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Abstract
Purpose of the Review Here, we review recent findings in the field of generating insulin-producing cells by pancreatic
transcription factor (pTF)-induced liver transdifferentiation (TD). TD is the direct conversion of functional cell types from
one lineage to another without passing through an intermediate stage of pluripotency. We address potential reasons for the
restricted efficiency of TD and suggest modalities to overcome these challenges, to bring TD closer to its clinical
implementation in autologous cell replacement therapy for insulin-dependent diabetes.
Recent Findings Liver to pancreas TD is restricted to cells that are a priori predisposed to undergo the developmental
process. In vivo, the predisposition of liver cells is affected by liver zonation and hepatic regeneration. The TD propensity
of liver cells is related to permissive epigenome which could be extended to TD-resistant cells by specific soluble factors.
An obligatory role for active Wnt signaling in continuously maintaining a “permissive” epigenome is suggested.
Moreover, the restoration of the pancreatic niche and vasculature promotes the maturation of TD cells along the β cell
function.
Summary Future studies on liver to pancreas TD should include the maturation of TD cells by 3D culture, the restoration of
vasculature and the pancreatic niche, and the extension of TD propensity to TD-resistant cells by epigenetic modifications.
Liver to pancreas TD is expected to result in the generation of custom-made “self” surrogate β cells for curing diabetes.

Keywords Transdifferentiation (TD) . Reprogramming . Pancreatic transcription factors (pTFs) . Liver . Diabetes . Epigenetic
modifications .Wnt signaling . Autologous insulin-producing cells (AIP cells) . 3D culture (three-dimensional spheroids)

Introduction

The first study of liver to pancreas transdifferentiation (TD)
was published by our group 20 years ago: recombinant
adenovirus-mediated ectopic expression of Pancreatic and
Duodenal Homeobox-1(PDX1), a master regulator of

pancreas organogenesis, activated insulin production, as
well as its processing and secretion in mice liver in vivo
[1]. Hepatic insulin production was sufficient to ameliorate
the blood glucose levels in diabetic mice [1]. This plasticity
of adult cells was rather surprising, as the leading dogma at
that time was that adult cells in mammals, once committed
to a specific lineage, become “terminally differentiated”
and can no longer change their fate [2, 3]. Six years later,
the reprogramming ability of adult somatic cells to
pluripotency was demonstrated [4].

The in vivo model of PDX1-induced liver to pancreas TD
revealed major characteristics of this process: (A) The ectopic
pancreatic transcription factor is a short-term trigger to a rel-
atively wide developmental process, that involves comprehen-
sive alterations in gene expression [5]. (B) PDX1 plays a dual
role in liver to pancreas TD; in addition to activating the pan-
creatic fate, it turns off the hepatic repertoire in each of the
liver cells in a transient manner [6]. (C) PDX1 irreversibly
activates the alternate pancreatic lineage only in a small pop-
ulation of cells [1, 5]. These three major characteristics were
recapitulated in lineage reprogramming processes induced by
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other tissue-specific transcription factors between all other cell
types, both in vivo or in tissue cultures, in vitro [7–13].

TD utilizes a transient ectopic expression of one or few
genes (transcription factors) to induce stable alterations in
the expression of hundreds of genes, allowing adult cells to
gain alternate developmental fate and, consequently, functions
[14, 15]. The newly gained function usually persists long after
the ectopic gene expression vanishes [5]. The safety benefit of
TD lies in the fact that this epigenetic process, does not in-
volve foreign DNA insertions, pluripotency induction, or un-
controlled cell proliferation.

TD and pluripotency induction share common characteris-
tics, as both are activated by master regulator transcription
factors and mediated by massive alterations of the epigenome
of adult somatic cells, allowing the potential generation of
alternate autologous tissues. Unlike induced pluripotent stem
cells (iPSCs) that display unlimited proliferation and clonal
selection, the newly generated TD cells are mostly post-
mitotic and display a defined function [16]. Both types of
reprogrammed cells may display diverse levels of develop-
ment and maturity [17•, 18••].

TD of adult extra-pancreatic tissues may result in the gen-
eration of custom-made “self” surrogate β cells for the treat-
ment of diabetes, overcoming both the shortage in tissue avail-
ability from cadaveric donors and the need for anti-rejection
treatment [19••].

Why Use Liver for Reprogramming Endocrine
Pancreas?

The liver is the largest organ in the body with a high level of
functional redundancy [20]. Unlike β cells, the liver regener-
ates efficiently, mainly by the proliferation of mature hepato-
cytes [21•, 22].

The liver and the pancreas are developmentally related to
each other; both are derived from appendages of the upper
primitive foregut endoderm [23, 24]. Liver and pancreas are
also phylogenetically related; eels and worms have no separa-
tion between these two organs, called hepatopancreas [25, 26].
It has been suggested that the late separation of liver and
pancreas during organogenesis in the primitive ventral endo-
derm, might have left both tissues with pluripotent cells that
are capable of giving rise to both hepatic and pancreatic line-
ages [27]. Moreover, the two organs share many characteris-
tics, including responsiveness to glucose, and a large group of
specific transcription factors that are expressed in both tissues
[28]. Thus, trans-conversion between the two endodermal tis-
sues is conceivable.

