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Abstract
Purpose of Review The endocannabinoid (eCB) system, i.e. the receptors that respond to the psychoactive component of cannabis,
their endogenous ligands and the ligand metabolic enzymes, is part of a larger family of lipid signals termed the endocannabinoidome
(eCBome). We summarize recent discoveries of the roles that the eCBome plays within peripheral tissues in diabetes, and how it is
being targeted, in an effort to develop novel therapeutics for the treatment of this increasingly prevalent disease.
Recent Findings As with the eCB system, many eCBome members regulate several physiological processes, including energy
intake and storage, glucose and lipid metabolism and pancreatic health, which contribute to the development of type 2 diabetes
(T2D). Preclinical studies increasingly support the notion that targeting the eCBome may beneficially affect T2D.
Summary The eCBome is implicated in T2D at several levels and in a variety of tissues, making this complex lipid signaling
system a potential source of many potential therapeutics for the treatments for T2D.
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Introduction: The Endocannabinoid System
and its Subsequent Expansion
to the “Endocannabinoidome”

The discovery of two G protein-coupled receptors, the canna-
binoid receptor type-1 (CB1) and − 2 (CB2) [1, 2], for the

cannabis-derived natural product, Δ9-tetrahydrocannabinol
(THC), responsible for most of the psychotropic, euphoric
and appetite-stimulating actions (via CB1 receptors) and
immune-modulatory effects (via CB2 receptors) of marijuana,
opened the way to the identification of the endocannabinoids
(eCBs). These are two arachidonic acid-derived molecules,
i.e. arachidonoylethanolamide (AEA or anandamide) and 2-
arachidonoyl-glycerol (2-AG), capable of binding with high
affinity to, and stimulating with good efficacy, both CB1 and
CB2 receptors [3, 4]. The subsequent identification of anabol-
ic and catabolic routes and enzymes (Fig. 1) for the regulation
of AEA and 2-AG tissue concentrations, and hence of CB1
and CB2 activity, as well as of eCB biosynthetic precursors
and degradation products, led to the definition of the
endocannabinoid system as the ensemble of all these proteins
and small lipid molecules.

Initially, and up to the turn of the century, the eCB system
was composed of: 1) CB1 and CB2, 2) AEA and 2-AGwith the
respective biosynthetic precursors, e.g. the N-arachidonoyl-
phosphatidylethanolamines (NArPEs) and the 1-acyl-sn-2-
arachidonoyl-glycerols (AcArGs), 3) three biosynthetic en-
zymes capable of converting NArPEs and AcArGs into AEA
and 2-AG, i.e. a N-acyl-phosphatidylethanolamine-specific
phospholipase D-like (NAPE-PLD) and two sn-1 selective di-
acylglycerol lipases, (DAGLs), DAGLα and β, respectively
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and 4) two hydrolases inactivating AEA and 2-AG, i.e. fatty
acid amide hydrolase (FAAH) and monoacylglycerol lipase
(MAGL), respectively [5–8]. However, it was soon realized
that: 1) AEA and 2-AG congeners, i.e. theN-acylethanolamines
(NAEs) and 2-mono-acyl-glycerol (2-MAGs), respectively,
were biosynthesised using NAPE-PLD and DAGLs from

precursors similar to those of the two eCBs, and inactivated to
the respective fatty acids and ethanolamine or glycerol by
FAAH and MAGL; 2) these lipids were much less active or
even inactive, in most cases, at CB1 and CB2 receptors, and
instead capable of modulating the activity of other molecular
targets; 3) NAEs and 2-MAGs, including AEA and 2-AG, can
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be biosynthesized and also degraded via alternative pathways
and enzymes; and 4) the two eCBs, like their congeners and
several other lipid mediators, are quite promiscuous in their
pharmacological activity in as much as they modulate the ac-
tivity of other receptors (Fig.1; recently reviewed in [9]). These
findings, together with the identification of other long chain
fatty acid derivatives, including primary fatty acid amides and
severalN-acylated amino acids and neurotransmitters, withmo-
lecular targets and inactivating enzymes often in common with
eCBs, led to the definition of the “expanded eCB system” or
endocannabinoidome (eCBome), potentially including hun-
dreds of lipid mediators, more than 20 biosynthetic or
inactivating enzymes and more than 20 molecular targets, such
as many previously identified nuclear receptors, ligand-
activated ion channels and orphan GPCRs (Fig.1; recently
reviewed in [9]).

