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Abstract
Purpose of Review Functional dyspepsia (FD) is a chronic functional gastrointestinal disorder characterised by upper gastroin-
testinal symptoms. Here, we aimed to examine the evidence for immune responses to food in FD and overlap with food
hypersensitivity conditions.
Recent Findings A feature of FD in a subset of patients is an increase in mucosal eosinophils, mast cells, intraepithelial cytotoxic
T cells and systemic gut-homing T cells in the duodenum, suggesting that immune dysfunction is characteristic of this disease.
Rates of self-reported non-celiac wheat/gluten sensitivity (NCW/GS) are higher in FD patients. FD patients commonly report
worsening symptoms following consumption of wheat, fermentable oligosaccharides, disaccharides, monosaccharides, or
polyols (FODMAPs), high-fat foods and spicy foods containing capsaicin. Particularly, wheat proteins and fructan in wheat
may drive symptoms.
Summary Immune mechanisms that drive responses to food in FD are still poorly characterised but share key effector cells to
common food hypersensitivities including non-IgE–mediated food allergy and eosinophilic oesophagitis.
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Introduction

Functional dyspepsia (FD) is a common functional gastroin-
testinal disorder (FGID) with a prevalence of approximately
10% in Western countries [1]. This condition is characterised
by chronic upper gastrointestinal (GI) symptoms including
epigastric pain, epigastric burning, early satiety, postprandial
fullness (often referred to as bloating) and nausea. FD is

diagnosed in patients with persistent symptoms, as defined
by the Rome criteria, who have negative endoscopic findings
and overt pathology upon examination [2]. Patients are gen-
erally assigned to one of two subtypes based on symptoms:
postprandial distress syndrome (PDS) or epigastric pain syn-
drome (EPS) although pathophysiology of FD is poorly de-
fined, and it is unclear if there is a biological basis for these
subtypes [2]. Quality of life is poor in FD patients, with sig-
nificant social and healthcare costs associated with the disor-
der [3]. This is partly due to the ineffectiveness of current FD
therapeutics, which are largely based on symptom relief. A
minority of patients report improved dyspeptic symptoms fol-
lowing Helicobacter pylori eradication [4]. Similarly, proton
pump inhibitors (PPIs) show efficacy in a subset of FD pa-
tients and may suppress duodenal eosinophils, but there are
questions of suitability for long-term use [5, 6]. Tricyclic an-
tidepressants have been used but demonstrate modest benefit
[7, 8]. Because patients often report symptoms following food
consumption, there has been recent interest in dietary manage-
ment as a therapeutic approach for FD, based on the hypoth-
esis that sensitivity to dietary nutrients may drive symptoms in
some FD patients (Table 1) [9]. This notion is supported by an
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Australian population-based study which identified a signifi-
cant association between FD and food sensitivity, independent
of psychological distress [10•].

The lumen of the GI tract is exposed to a vast range of
microbial and dietary proteins. The interplay of the host im-
mune system and the gut microbiota allows the gut tomaintain
homeostasis during encounters with foreign dietary antigens
[11]. An active regulation of immune responses, known as
oral tolerance, occurs when the small intestine is exposed to
a food antigen and does not recognise it as a threat [12].
Following ingestion, dietary proteins undergo digestion by
host-produced enzymes in the saliva and stomach and those
produced by the microbiota in the intestines [13]. However,
some dietary proteins (allergens) resist digestion and remain
intact upon arrival to the duodenum, where they may be
recognised by antigen-presenting cells (APCs) and activate
immune responses, resulting in hypersensitivity reactions
[14]. Some common allergens include proteins derived from
wheat and peanut, and more recently, novel proteins derived
from genetically modified foods have been identified as po-
tential sources of allergens which could contribute to in-
creased risk of hypersensitivity [15].

Food hypersensitivities are characterised as either immu-
noglobulin E (IgE)-mediated food allergy or non-IgE–medi-
ated food sensitivity, and these conditions are distinct from
food intolerances which do not have an immunological basis
and occur, for example, due to enzymatic defects or reactions
to natural or artificial chemicals in food [16].

