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Abstract Helicobacter pylori infects about 50 % of the
world’s population, causing at a minimum chronic gastritis.
A subset of infected patients will ultimately develop gastric or
duodenal ulcer disease, gastric adenocarcinoma, or MALT
(mucosa-associated lymphoid tissue) lymphoma. Eradication
of H. pylori requires complex regimens that include acid sup-
pression and multiple antibiotics. The efficacy of treatment
using what were once considered standard regimens have de-
clined in recent years, mainly due to widespread development
of antibiotic resistance. Addition of bismuth to standard triple
therapy regimens, use of alternate antibiotics, or development
of alternative regimens using known therapies in novel com-
binations have improved treatment efficacy in specific popu-
lations, but overall success of eradication remains less than
ideal. Novel regimens under investigation either in vivo or
in vitro, involving increased acid suppression ideally with
fewer antibiotics or development of non-antibiotic treatment
targets, show promise for future therapy.
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Introduction

Helicobacter pylori, a Gram-negative bacterium that infects
the normal acid secreting human stomach, was first connected
to the development of ulcer disease in 1984 [1]. The bacteria
infects about 50 % of the world’s population, leading to gas-
tritis in 100 % of those infected, and a fraction of those indi-
viduals will ultimately develop gastric or duodenal ulcer dis-
ease, gastric adenocarcinoma, or MALT (mucosa-associated
lymphoid tissue) lymphoma [2–6]. H. pylori was designated
as a class one or definite carcinogen by the World Health
Organization on the basis of the established connection with
gastric cancer [7, 8]. The worldwide burden of gastric cancer
is high. Gastric cancer is the fourth most common cancer and
the second most common cause of cancer death [9].
Eradication of H. pylori infection leads to improvement or
resolution of associated pathology, underscoring the impor-
tance of effective therapy. Successful treatment of H. pylori
leads to ulcer healing rates of >90 % and is effective in
preventing recurrence of bleeding [10–12]. Low-grade
MALT lymphoma, in the absence of genetic translocations,
can be treated by eradication ofH. pylori [13–15]. Eradication
ofH. pylori is proven to be beneficial for prevention of gastric
cancer [16] and leads to eventual regression of acute and
chronic inflammation [17]. Success rates of standard therapy
regimens, typically including acid suppression and multiple
antibiotics, have fallen below the acceptable level of 80 % in
many parts of the world [18]. The reason for the decline in
treatment success appears to be multifactorial, involving is-
sues such as expanding antibiotic resistance, patient compli-
ance, and host and bacterial factors that alter the efficacy of
treatment [19•]. Antibiotic resistance is generally believed to
be the major contributor to treatment failure, underscoring the
importance of understanding why current regimens fail and
identifying new treatment regimens.
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Scientific Basis for Standard Therapy

H. pylori colonizes an acidic niche in the human stomach. It
was originally believed that, even though the gastric lumen
has a median pH near 1.4 in normal acid secreting humans
[20], the actual site of infection was closer to neutral pH due to
a pH gradient through the mucus layer [21]. These studies
were done with glass-tipped microelectrodes, and may have
been hindered by technique due to difficulty in diffusion of
protons through the electrodes. Several studies in the interim
have provided evidence for a more acidic environment at the
site of infection. Later work using mircoelectrodes in mice
have suggested that the presence of H. pylori removes any
potential barriers to proton diffusion [22]. Fluorescent dye
studies completed in externalized stomachs of anesthetized
mice also suggested an acidic pH at the gastric surface, regard-
less of the presence of a mucus layer [23]. The gastric surface
pH is a combination of regulation of acid and alkali secretion
to a specific set point rather than a result of trapping of buffers
or protons under the mucus layer [23]. Transcriptome studies
done in vitro at acidic and neutral pH and in bacteria collected
from infected gerbils demonstrated that genes regulated by
acidic pH in vitro show similar changes in expression in the
gerbil stomach, again suggesting acidic pH at the site of in-
fection [24]. H. pylori typically infects the gastric antrum but
the infection predominates in the gastric body with acid sup-
pressive therapy [25–28], providing additional evidence that
the bacteria are adapted to live in a very specific environment
with regard to local pH.