The presence of such a complex signaling system compris-
ing the eCBs, their manymetabolic enzymes and targets togeth-
er, and several eCB-related lipid mediators, often sharing with
the former compounds metabolic enzymes and receptors, con-
siderably complicates the development of selective pharmaco-
logical and genetic tools to be used for both the understanding
of the function in the control of energy metabolism of the
eCBome and its exploitation towards new therapies against
metabolic disorders. Nevertheless, as we review in this article,
our knowledge of the role of the eCB system, and even of the
more complicated eCBome, in metabolic control, is quite ad-
vanced, and several strategies for the development of new ther-
apeutic drugs based on such knowledge are already available.

Epidemiological Evidence of a Dysregulated
Endocannabinoidome in Diabetes Mellitus

Increased eCB system tone, especially through central and
peripheral CB1 signaling, enhances food intake, endorses
highly palatable food intake and promotes energy storage
via activation of peripheral anabolic pathways. As a result,
higher eCB levels contribute to body fat accumulation, partic-
ularly in the visceral depots, and have been related to the
development of obesity-associated metabolic abnormalities,
an effect prevented by peripheral CB1 receptor blockade in
animal models. Human cross-sectional data definitively sup-
port increased levels of eCBs, i.e. anandamide and/or 2-AG,
both in plasma of obese subjects [10–18]. Of particular inter-
est is the relatively strong association of 2-AG, over ananda-
mide, with visceral adiposity, insulin resistance and dyslipid-
emia [10, 13–16, 19, 20], which is independent of total adi-
posity [10, 16]. Higher eCBs levels were also evidenced in
adipose tissue, especially in the visceral depots, of obese in-
dividuals [10, 11, 15]. Only few studies have addressed levels
of eCBome mediators in obesity and related complications.
The PPARα agonists, palmitoylethanolamide (PEA) and
oleoylethanolamide (OEA) show modest positive association