Recent advances in our understanding of the role of dietary
factors (e.g. gluten, fructans) that provoke symptoms in

functional GI disorders, and the commonality of symptoms
raised the question as to whether a proportion of FGID cases
are driven by food sensitivity [17, 18]. For instance, a recent
longitudinal cohort study identified overlap between self-
reported wheat sensitivity and FGIDs [19••]. Other associa-
tions between food intake and FGID symptoms may be
overlooked due to poor patient recall and common use of
non-validated tools in assessing links between diet and symp-
toms [20]. Nevertheless, dietary interventions are often imple-
mented to alleviate symptoms in FD patients to varying de-
grees of success and an increased understanding of immune
responses to food in FD patients may improve the application
of this approach for management of symptoms [21•, 22•].

FD Immunopathology

Specific mechanisms that drive loss of oral tolerance and pro-
mote hypersensitivity responses to food antigens are poorly
characterised, and similarly, immune mechanisms in FD re-
main unclear. An increase of eosinophils in the duodenum is
consistently reported in a subgroup of FD patients, as de-
scribed in a recent systematic review (Fig. 1) [23••]. As eosin-
ophils are involved in the pathology of not only IgE-mediated
food allergy but also other food hypersensitivity conditions
including food protein-induced enterocolitis syndrome
(FPIES) and eosinophilic esophagitis (EoE), their increased
presence in FD may be suggestive of a similar pathology to
these conditions [24]. Eosinophilia in adult FD patients was
first described in a Swedish cohort in 2007 and since then has

Table 1 Foods associated with symptoms of functional dyspepsia and proposed mechanisms

Food
component

Associated symptoms Proposed immune mechanism Proposed physiological mechanism

Gluten Bloating
Abdominal pain
Epigastric pain

Toll-like receptor activation by gluten-derived
peptides initiate inflammatory responses [61]

Increased duodenal eosinophils promote
inflammatory state and are associated with
increased innervation, causing visceral
hypersensitivity [36, 59••].

Gluten-derived peptides induce zonulin secretion
causing a decrease in tight junction integrity [65].

FODMAPs Bloating
Gas production

Immunomodulation by some FODMAPs may
contribute to inflammation [75].

FODMAPs are osmotically active and cause
increased water volume in lumen of the GI tract,
contributing to the sensation of feeling bloated
[21•].

Fermentation by gastrointestinal microbiota into
short-chain fatty acids produces excess gas [71].

Fats Bloating
Epigastric pain
Nausea
Postprandial fullness

Unknown Overexpression of hormone cholecystokinin could
cause overproduction of bile and digestive
enzymes, affecting GI motor function resulting in
symptoms [93–95].

Capsaicin Epigastric pain
Epigastric burning
Nausea

Unknown Capsaicin interaction with transient receptor
potential vanilloid-1 receptor (TRPV1) may
trigger visceral sensitivity and pain due to
increased TRPV1-reactive nerves [99, 100].
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been supported by studies globally [25–28]. Duodenal eosin-
ophilia was specifically linked to FD patients with symptoms
of early satiety and post-prandial fullness, and it was noted
that these patients have a higher-than-normal incidence of
atopic disease, including food allergy [10•, 29, 30]. The nature
of FD-associated duodenal eosinophilia is not fully under-
stood, particularly in the absence of strong evidence for a
Th2 response in these patients; however, eosinophil degranu-
lation has been observed through immunostaining and trans-
mission electron microscopy (TEM) suggesting that in FD,
eosinophils have an effector function [23, 28, 31].
Degranulation of eosinophils releases granular factors includ-
ing major basic protein (MBP) and eosinophil peroxidase
(EPO), which can be cytotoxic towards cells. The release of
these proteins reduce epithelial barrier function in colonic

cells and induce epithelial remodelling in airways, and thus
have been linked to pathology of atopic conditions [32–34].
EPO and MBP can also cause dysfunction of vagal nerve
muscarinic receptors, which induces smooth muscle hyper-
reactivity and could contribute to FD symptoms associated
with visceral sensitivity [35]. A recent study has identified,
through histological staining, that degranulation of eosino-
phils in FD patients was correlated with increased density of
fine nerve fibres which may relate to symptoms of visceral
hypersensitivity [36].