In apparent conflict with the need forH. pylori to inhabit an
acidic niche, the bacteria are bioenergetically neutralophiles,
meaning they are able to survive between pH 4–8 and grow
between pH 6–8. The bioenergetic profile has been confirmed
using studies measuring membrane potential [29]. The bacte-
ria have adapted to survive in their very specific niche through
a mechanism termed acid acclimation or the ability to main-
tain periplasmic pH near neutral in an acidic environment
[30]. This is distinct from the acid resistance mechanisms seen
in other bacteria that merely have to survive passage through
the stomach and are designed to moderately elevate cytoplasmic
pH [31]. Acid acclimation in H. pylori is centered on a neutral
pH optimum cytoplasmic urease enzyme, which hydrolyzes
urea into carbonic acid and ammonia, and an inner membrane
localized, proton-gated urea channel, UreI [30, 32, 33]. A
periplasmic-localizedα-carbonic anhydrase enzyme contributes
to periplasmic buffering by catalyzing the conversion of carbon
dioxide produced by urease into bicarbonate [30]. The bacteria
are able to sense environmental pH via the use of two-
component signaling systems, which are able to stimulate
protein trafficking, facilitating periplasmic alkalization, and
increase transcription of acid acclimation genes [34].

Acid acclimation and H. pylori bioenergetics are criti-
cal to successful treatment protocols. Available regimens

are classically based on acid suppression and multiple
antibiotics. The bacteria are uniquely adapted to survive
in the acidic environment of the stomach, but based on
their status as neutralophiles, a smaller fraction of the
bacteria will actually be dividing or growing in acid as
compared to more neutral pH. This is demonstrated in
transcriptome studies, where genes involved in cell divi-
sion and cell wall synthesis are up-regulated at neutral pH
[35]. Most antibiotics used to treat H. pylori are depen-
dent on bacterial growth and will work on bacteria that
are actively dividing, which will occur more readily with
adequate acid suppression [35]. H. pylori that are not di-
viding at the time of antibiotic administration will not be
killed by the antibiotics, leaving a small population of
viable bacteria that can restore colonization of the stom-
ach once the antibiotics are stopped. This is considered a
form of pheonotypic resistance, where treatment can fail
despite appropriate antibiotic coverage [36, 37••].
Medications currently available for acid blockade, at rec-
ommended doses, will not consistently achieve the
sustained pH change required to mimic the bactericidal
effect seen in in vitro studies [35, 38].

Standard Triple and Bismuth-Containing
Quadruple Therapy

Standard first line treatment for H. pylori infection has classi-
cally been triple therapy with BID PPI, clarithromycin, and
either metronidazole or amoxicillin. Clarithromycin is bacte-
riostatic and inhibits protein synthesis by binding to the 50S
ribosomal subunit. Metronidazole is bactericidal and works
via activation within the bacteria, leading to production of
toxic metabolites. Amoxicillin is bactericidal and inhibits syn-
thesis of bacterial cell walls. Efficacy is equivalent when using
either amoxicillin or metronidazole [39]. Use of high dose
BID PPI will increase cure rates with standard therapy regi-
mens by 6–10% [40]. Treatment duration is important as well,
as a 14-day dosing schedule increased efficacy of eradication
by 5–6%when compared to a 7-day regimen, without causing
a significant difference in side effect profile [41–43]. Standard
triple therapy was initially acceptably efficacious, with treat-
ment success ranging from >80 to >90 % in the early 1990s
[44, 45]. Success of this regimen has declined globally over
time, dropping to unacceptable levels in many regions [19•,
46]. The main identified reason for treatment failure with stan-
dard triple therapy is resistance to clarithromycin, with com-
pliance, bacterial load, and strain differences also identified as
potential contributing factors [47]. Clarithromycin resistance
is mediated either by point mutations that prevent antibiotic
binding to the ribosome or via development of antibiotic ef-
flux channels [48, 49]. When deciding to use standard triple
therapy, it is important to review a patient’s prior antibiotic use
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since past exposure to any of the macrolide antibiotics may
predict clarithromycin resistance [50]. Current guidelines sug-
gest that standard triple therapy should not be used if regional
levels of clarithromycin resistance are >15–20 % [47].
Metronidazole resistance, mediated by mutations leading to
inactivation of the bacterial enzymes needed to activate the
antibiotic, is also fairly prevalent worldwide [51, 52]. Like
clarithromycin, prior exposure to metronidazole is an impor-
tant factor in treatment success [50]. Two important differ-
ences exist when comparing metronidazole resistance to
clarithromycin resistance. Metronidazole resistance has
remained more stable worldwide while clarithromycin resis-
tance has increased [53]. Metronidazole resistance can also be
overcome by increasing the antibiotic dose [54, 55].
Amoxicillin resistance, mediated by a variety of different
mechanisms including mutations in penicillin-binding pro-
teins, decreased permeability for the antibiotic, or develop-
ment of efflux pumps, is extremely rare in H. pylori [47, 56].