�Fig. 1 The endocannabinoidome, an expanded endocannabinoid
system. (A) The endocannabinoids anandamide (AEA) and 2-
arachidonoylglycerol (2-AG) are often accompanied in tissues by their
congeners, the N-acylethanolamines (NAEs), such as N-palmitoyl-, N-
oleoyl and N-linoleoyl-ethanolamine (PEA, OEA and LEA), and the 2-
acyl-glycerols (2-AcGs), such as 2-oleoyl and 2-linoleoyl-glycerol (2-OG
and 2-LG). Congeners share with the two endocannabinoids redundant
biosynthetic pathways and enzymes and, in part, receptors other than
CB1 and CB2, such as the transient receptor channels of type 1
(TRPV1), the peroxisome proliferator-activated nuclear receptors (PPAR)
α and γ, which are activated, and the T-type Ca2+ (Cav.3) channels, which
are inhibited. The congeners also have other receptors, such as orphan
GPCRs like GPR55, GPR110, or GPR119. The possible biosynthetic
precursors for 2-AG also have their own targets, such as protein kinase C
(PKC), for the sn-1-acyl-2-arachidonoyl-glycerols; GPR55, for the sn-1-
lyso-2-arachidonoyl-phosphatidylinositols; and the lysophosphatidic acid
receptors 1–3 (LPA1–3) for the sn-1-lyso-2-arachidonoyl-phosphatidic
acids. Other long chain fatty acid amides, such as primary amides
(including the sleep inducing factor oleamide), the “lipoamino acids” (the
most studied ones being N-acyl-serines, −glycines and –taurines) and some
N-acyl-neurotransmitters (N-acyl-dopamines and –serotonins) have also
been identified. They are promiscuous in their targets, which include
orphan GPCRs, TRP channels and Cav.3 channels. N-arachidonoyl-
dopamine also activates CB1. Distinct biosynthetic pathways exist for
different lipoamino acids and N-acyl-neurotransmitters. The latter derive
from the corresponding neurotransmitters, whose receptors are also
shown. (B) The endocannabinoids, their congeners and the various long
chain fatty acid amides often share inactivating enzymes. Congeners are
inactivated by the same hydrolytic enzymes, which, however, may have
different substrate selectivity: 1) fatty acid amide hydrolase (FAAH) for all
NAEs; 2) FAAH-2 (so far found only in human tissues), with preference for
OEA and LEA; 3) N-acylethanolamine acid amidohydrolase (NAAA),
with preference for saturated NAEs such as PEA; 4) monoacylglycerol
lipase (MAGL), specific for all long chain 2-AcGs, especially if
unsaturated; and 5) α,β-hydrolases 6 and 12 (ABHD6 and ABHD12),
which also have other ester substrates. FAAH is also used for the
inactivation of N-acyl-taurines and some lipoamino acids (namely the N-
acyl-glycines and -taurines). Finally, some oxidizing enzymes of the
arachidonate cascade, such as cyclooxygenase-2 (COX-2), and various
lipoxygenases (LOX) recognize the arachidonoyl-containing congeners of
most of these mediators. Importantly, several metabolic products, such as
the prostaglandin ethanolamides (prostamides) and prostaglandin glycerol
esters (PGGEs) have their own receptors, whereas usually the LOX and
cytochrome p450 oxygenase (p450) derivatives of endocannabinoids still
activate CB1 and CB2 receptors. Arrows indicate metabolic processes or
activation, blunt arrows indicate inhibition. In (B) arrow thickness and
character size indicate the importance of the pathways and enzymes.
(A,B) Along with THC, many non-euphoric plant cannabinoids interact
with, among others, endocannabinoidome receptors and enzymes, which
underlie in part their therapeutic effects. Other abbreviations: AANATL2,
arylalkylamine N-acyltransferase-like 2, isoform A; ABHD4, α/β-
hydrolase 4; CBDA, cannabidiolic acid; CBDV, cannabidivarin; COMT,
catechol-O-methyltransferase; D1, dopamine receptor 1; DPs,
prostaglandin D2 receptors; EPs, prostaglandin E2 receptors; 5-HT, 5-
hydroxytryptamine; GDE1, glycerophosphodiester phosphodiesterase 1;
GLYATL3, glycine N-acyltransferase-like protein 3; MAGK,
monoacylglycerol kinase; NAPE-PLD, N-acyl-phosphatidylethanolamine-
specific phospholipase D; NATs, N-acyltransferases (including
phospholipase A2 group IVE and phospholipase A/acyltransferase 1);
PAM, peptidyl-glycine α-amidating monooxygenase; P2Y6, P2Y
purinoceptor 6; PLA1A, phospholipase A1 member A; PLC,
phospholipase C; PGE2-G, prostaglandin E2-glycerol; PTPN22, tyrosine-
protein phosphatase non-receptor type 22; sPLA2, soluble phospholipase
A2 ; THCA , Δ 9 - t e t r a h yd r o c a nno l i c a c i d ; THCV, Δ 9 -
tetrahydrocannabivarin
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with adiposity [13], while they were negatively related to in-
sulin resistance indexes, especially when normalized to the
level of their corresponding eCB AEA (i.e. PEA/AEA and
OEA/AEA) [17]. Patients with type 2 diabetes (T2D) exhibit
higher circulating concentrations of eCBs, as well as of the
AEA congeners PEA, OEA and linoleoylethanolamide
(LEA), than people without diabetes with similar adiposity
[21, 22]. These observations are further supported by de-
creased circulating anandamide and 2-AG levels in different
interventions aiming at negative energy balance and weight
loss, i.e. dietary intervention [12, 19] and bariatric surgery
[23], which are associated to amelioration of insulin resistance
and dyslipidemia. Yet, further data are needed to obtain a
complete overview of peripheral eCBome dysregulation in
obesity and T2D, whilst actual epidemiological evidence
clearly establishes the link between increased eCB system
tone, weight gain and visceral adiposity, and also strongly
suggests that eCB system dysregulation can directly impact
glucose homeostasis independently of its role on energy bal-
ance and fat accumulation (review in [24]).

Peripheral eCBome Regulation of GlucoseMetabolism

CB1 was initially thought be exclusively expressed within the
central nervous system, but was later identified at lower expres-
sion levels, which are subsequently increased under conditions
of obesity and insulin resistance, in peripheral tissues including
adipose tissue [25, 26], muscle [27], the liver [25], the pancreas
[28] and intestinal tract [29]. Within adipocytes, CB1 over-
activation leads to decreased mitochondrial activity, altered
adipokine production, and increased glucose uptake along with
increased lipid accumulation [30]. In humans, markers of insu-
lin resistance correlate with upregulated CB1 expression in both
visceral and subcutaneous white adipose tissue, independent of
BMI, indicating that insulin resistance, and not obesity per se
associates with upregulated CB1 expression [26]. In the same
study, CB1 inhibition reduced lipolysis rates in adipose tissue
ex vivo supporting the notion that CB1 activity, by modulating
circulating levels of adipose-derived free fatty acids, can impact
whole-body insulin sensitivity. The key role of CB1 in the
adipose tissue in T2D was highlighted using an inducible, ad-
ipocyte specific CB1 knockout model, which not only attenu-
ated the development of diet-induced obesity and metabolic
complications including insulin resistance, but also reversed
them in mice that were already obese [31].