Alongside duodenal eosinophilia, increases in duodenal
mast cell numbers have been frequently described in FD,
which is of note as mast cells play a crucial role in driving
symptoms in IgE-mediated food allergy [37]. Like eosino-
phils, duodenal mast cells demonstrate enhanced

Fig. 1 Comparison of immune mechanisms driving pathology of food
hypersensitivity conditions in the gastrointestinal tract. a Functional
dyspepsia patients often report symptom onset following food
ingestion; however, exact immune mechanism is not currently
understood. An increased presence of eosinophils and mast cells in the
duodenum and gut-homing lymphocytes in the circulation of patients is
linked to disease [23••]. Increased IL-1β causes reduction in mucosal
barrier function [66]. CD8+ Intra-epithelial lymphocytes (IEL) are more
abundant in H. pylori–positive FD patients [62]. b IgE-mediated food
allergy results from a T helper type (Th) 2 immune response which
causes activation of B lymphocytes to release immunoglobulin (Ig) E.
IgE activates mast cells for degranulation and release of inflammatory
factors. Th2-associated cytokines, interleukin (IL)-5, IL-4, and IL-13

cause recruitment and activation of eosinophils, enhancing the
inflammatory environment [41, 42]. c Celiac disease activates a Th1
response for the production of proinflammatory cytokines, interferon
gamma (IFN-γ), and TNF alpha (TNF-α). A Th2 pathway is also
activated resulting in the B cell production of IgA and IgG against
gliadin and tissue transglutaminase. Increased CD8+ IELs are a
common pathology identified in celiac disease. Gut-homing T cells are
increased in circulation of celiac disease patients [52]. d In eosinophilic
esophagitis a Th2-mediated pathway is activated where cytokine release
causes recruitment of eosinophils which in turn can act on mast cells.
Basophils are also recognised in eosinophilic oesophagitis, and are
activated in a thymic stromal lymphopoietin (TSLP)-mediated manner
[47]. Created with Biorender.com
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degranulation in FD which may contribute to the heterogene-
ity of granular content observed in the histology of those pa-
tients [28, 31]. Altered granular contents may result from a
distinct granular protease composition in FD patients, which
could contribute to pathogenesis. Degranulation of mast cells
releases a range of inflammatory mediators, including hista-
mine and tryptase, which act on surrounding cells to increase
tissue permeability and cause smooth muscle contraction, ac-
tivating peristalsis [38]. This action may be linked to motility-
related symptoms and abdominal discomfort in FD. Increases
in duodenal mast cell numbers are not always observed in FD
patients but have been associated with symptoms of nausea
and psychological dysfunction in both FD and IBS patients
which may point towards a subgroup of FGID patients with
symptoms related to mast cell action [26, 39]. Further inves-
tigation is required to identify if these symptoms occur as a
response to specific foods, but it is clear that there is an over-
lap between the subtle inflammation seen in FD and the pa-
thology of common food hypersensitivities.

Immune Responses in Food Hypersensitivities
Overlapping with FD

Aberrant immune responses to food occur in patients when a
breakdown of immune tolerance to food antigens occurs.
Under homeostatic conditions, T regulatory cells are produced
in response to cellular recognition of specific food antigens
[40]. These cells release interleukin (IL)-10 and transforming
growth factor beta (TGF-β) for suppression of inflammatory
T helper (Th) cell pathways and for activation of immuno-
globulin A (IgA) production [40]. This anergic response is
lost towards some food antigens in patients with food hyper-
sensitivities and results in alternate immune pathways being
activated.

Immune Responses in IgE-Mediated Food
Hypersensitivities

In classical food allergy, the introduction of the offending
food in the GI tract initiates class switching of naïve T cells
to a Th2 phenotype for the production of IL-4, IL-5, and IL-13
(Fig.1) [41]. This cytokine profile promotes recruitment of
mast cells and eosinophils and is also necessary for activation
of B lymphocytes to produce IgE. IgE causes degranulation of
mast cells, resulting in the release of inflammatory mediators
including histamine, that produce allergy symptoms [42].
Interestingly, a study of FD patients has found that circulating
levels of Th2-associated IL-4 and IL-5 are among cytokines
which are significantly associated with dyspeptic symptoms,
including epigastric pain and burning [43]. An earlier study
described the expression of Th2-associated cytokines IL-5 and
IL-13, by stimulated peripheral blood mononuclear cells

(PBMCs), to be significantly increased in FD patients com-
pared with controls [44]. Whilst these two studies are support-
ive of the presence of a Th2-associated cytokine environment
in FD that is typical of allergic disease, there is overall a very
limited consensus in the literature regarding the cytokine pro-
file in FD, making it difficult to draw conclusions about the
associated cytokine phenotype [23••].

