIs).
Well-studied examples include sampatrilat and omapatrilat.
Sampatrilat is a potent inhibitor of both ACE and NEP with
attractive humoral and hemodynamic properties in HF [83].
However, the clinical development was discontinued due to
poor oral bioavailability [84] and relatively weak ACE inhi-
bition [85]. Omapatrilat, which has good oral bioavailability,
is the most studied VPI. Omapatrilat has equal affinity for
NEP and ACE and is an avid inhibitor of both [86, 87]. In
animal HF models, it improved cardiac dysfunction and pro-
moted beneficial remodeling [88, 89]. Early studies with
omapatrilat in human HF were positive. In the prospective,
doubled-blinded IMPRESS study which compared
omapatrilat to lisinopril in 573 HF subjects, there were im-
provements in the combined endpoint of death, hospitaliza-
tion, or discontinuation of study treatment due to worsening
HF with omapatrilat versus lisinopril [90]. The much larger
OVERTURE study [91] where 5770 participants were ran-
domized to either omapatrilat (40 mg daily) or enalapril
(10 mg twice daily) demonstrated that omapatrilat reduced
the risk of death and rehospitalization in HF. However,
omapatrilat was not more effective than enalapril alone.

It is important to note that in the very large OCTAVE study,
which compared omapatrilat to enalapril in over 25,000

hypertensive subjects, significantly higher prevalence of an-
gioedema with omapatrilat versus enalapril was demonstrated
(2.2 versus 0.7 respectively) [92]. In the OVERTURE study,
the incidence of angioedema with omapatrilat was 0.8 versus
0.5 % with enalapril. The increased incidence of angioedema
with combination ACE and NEP inhibitors, particularly with
omapatrilat, is thought to be secondary to increased levels of
bradykinin [87] in a similar fashion to ACE inhibitors.
However, aminopeptidase P (APP) which plays an important
role in bradykinin degradation and is avidly inhibited by
omapatrilat may play a role in greater incidence of angioede-
ma when compared to ACE inhibition alone. Omapatrilat
significantly inhibits APP more so than sampatrilat, and it
has been suggested that the increased angioedema observed
in the OCTAVE study was specific to omapatrilat and not a
class effect of the VPIs [93, 94]. Based primarily on safety
concerns, the FDA has not approved omapatrilat for clinical
use and therapeutic investigation moved to combination an-
giotensin receptor blockers (ARBs) and NEP inhibitors.

Combination ARB and NEP Inhibitors

The incidence of angioedema is markedly lower with angio-
tensin receptor blockers (ARBs) compared to ACE inhibitors,
and it was hypothesized that a combined AT-1 and NEP
inhibitor would have the same beneficial properties as com-
bined ACE/NEP inhibition without the adverse angioedema
effects. The combination ARB and NEP inhibitor are com-
monly referred to as ARNi (angiotensin receptor neprilysin
inhibitors) compounds. By far, the most advanced clinically
developed ARNi is LCZ 696 [95]. LCZ 696 is a combination
of the NEP inhibitor prodrug AHU-377 which is converted to
active metabolite LBQ 657 and valsartan in a 1:1 ratio. In
preclinical studies, LCZ 696 reduced blood pressure and
increased cGMP levels [96]. In human hypertensive disease,
LCZ 696 was more effective at lowering blood pressure than
valsartan alone and there were no cases of angioedema [97•].
The PARADIGM-HF study [98•] was designed to assess the
efficacy and safety of LCZ 696 in the setting of systolic HF in
over 8000 patients so as to provide robust data on the potential
benefit of augmentation of the NP system in combination with
a specific AT1 blocker and concomitant standard medical
therapy. The primary endpoint is combined cardiovascular
death and HF readmission although the study was powered
to demonstrate a 15 % relative reduction in cardiovascular
death. In March 2014 the Data Monitoring Committee unan-
imously recommended early closure of the PARADIGM-HF
trial as the primary endpoint was met although results are not
currently available. This development is highly encouraging
that after decades of intense research, an effective therapeutic
aimed at chronic augmentation of the NPS in HF may be soon
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available. If approved, this will be the first new pharmacologic
therapeutic class for the treatment of HF in over 15 years.