White adipose tissues express other eCBome receptors as
well, including G protein-coupled Receptor 55 (GPR55) [32]
and transient receptor potential cation channel subfamily V
member 1 (TRPV1) [33]. Similar to CB1, GPR55 expression
is increased in adipose tissues of obese individuals, and even
more in those with T2D. However the opposite was observed
in adipose tissue from ob/ob mice or mice on a high-fat diet
[32]. Indeed, Gpr55−/− mice spontaneously develop increase

adiposity and insulin resistance in adipose tissue in association
with decreased energy expenditure [34, 35•]. In line with this,
GPR55 activation resulted in increased insulin signaling in
adipocytes in vitro, while antagonism upregulated lipogenic
gene expression and increased fat accumulation [35•].
However, profound metabolic effects have not been observed
in other Gpr55−/− mouse studies, perhaps due to strain or age
differences (reviewed in [36]). Thus, given the frequent dis-
cordance between human and mouse data, the role adipose
tissue GPR55 plays in obesity and associated metabolic com-
plications remains to be fully established.

Unlike CB1, expression of TRPV1 (a cation channel acting
as a receptor for several NAEs) in the white adipose tissue is
reduced in mouse models of obesity and diabetes and in obese
men, and activation of TRPV1 inhibits, rather than stimulat-
ing, the development of obesity and insulin resistance [33,
37]. Further, Trpv1−/− mice are sensitized to high fat diets,
becoming more obese and insulin resistant than controls, in
part due to reduced glucose metabolism in different adipose
tissue depots, but not in skeletal muscle or liver [38].

White adipose tissue depots may be the major source of
circulating endocannabinoids during the consumption of high-
fat diets associated with obesity [39] in line with epidemiolog-
ical observations (see above). Fat-derived eCBs can signal di-
rectly to muscle to inhibit insulin signaling [40], which is im-
proved by CB1 antagonism in both insulin-sensitive and resis-
tant muscle explants [41]. Further, CB1 exhibits pleiotropy also
in muscle cells, inhibiting mitochondrial biogenesis and oxida-
tive metabolism activity [30]. Thus, even though the impact of
obesity on muscle-specific CB1 expression and its alteration
under conditions of insulin resistance are confounding, having
been reported to either increase or decrease depending on the
experimental model [30], CB1 clearly plays a role in regulating
muscle metabolism and glucose homeostasis. Of course, the
white adipose tissue also produces eCBome lipid members that
do not activate CB1. Adipocyte-specific knockout of NAE syn-
thesizing-Napepld did not alter AEA levels in adipose tissue but
significantly decreased OEA, PEA and stearoylethanolamide
(SEA), inducing obesity, glucose intolerance and insulin resis-
tance, which was associated with decreased insulin signaling in
muscle and liver, but not adipose tissue [42••]. Interestingly, the
effects on glucose metabolism were associated with an altered
gut microbiome, implicating commensal microbes as being im-
portant for eCBome regulation of glucose homeostasis [42••].
Muscle also expresses the OEA receptor GPR55, which ap-
pears to have the opposite effects of CB1; Gpr55−/− mice have
decreased skeletal muscle insulin sensitivity and, in vitro,
GPR55-dependent signaling stimulates insulin pathways in
muscle cells [35•]. Interestingly, CB1 and GPR55 physically
interact (at least in vitro) [43], with complex functional conse-
quences; CB1 inhibits GPR55, while GPR55 enhances CB1,
activity. However, this functional interaction is altered in the
presence of CB1 ligands making the situation complex, as,
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for instance, AEA, which has been suggested to also activate
GPR55, is able to restore the activity of this receptor. It remains
to be determined if these interactions occur in vivo, and if they
are impacted under obesity and/or during insulin resistance,
when both are upregulated in adipose tissue and at the same
time exposed to an altered eCBome tone.