Immune Responses in Non-IgE Mediated Food
Sensitivities

Non-IgE–mediated food sensitivities trigger immune re-
sponses to food without the characteristic IgE production seen
in food allergies. Symptoms of non-IgE conditions generally
appear later following consumption of the offending food,
compared with IgE-mediated food allergy [45]. Some associ-
ated conditions include celiac disease, EoE, and FPIES [46,
47]. The mechanisms driving many non-IgE–mediated food
sensitivities are poorly established, and the late onset of symp-
toms and varied immune presentations make the conditions
difficult to diagnose. However, despite heterogeneity among
non-classical hypersensitivity reactions, cell-mediated immu-
nity, potentially involving Th1 immune responses, is
hypothesised to drive the immune response in these conditions
[48–50]. This is the case in celiac disease, where activation of
Th1 lymphocytes, in response to gluten antigens, results in the
production of type 1 cytokines, including interferon gamma
(IFN-γ) to drive an inflammatory response that results in tis-
sue damage (Fig. 1) [51, 52]. Further, the increased intestinal
permeability observed in FPIES is hypothesised to result from
decreased TGF-β production in conjunction with increased
production of TNF-α that promotes an inflammatory pheno-
type [50].

In FD patients, elevated levels of food antigen-specific
IgG, but not IgE, have been reported, compared with a control
population [53]. Elevated IgG has also been described in irri-
table bowel syndrome (IBS), another FGID with considerable
symptom overlap with FD [54]. Use of confocal laser
endomicroscopy in IBS patients demonstrated a cellular re-
sponse to certain foods in more than 50% of patients [55••].
The observed response was not mediated by IgE production;
however, increased activation of eosinophils was reported fol-
lowing challenge in these patients, suggesting the duodenal
eosinophilia observed in FD may result from atypical food
hypersensitivities [55••].

Specific Foods Trigger Symptoms in FD

Wheat

One of the most common food hypersensitivities reported by
FD patients is in response to wheat or the group of proteins
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present in wheat known as gluten. Non-celiac wheat/gluten
sensitivity (NCW/GS) describes a condition where the con-
sumption of wheat or gluten-containing foods results in GI
and extra-intestinal symptoms [19••]. Many of these symp-
toms overlap with FD, leading to the hypothesis that NCW/
GSmay be a subtype of FD. An Italian survey of patients with
suspected NCW/GS identified that greater than 80% of pa-
tients experienced bloating and abdominal pain, and 52% ex-
perienced epigastric pain, the defining symptoms of EPS,
highlighting the overlap between these conditions [56].
NCW/GS is diagnosed in the absence of celiac disease and
IgE-mediated wheat allergy and confirmed through a double-
blind placebo-controlled wheat challenge. An Australian
population-based study reported a significant association be-
tween self-reported NCW/GS and diagnosis with FD by a
modified Rome criteria and reported that 29% of participants
with FD avoided consuming gluten [19••, 57••]. The patho-
genesis of NCW/GS is poorly characterised; however, there is
some overlap with FD pathogenesis. Patients with a confirmed
diagnosis of NCW/GS have increased mucosal eosinophil in-
filtration in the GI tract compared with IBS patients not
reporting symptoms associated with gluten ingestion [58].
Similarly, a study by Carroccio et al. identified increased du-
odenal eosinophils in NCW/GS patients compared to controls
[59••]. Moreover, this study found that within the NCW/GS
cohort, there was a significantly greater number of eosinophils
in NCW/GS patients experiencing upper GI symptoms, com-
pared to the rest of the cohort, supporting the idea that NCW/
GS exists in a subset of FD patients. Along with eosinophils,
expression of toll-like receptors (TLRs) has also been impli-
cated in the pathogenesis of NCW/GS. An increased expres-
sion of these receptors has been recognised in NCW/GS pa-
tients [60]. TLRs are innate antigen sensors, expressed on
innate cells including eosinophils and macrophages, which
can initiate inflammatory responses once activated [61, 62].
Gliadin, a gluten-derived immunogenic peptide has been sug-
gested as a TLR ligand, and as in NCW/GS, TLR expression
is increased in celiac patients [63, 64]. Gluten-derived pep-
tides may disrupt epithelial tight junction integrity by promot-
ing zonulin secretion, and impaired intestinal barrier function
has previously been described in FD [65–67]. Adhering to a
gluten-free diet has had some success in improving symptoms
for FD patients. In an Italian study, 75% of FGID patients
following a 3-week trial of a gluten-free diet experienced relief
from symptoms [68]. Furthermore, a randomized double-
blind placebo-controlled trial in FD patients alone found that
35% of patients had an improvement of symptoms, whilst on a
gluten-free diet however, only 18% of those patients were
confirmed to have NCW/GS with symptoms reoccurring fol-
lowing blind gluten challenge [69••]. As symptom reoccur-
rence only occurs in a relatively small percentage of gluten-
challenged patients, it has been proposed that there is a differ-
ent component of wheat-based foods triggering symptom

