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Abstract

Purpose of Review Validated thermodynamic energy balance models that predict weight change are ever more in use today.
Delivery of model predictions using web-based applets and/or smart phones has transformed these models into viable clinical
tools. Here, we provide the general framework for thermodynamic energy balance model derivation and highlight differences
between thermodynamic energy balance models using four representatives.

Recent Findings Energy balance models have been used to successfully improve dietary adherence, estimate the magnitude of
food waste, and predict dropout from clinical weight loss trials. They are also being used to generate hypotheses in nutrition

experiments.

Summary Applications of thermodynamic energy balance weight change prediction models range from clinical applications to
modify behavior to deriving epidemiological conclusions. Novel future applications involve using these models to design

experiments and provide support for treatment recommendations.

Keywords Thermodynamic energy balance models - Weight change prediction

Introduction

Predicting weight loss is critical for designing effective weight
loss interventions [1, 2], providing accurate weight loss pre-
scriptions for patients [3—5], and evaluating components of
energy balance post hoc [6-8]. This need has led to a wide
collection of varied weight loss prediction models that differ
in how changes in energy storage and energy expenditure are
compartmentalized [9ee, 10, 11, 12¢, 13, 14, 15, 16, 17].
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Early Weight Change Models

In 1958, Max Wishnofsky extended biological conclusions
from a combination of Key’s Minnesota study and the best
existing human subject weight loss data to derive a universal
constant rate of weight loss [16]. For this simple regression
model, it was assumed that weight loss had no effect on the
energy expended during calorie restriction and that the model
was only valid for at most a few months. Wishnofsky’s anal-
ysis determined the rate of weight lost to energy deficit as 1 1b
(2.2 kg) per 3500 kcal and is commonly referred to as the
3500 kcal rule [5]. Because of Wishnofsky’s model simplicity,
weight regulation researchers [18], commercial weight loss
programs, and national guidelines continue to apply this sim-
ple rule even today extrapolating well past Wishnofsky’s orig-
inal model assumptions [5].

For a few decades after the development of Wishnofsky’s
model, little quantitative analysis of body weight regulation
was conducted. Then in 1970, the pediatrician, Gilbert Forbes,
developed the first dose-response model predicting weight
loss during starvation [17]. Forbes had an unusual intuitive
command of calculus and possibly unknown to him
conjectured a curve that is in fact the solution to a second-
order linear differential equation:

M(t) = cie ™ + ¢y e ™
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where M(?) represents body weight on day ¢ of weight loss.
Forbes estimated the coefficients ¢, ¢, and the half-life (ei-
genvalues), A\;, A\from experimental data and then demon-
strated the models validated well on two individual subjects
undergoing fasting [17].

Thermodynamic Weight Change Models

Early models depended on conjecturing the functional form of
the weight change line/curve and then fitting the line/curve to
data. As investigators trained in quantitative fields began
modeling weight change, incorporating physiological proper-
ties that are altered in response to changes in diet or activity
became an important foundation for first-principle models.
This mechanistic approach starts with the first law of thermo-
dynamics, which can be reduced to what is referred to as the
human energy balance equation [19].

The energy balance equation describes the relationship be-
tween rate of energy intake and expenditures in humans. If £7,
EF, and ES in kcal/day denote the rate of energy intake, ener-
gy expenditures, and rate of energy stores respectively, the
energy balance equation is formulaically expressed as

ES = EI-EE

We refer to the models that are derived directly from
the energy balance equation above as thermodynamic
models. These models incorporate changes in terms of
the human energy balance equation that are affected by
changes in diet and activity [9ee, 10, 11, 12, 13, 14,
15¢¢]. In this review, we provide an overview of four
representative thermodynamic weight change models
highlighting their differences and their utility (Table 1).

This presentation is followed by novel applications of
these models that range from smart phone clinical ap-
plications to evaluation of weight loss effects in phar-
macotherapy. The advancement of thermodynamic
models in combination with increased collaboration be-
tween disciplines has improved predictive accuracy and
enhanced innovation in weight loss therapy.