Recently, circulating levels of 2-AG and its precursor and
metabolic by-product arachidonic acid (AA), but not AEA,
were positively associated with nonalcoholic fatty liver dis-
ease (NAFLD), which is strongly associated with T2D [44]. In
animal models of NAFLD, CB1 and the levels of 2-AG and/or
AEA are increased significantly [45], and the liver is a major
site of action of eCBs with respect to their metabolic action
[30]. CB1 activity inhibits mitochondrial biogenesis and beta
oxidation [46], upregulates lipogenesis [45], and dysregulates
glucose homeostasis at both the levels of glucose uptake and
gluconeogenesis [47, 48]. Hepatocyte-specific knockout of
CB1 does not confer resistance to diet-induced obesity, but
does inhibit the development of NAFLD and insulin resis-
tance [48, 49]. Global CB1 knockout mice in which CB1 is
transgenically expressed specifically within hepatocytes high-
light the critical role of hepatocyte CB1 in regulating whole-
body glucose homeostasis. These mice are the mirror image of
the aforementioned hepatocyte specific CB1 knockout mice in
that, under conditions of diet-induced obesity, they remain
lean but develop both hepatic and systemic insulin resistance
[48]. The regulation of whole-body glucose homeostasis by
CB1 in the liver is not limited to CB1 in hepatocytes, however,
as knockout of CB1 in resident macrophages of the liver
(Kupffer cells) similarly improved glucose tolerance and in-
sulin sensitivity without affecting hepatosteatosis in mice on a
high fat diet [50]. PPARα is another eCBome receptor critical
to liver lipid homeostasis, generally promoting lipid metabo-
lism. Administration of the PPARα NAE ligand, OEA, to rats
on a high fat diet inhibited the development of NAFLD, up-
regulating PPARα-dependent lipid metabolism [51]. The ex-
pression of another OEA receptor, G protein-coupled receptor
119 (GPR119), in hepatocytes is somewhat controversial.
However, a GPR119 agonist inhibited lipogenic gene expres-
sion in hepatocytes of high fat diet-fed mice, which also de-
veloped less fatty liver [52]. Taken together, eCBome regula-
tion of liver lipid metabolism is differentially regulated by
various eCBome members, which may have subsequent ef-
fects on whole-body glucose homeostasis.

Together with the development of peripheral insulin resis-
tance, T2D involves the loss ofβ-cell function and, ultimately,
pancreatic β-cell mass. Insulin secretion by β cells is tightly
coupled to blood glucose levels but this process is finely reg-
ulated according to the physiological situation by a number of
mediators such as incretin, neurotransmitters and eCBome
mediators [53, 54]. The endocrine pancreas has a functional
eCBome with the expression of receptors, i.e. CB1, CB2,
TRPV1 and GPR55, anabolic and catabolic enzymes, i.e.

NAPE-PLD, DAGLα, FAAH and MAGL, as well as on de-
mand eCB biosynthesis upon glucose exposure [55–57].
While there are several discrepancies between models, anan-
damide usually decreases pancreatic responsiveness by pro-
moting basal insulin secretion and dampening glucose-induce
insulin secretion [56–59]. CB1 blockade normalized basal and
glucose-induced insulin secretion in hyperinsulinemic and
obese mice, which in turn normalizes glucose homeostasis
[59, 60]. In contrast, activation of GPR55 leads to reduced
islet inflammation and concomitant increase in glucose-
induced insulin secretion [61, 62]. More recently, N-acyl-tau-
rines, eCBome mediators binding, among others, TRPV1,
were also shown to negatively regulate β-cell function [63].
N-oleoyl taurine and N-palmitoyl taurine enhanced the basal
and glucose-induced secretion of mature insulin, but not insu-
lin synthesis, leading to its depletion and β-cell dysfunction.
The impact of eCBs on insulin production may, however, be
surpassed by their roles in maintaining β-cell mass. Increased
eCB system activity promotes apoptosis and inhibits prolifer-
ation of β cells [55]. Accordingly, chronic CB1 inhibition was
shown to protect against β-cell loss in obesity and diabetes
and to contribute to the attenuation of diabetes and insulin
resistance [28]. In sum, eCBome mediators appear to variedly
acutely regulate insulin secretion, but in an obese state, chron-
ically elevated local and circulating eCBs such as AEA and 2-
AG appear to impede β-cell function, promote inflammation
and lead to β-cell apoptosis.