onset. Such components may include amylase trypsin inhibi-
tors, wheat germ agglutinins, or fructans [70].

FODMAPs

FODMAPs—fermentable oligosaccharides, disaccharides,
monosaccharides, or polyols—are short-chain carbohydrates
present in food considered to contribute to symptoms in
FGIDs. FODMAPs are poorly absorbed in the GI tract and
are readily fermented by the gastrointestinal microbiota into
short-chain fatty acids (SCFAs), increasing gas production
[71]. Whilst it has been found that high FODMAP ingestion
prolongs hydrogen production from the intestines of both
healthy and FGID patients, the effect is significantly greater
in FGID patients compared with controls and is accompanied
by an induction of gastrointestinal symptoms [71].
FODMAPs are also considered to be osmotically active,
meaning they contribute to increased water volume in the
lumen of the GI tract [21•]. It appears that in FGID patients,
the effects of FODMAPs are heightened, contributing to
symptoms. A systematic review of literature investigating
the effects of food on FD presentation identified FODMAP-
containing foods as some of the most commonly implicated
foods to FD symptoms [72••]. FODMAPs are highly present
in a range of fruits, vegetables, dairy products and important-
ly, wheat-based foods. Fructans are the main carbohydrate
constituent of wheat and come under the classification of
FODMAPs, and thus may contribute to the pathogenesis of
NCW/GS. A double-blind crossover challenge of self-
reported NCW/GS patients investigated the effect of fructans
on symptoms and discovered that whilst gluten caused no
significant change in these patients, fructan challenge resulted
in significant worsening of symptoms, suggesting that the
fructan component of wheat, as opposed to gluten, triggers
symptoms in NCW/GS patients [22•].

A low FODMAP diet has consistently been shown to im-
prove symptoms in IBS patients, for which there is significant
clinical overlap with FD [54]. However, there is little literature
describing the effect of low FODMAP diets in FD patients
[21•]. In IBS patients, a long-term low FODMAP diet im-
proved the presentation of symptoms and reduced levels of
fatty acid-associated inflammatorymarkers, however there are
concerns of long-term impact of low-FODMAP diet on the
microbiota [73, 74]. The microbiota is responsible for the
fermentation and digestion of FODMAPs and thus the low-
FODMAP diet may negatively impact microbes that utilise
these nutrients as a primary carbon source. Murine models
have highlighted immunomodulatory capabilities of fructans
which can occur in a microbiota-dependent manner [75].

Analysis of the GI microbiota of FD patients has identified
a significant increase in the genus Streptococcus when com-
pared with healthy controls, which positively correlated with
increased upper GI symptoms [76•]. Increased severity of
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symptoms also correspondedwith increased bacterial load and
reduced microbial diversity in the duodenal microbiota of FD
patients, who also exhibited a significant reduction in the
abundance of Prevotella, Veillonella and Actinomyces [77•].
With regard to diet and enterotypes, Prevotella is associated
with high consumption of plant materials and fibre, and there-
fore carbohydrate metabolism via fermentation [78].
Interestingly, decreased abundance of Prevotella was associ-
ated with increased symptom severity in IBS patients, and
probiotic supplementation results in restoration of Prevotella
abundance and reduction in PDS symptoms in FD patients
[79, 80]. As such, decreased Prevotella abundance in these
patients may suggest altered carbohydrate metabolism is as-
sociated with symptoms in FD; however, this relationship
requires further characterisation.