In the case of failed standard triple therapy, or as first line
therapy in regions of high clarithromycin resistance,
bismuth-containing quadruple regimens can be considered
[47]. These regimens consist of BID PPI, bismuth, and two
antibiotics [47], ideally for 14 days, and have overall im-
proved efficacy compared with triple therapy in regions
with higher levels of clarithromycin or metronidazole resis-
tance [57]. Several recent studies have confirmed efficacy
of adding bismuth to clarithromycin or levofloxacin-
containing regimens, even in the setting of either high
levels of resistance or known resistance based on suscepti-
bility testing. Cure rates across these studies were either
>90 % for 14 day regimens or demonstrated improvement
from region-based expected eradication levels of 30–40 %
up to 70–85 % [55, 58–61]. Resistance of H. pylori to bis-
muth has not been reported [62–64]. The mechanism of
action of bismuth on H. pylori is not definitively known.
Bismuth preparations, on rare occasions, have been noted
to have some independent bactericidal action against
H. pylori [65–67]. Bismuth has mainly a local effect on
H. pylori, as absorption is not required for efficacy [68].
Older in vitro studies suggest that bismuth may work
against H. pylori via deposition both on the surface of the
bacteria and in the region between the cell wall and the
cytoplasmic membrane, disrupting critical bacterial func-
tions [69, 70]. More recent in vitro work suggests that bis-
muth impedes proton entry into the bacteria, allowing for
upregulation of growth-dependent genes and increased ef-
ficacy of growth-dependent antibiotics [71]. The downsides
to bismuth-containing quadruple therapy include increased
complexity of the regimens and increased side effect poten-
tial, which may interfere with compliance. Having a non-
antibiotic component as part of a widely used regimen has
the long-term benefit of durability of response, without the
concern for development of resistance over time.

Alternative Antibiotics

Rising resistance rates and antibiotic availability in different
regions may necessitate the use of different antibiotics beyond
the standard therapy protocols. The most common antibiotic
used in second line or salvage therapies is levofloxacin.
Levofloxacin works by inhibiting bacterial topoisomerase II
[72]. Inmost cases of failed first line therapy, it is assumed that
antibiotic resistance may have played a role, and antibiotics
should be altered [37••]. Triple therapy with levofloxacin re-
placing clarithromycin, given that amoxicillin resistance is
extremely rare, is a recommended second line regimen [47].
Levofloxacin can also be substituted for clarithromycin in a
variety of alternative regimens based on local resistance pat-
terns. Levofloxacin and other fluoroquinolones are widely
used for a variety of bacterial infections and levofloxacin
should not be considered for treatment of H. pylori in patients
with a history of chronic infections treated with this class of
antibiotics [47]. Due to its widespread and growing use world-
wide, the incidence of levofloxacin-resistant H. pylori is
growing rapidly [37••]. Resistance is typically caused by point
mutations in theH. pyloriDNA gyrase [73, 74]. Fourteen-day
triple therapy with levofloxacin will not reach the target of
90 % success if the local resistance rate is over 12 %, and
addition of bismuth requires a local resistance rate of <25 %
[60, 75]. Overall, levofloxacin can be considered as a reason-
able second line regimen if local clarithromycin resistance
exceeds 15–20 % and levofloxacin resistance is less than
10 %, or as part of an empiric salvage regimen in areas of
low fluoroquinolone resistance [47, 76••].

Tetracycline is bactericidal and works by inhibiting protein
synthesis. Tetracycline resistance, mediated either by efflux
proteins or ribosomal protection proteins [77], is less prevalent
worldwide than resistance to clarithromycin, metronidazole,
or levofloxacin. In patients in Taiwan receiving a second
course of treatment for a prior failure, addition of tetracycline
to PPI, bismuth, and amoxicillin was more effective than ad-
dition of metronidazole [78]. Use of tetracycline has become
more prominent since the introduction of Pylera®, a combined
pill containing bismuth, tetracycline, and metronidazole that
can be taken four times daily in combination with a twice daily
PPI. The benefit of this combined pill formulation is the like-
lihood of improved patient compliance. Use of Pylera® result-
ed in eradication rates of 80–93 % in a series of studies con-
ducted in populations who were either treatment naïve or had
failed one treatment course [79–82]. A more recent study
looked at effectiveness of this regimen in patients with known
resistance to metronidazole, clarithromycin, and levofloxacin
or who had failed multiple prior treatment courses, and found
eradication rates of 83 % (intention to treat) and 87 % (per-
protocol) [83]. These numbers are encouraging especially in
the setting of known metronidazole resistance and in a diffi-
cult to treat population. Tetracycline should be considered as a
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part of second line or salvage regimens, typically as a part of
bismuth-containing quadruple therapy regimens, especially in
areas where antibiotic resistance is of high concern.