Thermodynamic Models
Overview

Since all thermodynamic models originate from the first law
of thermodynamics, their differences are largely due to how
ES and EFE are modeled. Simple divisions of E£S or EE yield a
more tractable model [9+¢], while more complex divisions
reveal more about the underlying mechanisms of human body
weight regulation [15¢¢]. The divisions in £S involve compart-
mentalizing total body mass, W, into sub-energy storage sites
(Fig. 1):

W =FM + FFM
= FM + (Protein + Glycogen + Other (bone, water))
= FM + (Glycogen + Other (protein, bone, water))

FM is fat mass and FFM is fat-free mass. Depending on
how the modeler determines these divisions changes the num-
ber of state variables and sometimes the terms required for EE.

Likewise, EE can be compartmentalized into different ex-
penditures of the human body (Fig. 2). This can range from
EE being expressed as a multiple of resting metabolic rate

Table 1 Summary of models,

their state variables, the energy Model State variables EE terms Strengths Limitations
expenditure terms, strengths, and
limitations Antonetti M TEF, PA Simple, closed form Does not describe changes
[9ee] (as solution in body composition
activity
level),
RMR
Thomas FM, FFM TEF, PA, Simple to program, no Does not include exercise
et al. RMR, requirement of baseline intervention effects, does
[20] SPA PAL knowledge not include macronutrient
effects
Flatt Glucose/glycogen,  PA, RMR,  Focuses on carbohydrate Model equations are
[120¢] FM TEF intake unavailable
Hall Glucose/glycogen, Highly descriptive impacts ~ Challenging to program
[15¢¢] protein, FM of changes in

macronutrients on body
weight regulation

CHO, carbohydrates; EE, energy expenditure; FFM, fat-free mass (kg); FM, fat mass (kg); M, total body mass
(kg); PA, physical activity (kcal/day); PAL, physical activity level; SPA, spontaneous physical activity (kcal/day);
RMR, resting metabolic rate (kcal/day); TEF; thermic effect of food (kcal/day)
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Fig. 1 Partitioning body mass into compartments. Total body mass can
be divided into fat mass (FM) and fat-free mass (FFM). FFM can be
further divided into protein, glycogen (carbohydrates), and other non-
energy contributing components such as water and bone mass

(RMR) to variations in subdivided components such as phys-
ical activity (PA), spontaneous physical activity (SPA), and
thermic effect of food (TEF). The divisions of EE become
even more refined if the state variables correspond to specific
macronutrients resulting in a carbohydrate oxidation model,
fat oxidation model, and protein oxidation model [15¢°].
Here, we outline four representative models selected for
differences in £S and EE development by defining their state
variables, outlining the EE terms, identifying key assump-
tions, and highlighting the model strengths. A summary of
model highlights and differences are presented in Table 1.

The Antonetti Model

Antonetti, motivated by the improper use of the 3500 kcal
rule, developed the first thermodynamic model in 1973 [9ee].
The sole state variable was total body weight on day ¢ of
weight change, W(¢). In this case, there is no

SPA

TEF

Fig. 2 Partitioning of the compartments that comprise total energy
expenditure. Energy expenditure can be divided into resting metabolic
rate (RMR), physical activity (PA), spontaneous physical activity (SPA),
and the thermic effect of feeding (TEF). RMR can be divided even further
into organ-specific metabolic rates

compartmentalization of energy stores into FM, FFM, protein,
or glycogen stores (Fig. 1). Antonetti used the energy conver-
sion of 3500 kcal/lb or 7700 kcal/kg [16] to convert the rate of
change of body weight with time, thereby correcting
Wishnofsky’s model to include the time varying changes in
body weight during weight change. To model EE, Antonetti
divided EE into the components, RMR, PA, and TEF. Using a
RMR model dependent on body surface area, Antonetti de-
rives the nonlinear term for RMR:

RMR = KzW(t)""

Where the constant K is a function of height, age, and
gender. TEF is modeled as a direct proportion of EI and PA
is modeled as a direct proportion of total body mass, W(). The
proportionality constant reflects an activity level. The values
corresponding to categorized levels of activity (sedentary to
severe) were provided in the study report [9ee].