Alterations to the composition and bacterial load of the GI
microbiota have also been regularly reported in patients with
food hypersensitivities [81–83]. A reduction in Prevotella
abundance has been described in the duodenum of celiac dis-
ease patients, which is consistent with the reported microbiota
changes in FD [84]. Also in celiac disease, the abundance of
the genus Pseudomonas is correlated with enhanced proteo-
lytic activity in patients, and when patient microbiota is trans-
ferred into germ-free mice, it results in increased intra-
epithelial lymphocytes [85•]. In EoE, much like in FD, an
increase in bacterial load is associated with disease state
[83]. There is also an enrichment of the genus Neisseria,
Corynebacterium and Haemophilus identified in EoE when
compared to healthy controls [83, 86]. In IgE-mediated food
allergy, a reduction in the diversity of microbial species is
seen, with reduced abundance of Bacteroidetes ,
Proteobacteria and Actinobacteria and increased abundance
of Firmicutes reported [81, 87]. The common presence of
altered microbiota in food hypersensitivities may allow spec-
ulation that specific changes to the microbiota can predispose
the immune system to susceptibility towards food antigens,
resulting in food-triggered symptoms. However, it must also
be considered that altered diets also drive changes in the mi-
crobiota, and this effect could account for some of the identi-
fied changes where diet has not been controlled for [88, 89•].
These pathways may be at play in FD; however, the exact
driving mechanisms remain to be elucidated.

Fats

There is significant association between ingestion of high-fat
foods and symptoms in FD patients, specifically postprandial
fullness and bloating [90, 91]. These findings have been di-
rectly validated, and intraduodenal infusion of lipids, but not
glucose, was found to cause nausea and provoke feelings of
fullness in FD patients compared to controls [92]. A similarly
enhanced symptom profile in FD patients was seen following
consumption of a high-fat meal when compared with a high-

carbohydrate or low-nutrient diet [93]. The same study
recognised that concentrations of the hormone cholecystoki-
nin were increased in FD patients after the high-fat meal. As
this hormone plays a role in stimulating the release of bile and
enzymes required for digestion, an overexpression may pro-
voke symptoms in FD. Indeed, altered bile acid pools have
recently been described in FD patients and may be a determi-
nant of microbiota composition [94, 95]. However, a more
recent study of FD patients found that symptoms of nausea
and bloating were unchanged following the consumption of
either low-fat or high-fat yoghurt [96•]. Moreover, these pa-
tients reported more rapid symptom relief towards yoghurt
labelled as low-fat, and increased satiety after consuming yo-
ghurt labelled as high-fat, irrespective of the actual fat content
of the yoghurt. This emphasises the role for psychology in the
pathogenesis of FD and indicates that psychological percep-
tions of high-fat food can influence symptom presentation.

Capsaicin

Capsaicin is the active compound in chilli peppers which
causes the sensation of burning associated with spicy foods.
Consumption of capsaicin containing foods causes an increase
of symptoms in FD patients when compared to consumption
of placebo and when compared with healthy controls [97, 98].
Capsaicin triggers sensations through interaction with the
transient receptor potential vanilloid-1 receptor (TRPV1).
Interestingly, the G315 polymorphism of the TRPV1 gene is
significantly inversely associated with FD [99]. Visceral hy-
persensitivity associated with capsaicin has also been reported
in IBS patients, where TRPV1-reactive nerve fibres and mast
cells were significantly increased in colonic biopsies of pa-
tients compared with controls [100]. There is scant evidence
of an immune mechanism driving symptoms in response to
capsaicin in FD patients.

Conclusions

The pathogenesis of functional dyspepsia remains poorly
characterised; however, there is emerging evidence for a link
between the consumption of specific foods and the onset of
symptoms in patients. There is subtle inflammation evident in
the duodenum of FD patients, including increased eosinophils
and mast cells, and these effector cells overlap with the pa-
thology of food sensitivities, supporting the hypothesis that a
subgroup of FD patients experience immune hypersensitivity
to foods. Consumption of foods high in gluten, FODMAPs,
fat, or capsaicin have all been linked to worse FD symptoms;
however, the data is largely observational, and further re-
search is warranted to investigate the mechanisms governing
immune responses to these foods in FD patients.
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