Rifabutin is a bactericidal antibiotic that works by blocking
bacterial RNA polymerase. Resistance ofH. pylori to rifabutin
is very low, about 1 % overall [37••], typically mediated by
genomic point mutations [84, 85]. The most commonly used
rifabutin-containing regimen is in combination with a PPI and
amoxicillin for 14 days, with greater efficacy (over 90%) seen
when using high doses of both the PPI and amoxicillin [86,
87]. The mean success rate of regimens containing rifabutin is
73% according to a comprehensive review completed in 2012
[88]. Rifabutin should only be used as a salvage therapy due to
the potential for creating resistance to mycobacteria and the
risk of side effects such as myelotoxicity [88].

Alternative Regimens

Several alternative treatment regimens designed to overcome
the problems faced with standard protocols have been devel-
oped and extensively tested. Sequential therapy is a 10-day
regimen which begins with 5 days of BID PPI and amoxicillin
(or levofloxacin if penicillin-allergic), with discontinuation of
amoxicillin and initiation of clarithromycin and metronidazole
for treatment days 6–10 [47, 89, 90]. This regimen can be
extended to 14 days, with reported superiority over standard
triple therapy for 14 days in a recent multi-center study com-
pleted in Taiwan [91]. The rationale for this regimen is that the
amoxicillin is used to help overcome clarithromycin resis-
tance. By disrupting bacterial cell walls, amoxicillin interferes
with the activation of clarithromycin efflux channels in resis-
tant organisms [49, 89]. Sequential therapy is considered first
line treatment in regions of high clarithromycin resistance
where bismuth is not readily available [47]. In one analysis,
sequential therapy was shown to be effective 75 % of the time
in clarithromycin-resistant strains [92]. A recent meta-analysis
demonstrated that 14 day sequential therapy was a more ef-
fective first line regimen than 14 day triple therapy [93]. The
downsides to sequential therapy include challenges with pa-
tient compliance with a complex regimen and the potential to
either foster resistance to multiple antibiotics or limit salvage
options in the event of treatment failure [76••, 94].

Concomitant therapy, or non-bismuth quadruple therapy,
includes a PPI and three antibiotics, typically clarithromycin,
amoxicillin, and metronidazole, ideally for 14 days. This reg-
imen is superior to standard triple therapy as demonstrated in a
recent randomized controlled trial and multiple meta-analyses
[95–97]. The appeal of this regimen as compared to sequential
therapy is that there is no need to change antibiotics half way
through the treatment course, which is easier for patients and
should boost compliance [37••]. This regimen shows reason-
able success in areas of high clarithromycin or metronidazole

resistance, but efficacy drops when the prevalence of strains
resistant to both antibiotics is greater than 15 %, such as Latin
America, Turkey, or Korea [98].

Hybrid therapy is a combination of sequential and concom-
itant therapy, starting with 7 days of PPI and amoxicillin,
followed by addition of clarithromycin and metronidazole
(four-drug regimen) for the final 7 days [99]. Reverse hybrid
therapy involves all four drugs for the first 7 days, followed by
amoxicillin and PPI for the final 7 days [100]. Since medica-
tions are added during treatment rather than changed, this
regimen should be simpler than sequential therapy. There is
less overall antibiotic exposure than with concomitant therapy,
potentially making this regimen more attractive in regions
where it is effective. Similar to concomitant therapy, effective-
ness will be decreased in regions with high prevalence of
strains with combined metronidazole and clarithromycin re-
sistance [98]. Success rates, as expected, are region-dependent
[37••]. A meta-analysis completed in early 2015 showed over-
all similar efficacy when comparing hybrid, concomitant, and
sequential therapies [101]. A meta-analysis completed later in
2015 including eight studies and 2516 enrolled subjects again
showed hybrid therapy was similar to sequential therapy and
to concomitant therapy in terms of success rate and concluded
that hybrid therapy was overall effective and well-tolerated
[100]. Based on the available literature, the overall decision
to choose an alternative regimen should be based on local
resistance patterns, prior antibiotic exposures (relating to
H. pylori treatment or other infections), and expected patient
compliance.