The resulting differential equation does not have a closed
form solution; however, Antonetti, an engineer at IBM, had
access to computational power and could numerically inte-
grate the solutions. Antonetti demonstrates the failure of the
3500 kcal rule to capture the nonlinear self-limiting nature of
weight loss and successfully compares his model predictions
to Ancel Key’s Minnesota Starvation Experiment [21], the
only published carefully supervised weight loss study avail-
able at the time. Key’s tightly controlled in residence study
monitored strict adherence to a constant caloric intake which
Antonetti’s model assumes. Antonetti’s model assumes the
energy content of weight loss is constant (7700 kcal/kg) and
also assumes that all physical activity expenditure is a direct
proportion of body weight. The model, however, is simple and
easily programmed. In fact, the model was further simplified
by substituting a linear regression model for RMR replacing
the body surface model [22] which allows for direct integra-
tion without need of numerical approximations.

The strength of the model is that it only relies on total body
mass at baseline and demographic inputs. It is simple enough
to invert and algebraically solve for energy intake during
weight change given body weights [22]. However, the sim-
plicity of the model is also a limitation since the model does
not provide information regarding macronutrient effects on
body weight and expenditure or adiposity.

The Flatt Model

J.P. Flatt presented a thermodynamic model that is distinct
from other existing models on two points [12¢¢]. First, the time
scale of the model is measured in hours. Flatt wanted to cap-
ture dynamic fluctuations of energy balance within the day
and then extend the simulation over a few days. Second,
Flatt’s model assumes protein stores are relatively constant,
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thus yielding no rate of change term in the differential equa-
tion model. Additionally, Flatt assumes that energy intake was
consumed three times a day through meals. In Flat’s model,
ES is compartmentalized into glycogen stores and fat stores.
Two separate uncoupled differential equations were derived: a
carbohydrate balance equation and a fat balance equation. The
EF term in the model accounts for varying oxidation rates and
physical activity. EI is a function of carbohydrate and fat in-
take, food availability, diversity, and palatability estimated
parameters. Because of the time scale (hourly), Flatt needed
to account for metabolic changes before and after meals.
Flatt’s model simulates the in vivo influence of insulin in
oxidizing carbohydrates and fat after meals.

Flatt validated the dynamics of the model against data from
an experiment over two meals where the subject’s metabolic
response was measured for 9 h after consumption. The model
predicted dynamics matched these experimental results.

In a larger sample of 33 subjects, Flatt evaluated the re-
sponse to changing intake over a 125-day experiment where
subjects were placed on provided low-kcal meals for 10 days.
These meals were increased by 100 kcal/day and the final
20 days of data were used to validate the model at steady state.
The main finding from this model indicates that steady-state
fat stores are particularly sensitive to a parameter that mimics
the influence of insulin.

The Thomas Model

Thomas et al. developed a system of differential equations [5,
7, 20] governed by two state variables, kg of FM on day ¢ of
weight change (FM(f)) and kg of FFM on day ¢ of weight
change (FFM(t)). FFM(t) represents the sum of protein, gly-
cogen, and the mass of all other non-energy compartments
such as water on day ¢ of weight change (Fig. 1). The sum
of both state variables yields kg of total body mass on day ¢ of
weight change, FM(?) + FFM(f) = M(¢) (Fig. 1). The model is
further reduced to one dimension by pairing FFM to FM using
the algebraic Forbes relationship (6).