Another interesting development in the LCZ 696 story is
the recently published PARAMOUNT trial [99•] which was a
phase II study which assessed LCZ 696 in the setting of HF
with preserved ejection fraction (HFpEF) where effective
treatments are severely lacking. In HFpEF, LCZ 696 was well
tolerated and associated with a significant reduction in plasma
NT-proBNP compared to valsartan alone. However, it is not
known if this reduction in NT-proBNP translates into im-
proved clinical outcomes. Larger studies of LCZ 696 in
HFpEF are planned and are essential before a recommenda-
tion regarding LCZ 696 can be made in HFpEF.

A Focus on Heart Failure Prevention

Beyond symptomatic systolic HF, there is tremendous poten-
tial for chronic therapeutic augmentation of the NPS in early
stages of HF. As noted above, we have demonstrated there is
impairment of the NPS in stage B systolic HF which may play
a role in the progression to symptomatic (stage C) HF. Future
studies are needed to assess if combined ARB/NEP inhibition
is able to slow or prevent the progression from stage B to C
HF. In addition, many of the risk factors for HF are associated
with abnormalities in the NPS. Specifically, ANP plays an
important role in blood pressure regulation and a genetic
polymorphism (rs5068) associated with higher levels of ANP
is associated with a lower risk of hypertension [100]. A study
from Olmsted County, Minnesota, demonstrates this same
ANP gene polymorphism (rs5068) associated with higher
levels of ANP is protective against obesity and syndrome
[101]. It is tempting to think that early chronic augmentation
of the NPS in these high-risk cohorts (i.e., stage A HF) before
the onset of structural changes may ultimately prevent HF.
Indeed, we would hypothesize that non-hypotensive augmen-
tation of the NPS may prevent adverse cardiac, renal, and
vascular remodeling which are remarkably difficult to reverse
once present. These areas clearly need to be explored and may
have significant impact on cardiovascular morbidity and
mortality.

Future Directions

The clinical development of therapeutic augmentation of the
NPS continues to advance on multiple fronts. Small molecule
augmentation of the NPS via the ARNi compound LCZ 696 is
moving forward at great speed. Exogenous NP therapeutics
continue to advance with the development of chimeric NPs
which possess enhanced properties and/or pharmacokinetics
as compared to native NPs [32, 102–106]. These designer
peptides possess refined affinity for the GC-A and GC-B

receptors which translate into more biological actions specific
for various cardiovascular disease subsets. These designer
peptides are also resistant to enzymatic degradation allowing
for once-daily administration [32, 107]. The delivery mecha-
nisms for NP therapeutics continue to advance beyond simple
single use SQ therapy with the increasing use of pump and
patch delivery systems and developing oral delivery technol-
ogies [108]. We anticipate future studies of exogenous peptide
administration and the ARNi compounds in stage B HF as
well as hypertension and metabolic syndrome with the ulti-
mate goal of preventing HF.

Summary and Conclusion

The NPS is recognized to play a fundamental role in
cardiorenal homeostasis promoting diuresis, vasorelaxation,
beneficial remodeling, and potent neurohumoral inhibition.
These actions support the development of chronic augmenta-
tion of the NPS for HF. Indeed, a HF therapeutic which lowers
LV filling pressures, inhibits the RAAS, promotes diuresis/
natriuresis, enhances renal function, and promotes beneficial
remodeling is highly attractive. The results of the large
PARADIGM-HF trial [98•] will provide important specific
data on HF outcomes associated with NPS augmentation via
NEP inhibition. We anticipate the PARADIGM-HF trial will
trigger FDA approval and the subsequent clinical use of NEP
inhibition in HF. This is highly anticipated data particularly in
an era of persistently poor HF outcomes and a lack of novel
pharmacologic therapeutics over the last two decades.
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