The Future of Therapy

The two most significant barriers to effective treatment for
H. pylori infection are antibiotic resistance and patient com-
pliance. With this in mind, the future of treatment needs to be
focused on either simpler regimens, use of antibiotics with less
chance of development of resistance, or development of non-
antibiotic regimens targeting the ability of the bacteria to sur-
vive in the stomach. Both primary and secondary resistance of
H. pylori to amoxicillin are very rare [102–104], making this
antibiotic a viable candidate for study of dual therapy regi-
mens with PPIs. Dual therapy with PPI and amoxicillin has
been studied in different formats for over 20 years, but con-
sistency in results has not been established, and fine tuning is
likely required to establish this regimen as a standard treat-
ment protocol. A meta-analysis completed in 1994 suggested
a >80 % eradication rate with omeprazole 20 mg BID and
amoxicillin >2 g total daily and hinted at the importance of
acid suppression in these regimens. Success rates of 30–50 %
were seen with similar dual regimens in 1995 and 1998 [105,
106], but most significantly, the 1998 study highlighted the
importance of profound acid suppression. The only significant
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factors in successful eradication with PPI-amoxicillin dual
therapy were percent time > pH 4 and continuous time > pH
6 [106]. More recently, the recognition of P450 CYP 2C19
polymorphisms that affect the metabolism of PPIs has pre-
sented a possible mechanism of treatment failure. Poor
metabolizers, who are able to maintain a higher intra-
gastric pH on PPI therapy, have a better response to dual
therapy regardless of PPI dose, but genotype is less of a
factor as PPI doses are increased [107]. Amoxicillin-
dosing frequency is an important factor as well .
Amoxicillin, unlike many other antibiotics used in
H. pylori treatment regimens, is time-dependent, not con-
centration-dependent, so time above MIC is an important
factor in efficacy [108, 109]. A regimen of four times daily
rabeprazole (20 mg) and four times daily amoxicillin
(750 mg) for 14 days was recently shown to be superior to
standard treatment regimens in a Taiwanese population
[110•]. Optimization of acid suppression may ultimately
lead to a standard dual therapy regimen that is effective
worldwide.

High dose PPI use in dual or standard therapy regimens
may ultimately be replaced by more potent acid suppressive
agents. The potassium competitive inhibitor of the gastric H,
K-ATPase, vonoprazan, is coming into clinical use in Asia and
has the benefit of a more rapid and sustained acid inhibitory
effect regardless of CYP 2C19 genotype [111]. Use of
vonoprazan in place of PPIs has shown early promise in recent
studies of Japanese populations, with an eradication rate of
70.2 % using vonoprazan, amoxicillin, and clarithromycin as
second line therapy in patients who have failed first line treat-
ment with rabeprazole, amoxicillin, and clarithromycin and a
92.7 % success rate of first line therapy with vonoprazan,
amoxicillin, and clarithromycin [112, 113].

Non-antibiotic regimens would be the ideal for future
management of H. pylori infection as this would avoid the
concerning issue of worsening widespread antibiotic resis-
tance. Potential treatments would target the components of
acid acclimation that allow the bacteria to colonize the
stomach, such as the urea channel, the two-component sig-
naling systems that detect medium pH, or the carbonic
anhydrase enzymes. Inhibition or gene knockout of α-
carbonic anhydrase has shown promise in vitro as a poten-
tial treatment target in the presence of acid [30].
Acetazolamide, a carbonic anhydrase inhibitor used clini-
cally for altitude sickness or alkalosis, were shown to have
benefit for ulcer healing prior to the discovery of H. pylori
[114]. One pilot study done in humans, looking at efficacy
of acetazolamide in eradication of H. pylori, was unsuc-
cessful, but the dose and duration of treatment were likely
inappropriate [115, 116]. Use of non-antibiotic targeted
treatments of this nature would require attention to obsta-
cles not only of dose and duration but also to ability to reach
bacteria in the gastric lumen.

Conclusions

H. pylori is a highly prevalent global pathogen that causes
chronic inflammation in all who are infected, carries a risk
of advanced disease including ulcers and gastric cancer, and
faces growing challenges with treatment efficacy. Standard
triple therapy with proton pump inhibitor, clarithromycin,
and either amoxicillin or metronidazole is no longer sufficient-
ly efficacious in many parts of the world due to antibiotic
resistance patterns. New regimens with bismuth, different an-
tibiotics, or different combinations of standard antibiotics
have shown variable promise. As antibiotic use for a variety
of different infections increases, the problems inherent with
the use of primarily antibiotic-based regimens for H. pylori
will only increase. Use of enhanced acid suppression to im-
prove efficacy of growth-dependent antibiotics, preference for
regimens including antibiotics with lower risk for resistance,
and continued focus on the search for non-antibiotic treatment
targets will shape the future of treatment for H. pylori. Choice
of regimens for patients at the present time should be based on
knowledge of local resistance patterns and antibiotic use, pa-
tient history, and accommodations to facilitate optimal
compliance.
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