Specific terms for energy expenditure are developed for
RMR, PA, spontaneous physical activity (SPA), and the TEF
(Fig. 2). RMR is modeled using a regression formula reported
by Livingston and Kohlstadt [23], while PA is modeled as a
direct proportion of body weight. Similar to the Antonetti
model, TEF is modeled as a direct proportion of E/. SPA is
modeled using the experimental conclusions of Levine et al.
[24] that found ASPA = %AEE .

A key model assumption is that physical activity is not
raised from baseline beyond weight-related changes; specifi-
cally, the model was not developed to predict changes in
weight due to exercise interventions.

The simplicity of the model allows for flexible program-
ming for clinical application [25] and inversion to estimate £/
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that resulted in weight change [7]. The model also does not
require an input of physical activity level which may not be
truly known for an individual.

The Hall Model

The Hall model [15¢<¢, 26] consists of three coupled state equa-
tions representing carbohydrate energy balance, fat energy,
and protein energy balance. Each equation dissociates at the
macronutrient level the metabolic processes from carbohy-
drate, fat, and protein intake to carbohydrate, fat, and protein
oxidation. Since certain amino acids can convert to glucose
through the process of gluconeogenesis, glucose can be syn-
thesized to fat (triglyceride) through de novo lipogenesis, and
the glycerol portion of triglycerides can be converted to glu-
cose, there exist flows between the compartments and hence
the differential equations are coupled.

Numerical simulations of the Hall model yield trajectories
for fat, glucose/glycogen, and protein. Body weight can be
constructed from these trajectories under assumptions and for-
mulations for components of FFM. Similarly, total energy
expenditure can be constructed from all the sub-components
of energy expenditure within the model.

The Hall model provides an understanding of the physiol-
ogy of weight change at the mechanistic level and invites
insights into how changes in macronutrient intake may impact
different components of body composition and body weight
[27].

Applications of Thermodynamic Models

Application of a Thermodynamic Model to Facilitate
Dietary Adherence

SmartLoss™ is a weight loss management platform that in-
corporates electronic measurements of patient body weights
and physical activity behavior using electronic scales and ac-
celerometers [25, 28]. Patients undergoing weight loss are
provided a personalized weight graph generated from the
model of Thomas et al. [20, 29]. Model inputs are degree of
energy restriction and patient age, height, baseline weight, and
gender. The generated graph is encapsulated in an error
“zone” which describes the model variance during validation.
Patient daily body weights are automatically extracted from
the electronic scales onto their weight graph application deliv-
ered on smart phones and identified using color-coded flags as
being in the zone or out of the zone. If a weight is out of the
predicted zone, the patient is provided additional feedback
with a clinician to promote adherence and moving weights
back into the zone.

The capacity for SmartLoss to promote adherence
was tested in a 12-week randomized controlled trial.
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Twenty adults with overweight or obesity were assigned
to an energy-restricted intervention of 1200-1400 kcal/
day guided by the thermodynamic model in SmartLoss.
Twenty adults were assigned to a control group that
only received health education via texts on their smart
phones. The SmartLoss™ intervention group lost an av-
erage of 9.4% of body weight in the 12-week interven-
tion while the control group lost an average of 0.6% of
body weight.

The continuous feedback provided by the thermody-
namic model enhanced adherence and is now being
used for long-term weight loss programs. Guidance by
the thermodynamic model is available commercially in
the BodyKey SmartLoss™ program delivered by
Amway [30].

Food Waste Estimation

Food waste is the difference between food production
and food consumption. Hall et al. [31] applied a ther-
modynamic energy balance model to back-calculate pop-
ulation-wide EI from body weights. A Monte Carlo sim-
ulation was used to approximate EI for each individual
in the population and then the values were summed
over the population. The resulting quantity is subtracted
from USDA published statistics on food availability to
estimate total food waste, which the authors found had
risen by at least 10% in the last few years. Although
this model is limited in applications for an individual,
which is noted by the authors, it serves a valuable pur-
pose of being able to provide a reasonable bound based
off sound analysis for the food waste problem, which
presents both economic and environmental challenges
far beyond the obvious.