The Emerging Metabolic Function of the eCBome
in the Gastrointestinal Tract

Disturbed gastrointestinal tract motility is a frequent clinical
problem in patients with T2D [64]. Increases in the levels of
eCBome mediators AEA, PEA and OEA, as found in obesity
and T2D, inhibit gastric emptying [65] and intestinal motility
[66] through CB1 and, possibly, GPR55 signaling [67, 68].
Such deceleration of upper gut motility may increase the sati-
ety signal arising from the stomach and the duodenum, but it
may also delay small intestine nutrient absorption and contrib-
ute to normalizing postprandial circulating nutrient spikes
[69]. The role of the eCBome in nutrient sensing also strongly
contributes to the regulation of satiety. In fact, intraduodenal
production of OEA, and potentially other NAEs, by the
NAPE-PLD step-limiting enzyme is sufficient to increase
meal satiety, suggesting a local anorexigenic action of OEA
administration [70, 71]. Food-stimulated OEA production in
enterocytes regulates feeding via the activation of PPARα,
which is known to 1) promote the expression of proteins in-
volved in lipid metabolism, 2) repress inducible nitric oxide
synthase, an enzyme that generates NO, which may act as an
appetite-stimulating signal, and 3) to initiate the vagus nerve-
mediated hindbrain satiety signal [70, 72, 73]. Several NAEs,
i.e. OEA and LEA, as well as 2-oleoylglycerol (2-OG), an
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intermediate of lipid digestion, can also activate GPR119 re-
ceptors and promote incretin release from the small intestine
enteroendocrine cells [74–76]. Accordingly, plasma levels of
GLP-1 and GIP, the two main incretin hormones, raise follow-
ing a luminal delivery of 2-OG in healthy subjects and con-
tribute to increased satiety, reduced gastrointestinal tract mo-
tility, enhanced energy expenditure and glucose-induced insu-
lin secretion [75]. Thus, GPR119, PPARα and their eCBome
ligands are part of an enteric fat sensing mechanism playing a
crucial role in energy balance and metabolism [77].
Intriguingly, chronic high fat feeding disrupted feeding-
induced mobilization of OEA in the small intestine, indicative
of a blunted inhibitory feedback response to fat intake leading
to overfeeding and subsequent weight gain [78].

In addition, several eCBome mediators are also involved in
the modulation of key intestinal functions which are altered in
obesity and T2D. Indeed, aberrant enteric lipid metabolism in
presence of insulin resistance, i.e. exacerbated lipoprotein se-
cretion in response to dietary fat, is associated with increased
AEA and docohexanoylethanolamide (DHEA)-induced
PPARγ transcriptional activity [79]. Moreover, the barrier
function, which relies largely on intestinal paracellular perme-
ability, is challenged by several eCBomemediators and targets
with opposing roles. On the one hand, enteric CB1 activation
by anandamide and 2-AG increased paracellular permeability
[80, 81], but, on the other hand, TRPV1 and PPARα activa-
tion by non-saturated long chain eCBome mediators and by
OEA and PEA, respectively, decreased paracellular perme-
ability [82•]. Intestinal epithelium leakage of pro-
inflammatory bacterial-derived molecules (i.e. lipopolysac-
charides) promotes the establishment of an inflammatory state
in intestinal submucosa layer, a hallmark of obesity and T2D.
Moreover, most eCBome targets, including CB1, CB2,
PPARα, PPARγ and GPR55, are involved in inflammatory
pathways. Indeed, CB1 activation by AEA directly promotes
inflammation but also play an important immunomodulatory
role in gut [83, 84]. In contrast, most eCBome mediators, and
especially PEA and OEA, exert a beneficial action via PPARα
and GPR55, alleviating chemical or cytokine-induced inflam-
mation [82•, 85, 86]. In sum, a complex balance between CB1
and other eCBome signaling pathways seems therefore in-
volved in intestinal mucosa barrier integrity, inflammatory
state and metabolism.

Potential Therapeutic Applications of Targeting
the eCBome for the Treatment of T2D

The number and redundancy of action of eCBome members
make targeting this system an attractive option for the treatment
of many illnesses, including T2D, although it poses challenges
with respect to the ability to limit undesirable off-target effects.
The fact that most eCBome members have wide tissue and cell
type distributions compounds this issue, resulting in a potential