Dietary Compensation During Exercise

It is well known that little or no weight is lost because of
exercise interventions [6, 32]. One of explanations for this
modest weight loss is that individuals compensate for the ad-
ditional exercise energy expenditure with increased energy
intake. This phenomenon is referred to as dietary compensa-
tion [33, 34]. To determine the role of energy intake on modest
weight loss during an exercise intervention, Thomas et al. [6]
discretized the differential equation model:
dFM dFFM

9500 —— + 1020—— = EI-EE
dt + dt

as:

AFM AFFM
9500Tt + 1020 = EI-EEy;

where 9500 and 1020 were the energy densities of FM and
FFM used in [7] and EEis the energy expenditure at final time
measured by the doubly labeled water (DLW) method. From
the discretized differential equation, £/ can be algebraically
isolated:

AFFM

AFM
El = EE; + 9500Tt + 1020

and calculated using change data. Pre and post intervention
data from a 44-week exercise intervention designed to train 32
sedentary individuals was used to calculate EE ;, A1 AFEM
where 13 of the subjects had DLW measurements [35]. From
this data, 12 of the 13 subjects increased EI during the inter-
vention leading to little or no weight loss by end of interven-

tion (Table 2).

Predicting Success in Dietary Weight Loss
Interventions

Recently, there have been efforts to identify which participants are
likely to succeed in a weight loss study from short term or even
baseline data [36]. One important predictor of long-term weight
loss success is early dietary adherence [37]. Thermodynamic en-
ergy balance models can be used to quantify adherence by esti-
mating the difference between actual versus expected weight loss.
Using logistic model inputs of short-term percent weight loss,
adherence, and demographic variables, long-term weight loss suc-
cess can be predicted with good accuracy [38]. These data can then
be used to counsel patients early during the intervention while
motivation is high. Alternate weight loss therapies such as phar-
macotherapy and/or surgery can be advised if the probability of
success in response to dietary intervention is low.

Table 2 Change in energy intake during exercise derived using [35]

SS Baseline EI Final EI AEI
(kcal/day) (kcal/day) (kcal/day)
1 2818 3543 724
2 2594 2987 393
3 2938 3434 496
4 3726 3911 184
5 2508 2993 485
6 3153 3410 258
7 2699 3432 733
8 2484 3240 756
9 2365 2716 352
10 2389 2479 90
11 1887 2731 844
12 2412 2937 524
13 2317 2270 —47

EI, energy intake; SS, subject number
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Discussion and Conclusions

Because of computational ease of delivery through web-based
and smart phone applications, validated thermodynamic energy
balance models that predict weight change are increasingly being
used in various applications. These models differ from traditional
statistically based formulations because they do not require lon-
gitudinal weight loss data for model development, relying instead
on the first law of thermodynamics. The models can be applied to
predict weight change, guide adherence, estimate population-
wide effects, and provide physiological insights into underlying
mechanisms of weight change.

There are nearly a dozen thermodynamic energy balance
models in existence today [9ee, 10, 13, 14, 39-43]. Each model
differs by time scale, method of division of ES, and method of
division of EE. Here, we outlined differences in four representa-
tive models to identify how these divisions of ES and EE can
manifest itself in term development and final model appearance.
The variation of models lead to different model strengths ranging
from Antonetti’s 1973 model [9+°] that yields simple predictions
of weight change that can be expressed in closed form to the
more complex Hall model [15¢¢] that provides macronutrient
level insight.

Applications of the models are still emerging. Some applica-
tions are in the early stage, for example using the models to
intervene when there is a risk identified of potential weight loss
clinical trial drop outs has to our knowledge not yet been evalu-
ated. As the obesity/clinical community becomes more familiar
and comfortable with thermodynamic energy balance models,
we anticipate additional future novel model applications.
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