requirement for tissue-specific targeting to minimize undesir-
able results. A perfect example of this is rimonabant
(SR141716), the first and only marketed CB1 antagonist/
reverse agonist for the treatment of obesity and related meta-
bolic perturbations. Rimonabant significantly improved meta-
bolic parameters, including glucose tolerance [87–90], but was
removed from the market due to centrally mediated side effects
related to depression and anxiety [91], which appear to be due
not only to its ability to pass the blood brain barrier but also due
to its activity as an inverse agonist at CB1 (which would allow
it to act also in those tissues or cells where eCB tone is not
perniciously elevated). Given the involvement of peripherally
expressed CB1 in various aspects of the metabolic syndrome,
the focus switched to peripherally restricted antagonists/inverse
agonists, which do not inhibit centrally expressed CB1, or
neutral/silent antagonists which are inactive in the absence of
endogenous agonists (reviewed in [92, 93]). Several peripher-
ally restricted CB1 antagonists counteract weight gain and sev-
eral associatedmetabolic perturbations, including dysregulation
of glucose homeostasis and hyperinsulinemia, in various mu-
rine models of obesity; these include JD5037 [94, 95] and the
neutral antagonists LH-21 [96] and AM6545 [97, 98]. These
effects appear to be a result of inhibition of CB1 in both adipose
tissue and the liver [94, 95, 98]. Fewer studies have been per-
formed with brain-penetrant neutral antagonists; however,
AM4113, which exhibits similar selectivity for CB1 over
CB2 as rimonabant, similarly transiently reduced food intake
but sustained weight loss in a 14-day trail, although with de-
creased fasting glucose levels similar to pair fed controls [99].
Targeting CB2 to treat diabetes, in contrast, has been much less
investigated, due to the less established and still controversial
role of this eCB receptor in the control of energy metabolism
[100, 101]. Nevertheless, the CB2-specific agonist JWH133
improved glucose homeostasis in chow-fed rats [58], while in
high-fat diet- or streptozotocin-induced type 2 and 1 diabetic
mice another agonist, SER601, improved insulin sensitivity,
attributed to improved beta cell function, though without affect-
ing glucose homeostasis [102].

Epidemiological studies of cannabis (marijuana) for which the
eCBome is eponymously named found that chronic use is associ-
ated with leanness and lower levels of insulin resistance and dia-
betes [103, 104]. Cannabis use downregulates CB1 activity, and
this has been proposed as a mechanism for the above-mentioned
counterintuitive associations [105]. However, cannabis contains
many cannabinoids that have complex pharmacological actions
distinct from that of its principal psychoactive component THC.
Δ9-Tetrahydrocannabivarin (THCV) is such a cannabinoid, which
is a CB1 antagonist and a CB2 and TRPV1 agonist (reviewed in
[106]). THCV improved glucose handling in both a diet-induced
and genetic (ob/ob) model of obesity [107]. In a clinical trial,
THCV decreased fasting glucose levels along with apparent im-
proved beta cell function and increased circulating levels of the
insulin-sensitizing adipokine, adiponectin [108].
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As noted above, eCBomemediator activity is not limited to
CB1/2 receptors, and incudes other receptors that are of rele-
vance to T2D. Of these, PPARα and PPARγ are possibly the
best studied (each having several clinically approved drugs
developed) and their roles have been extensively reviewed
elsewhere (see [109]) and will not be discussed here. GPR55
has been (somewhat controversially) referred to as the third
cannabinoid receptor [110]. Acute activation of GPR55 in
chow fed mice by several agonists, including OEA, AM251,
0–1602 and abnormal cannabidiol (abn-CBD) increased insu-
lin release and decreased glucose clearance in a glucose toler-
ance test, with abn-CBD being the most potent [111]. In
streptozotocin-induced type 1 diabetic mice, chronic abn-
CBD decreased circulating glucose, increased circulating in-
sulin and improved glucose tolerance and insulin sensitivity
[61]. In the same study, the authors also tested the GPR119
agonist AS-1269574 with similar results, and interestingly the
effects of both abn-CBD and AS-1269574 on glucose and
insulin were diminished in GLP1 receptor knockout mice in-
dicating that both compounds act in part by increasing GLP1
activity [61]. Indeed increased GLP1, along with direct stim-
ulation of insulin release, is believed to be one of the main
modes of action by which agonists of GPR119, one of the
most studied eCBome receptor targets for the treatment of
T2D (reviewed in [112, 113]), exert their antidiabetic effects
[114]. Several such agonists have moved forward to clinical
trials based on their efficacy at countering glucose
dyshomeostasis in various preclinical models, although none
have gone past phase 2 trials to date, thus casting some doubt
on the ability of preclinical results to translate to clinical ones
(reviewed extensively in [112, 113]). Of note, the eCBome
member 2-OG, while not as potent a GPR119 ligand as
OEA or LEA, is present in the intestines in vastly higher
concentrations than any NAEs and thus is more likely to acti-
vate intestinal GPR119, and also activates TRPV1 [9]. Indeed,
2-OG provided as a single bolus or derived from a dietary
precursor increased plasma GLP1 and glucose-dependent
insulinotropic polypeptide (GIP) levels in healthy [115] and
diabetic humans [116], respectively. And, at the time of writ-
ing, there is a human study recruiting participants to determine
the effects of 2-OG on glucose sensitivity [117].

Unlike the eCBome receptors discussed above, TRPV1 is a
channel receptor, which responds to noxious heat and the
‘spicy’ component of chili peppers, capsaicin. This compound
improves glucose homeostasis and insulin sensitivity in several
murine models of diabetes [37, 118–121]. In humans, hot chili
peppers consumed with a meal improved insulin sensitivity in
overweight individuals [122] and in women with gestational
diabetes [102]. However, in another recent human trial, chronic
capsaicin exposure increased circulating insulin levels without
affecting measures of insulin sensitivity [123]. The antidiabetic
activity of capsaicin is believed to be due to TRPV1 activation.
However, TRPV1 is immediately desensitized after activation

[124], and desensitization in sensory nerve cells improves glu-
cose tolerance in the absence of apparent amelioration of insulin
resistance in Zucker rats [125]. Indeed, TRPV1 antagonists
may also hold promise for the treatment of T2D, as the
TRPV1 antagonist BCTC stimulated insulin release and im-
proved glucose tolerance in Zucker obese rats [125], and an-
other TRPV1 antagonist, XEN-D0501, is currently in phase 2
clinical trials for T2D [126].

The gut microbiome is implicated in several aspects of host
health, particularlymetabolic health, including the pathogenesis
of diabetes [127, 128]. This complex endogenous ecosystem is,
therefore, considered a valid therapeutic target which can be
modified through the diet by either probiotics or prebiotics for
the treatment of diabetes (recently reviewed in [129]). Gut mi-
crobiota regulate eCBome tone at both the receptor and enzyme
levels in colon and adipose tissue [130], and gut microbiota
changes in diabetic db/db mice are associated with increased
AEA and decreased 2-AG in fat [131]. Further, bacterial-
derived lipopolysaccharide-induced metabolic endotoxaemia
and insulin resistance is partially mediated by CB1 [84].
Modification of the microbiome with prebiotics in obese ob/
ob mice decreased CB1 expression and AEA levels in adipose
tissue, modifying gut permeability, adipogenesis and lipid me-
tabolism [130]. Finally, treatment with the mucin-feeding bac-
terium Akkermansia muciniphila increased the intestinal levels
of the acylglycerols 2-AG, 2-OG and 2-palmitoylglycerol (2-
PG) in association with a reduction in diet-induced
hyperglycaemia and insulin resistance [132], and is currently
under investigation in a clinical trial in which insulin resistance
is a primary outcome measure [133].

Conclusions

Despite the failure of rimonabant, the eCB system, and its
expansion, the eCBome, remain an attractive target for the
treatment of a variety of metabolic disorders, T2D included.
This is evidenced by the variety of novel approaches to target
CB1 activity, from the development of neutral and/or periph-
erally restricted antagonists, to using non-psychoactive canna-
bis-derived cannabinoids and, more recently, to targeting the
gut microbiome, the latter of which also appears to modify the
wider eCBome. Given the redundancy and overlap found
within the eCBome, and their involvement in various aspects
of T2D, development of multi-target drugs that manipulate
several aspects of the eCBome may prove to be more effica-
cious than those that are highly specific. Indeed, the recent
success of cannabis-based medicines in preclinical and clini-
cal studies, including THCV for the treatment of T2D [107,
108], may in part be due to their complex pharmacology as
pertains to the eCBome [106, 134]. Likewise, nutritional in-
terventions, such as the use of functional foods delivering long
chain fatty acids, including dietary n-3 polyunsaturated fatty
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acids [135, 136], capable of affecting the tissue concentrations
of various eCBome mediators at once in a manner that may
result in metabolic benefits, needs to be further explored. Of
course, as also exemplified by the indiscriminate targeting of
CB1 by rimonabant, special attention will have to be paid to
the potential for serious side effects due to the expression of
eCBome members in a wide array of tissues. Thus, while
targeting the eCBome undoubtedly poses challenges, our in-
cremental understanding of its complexities and multifaceted
involvement in various pathologies will undoubtedly be facil-
itated through the use of various “omics” technologies, which
will, in our view, make it the source ofmany future therapeutic
strategies for various diseases, including T2D.
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