A recent study reports that during embryonic organogene-
sis in mice, the homeoprotein TGIF2 acts as a developmental
regulator of the pancreas versus liver fate decision. TGIF2 has
been suggested to be sufficient to elicit liver to pancreas fate

conversion both ex vivo and in vivo. Hepatocytes expressing
TGIF2 undergo extensive transcriptional remodeling, which
represses the original hepatic identity and, over time, induces a
pancreatic progenitor-like phenotype [29•]. Whether this
homeoprotein exerts similar effects in other species including
humans is to be determined.

Finally, the liver is preferentially targeted by gene delivery
tools such as recombinant adenoviruses, due to abundant ad-
enoviruses receptors. Only about 5% of the systemically de-
livered recombinant adenoviruses are found in extra-hepatic
tissues [30].

Liver to Pancreas Transdifferentiation,
in Vitro

Functional activation of the endocrine pancreatic repertoire in
liver cells in vitro has been studied in rodents, in pigs, in
human-derived hepatic cells, and in primary human liver cul-
tures [16, 31–34]. An in vitro experimental system allows
analyzing the liver to pancreas TD under controlled, isolated
conditions. Most of the studies described here were performed
in primary cultures of adult human liver cells isolated from >
100 human liver donors [31, 32, 33, 34, 35•, 36••, 37••].

Primary Culture of Adult Human Liver Cells

Human liver cells can be efficiently expanded ex vivo, with
the expense of undergoing epithelial to mesenchymal transi-
tion and massive hepatic dedifferentiation [6, 38]. Billions of
cells can be generated from 1 g of tissue, reprogrammed or
bio-banked for future use prior to TD induction [16, 38]. Upon
ectopic pTF expression, adult human liver cells express a
comprehensive repertoire of pancreatic genes and secrete ma-
ture, processed insulin in response to increasing glucose con-
centrations within the physiological range [31–34]. The TD
liver cells (also called autologous insulin-producing cells; AIP
cells) ameliorate diabetes following in vivo implantation [31].

TD Is a Rapid but Sequential and Hierarchical
Developmental Process

PDX1 was the first pTF found to induce TD of extra-
pancreatic tissues [1]. PDX1 is used in most TD protocols of
pancreatic and extra-pancreatic tissues both in vivo and
in vitro (see review [16]). However, additional pTFs augment
its effect on the efficiency of the process [16, 33, 34, 39–42].
TD induction by concerted expression of several pTFs, as
suggested in [34, 40, 43, 44] relies on the expectation that
TD is a one-step process. However, this may not be the case,
since despite its speed, TD is a sequential and temporally
controlled process [33]. It was suggested that TD of human
liver cells along the pancreatic lineage is a gradual and
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consecutive process [33]. Accordingly, only sequential ectop-
ic expression of three pTFs initiated by PDX1 and concluded
by MAFA 3 days later, in a hierarchical manner, resulted in
increased maturation of the β-like cells, manifested by in-
creased c-peptide secretion in vitro. In fact, it has been
established that TD induced by either a concerted pTFs ex-
pression or by their introduction in a sequential but non-
hierarchical mode resulted in generation of immature
multihormonal pancreatic endocrine cells [33].

Pancreatic TD Propensity of Distinct Populations
of Cells in the Liver

PDX1 activates the alternate pancreatic repertoire only in
small populations of liver cells while its activity in repressing
the hepatic repertoire of genes occurs in all liver cells [6, 1, 5,
45]. The differential effect of PDX1 on the activation of the
pancreatic lineage and the repression of the hepatic repertoire
of genes, suggests distinct regulation of the two processes. A
higher developmental restriction or epigenetic barrier may
control the activation of the alternate pancreatic lineage.

The differential propensity of liver cells in activating the
pancreatic function in response to ectopic PDX1 expression is
related to the phenotypic and functional heterogeneity of the
cells in this organ. The adult liver cells exhibit phenotypic and
functional zonation, named by the proximity to the central and
portal veins of the hepatic lobules (pericentral and periportal
cells, respectively) [21•, 46–51]. Wnt signaling and
intracellular/nuclear β catenin levels are suggested to partici-
pate in controlling hepatic functional zonation [49, 46, 52].
The first 1–2 cell layers adjacent to the central veins, zone 3,
display an active Wnt signaling pathway and express many β
catenin-regulated genes. These cells are involved in ammonia
detoxification and express high levels of glutamine synthetase
and Axin2 [53•]. Periportal liver cells, in hepatic zone 1, ex-
press genes involved in gluconeogenesis and fatty acid and
urea metabolism (CPS-1 for urea metabolism) [53•] and dis-
play a low Wnt signaling activity. It is conceivable that differ-
ent cells in the liver may display distinct TD capacities.

TD propensity to pancreatic gene expression could be af-
fected also by the distinct levels of the plasticity of liver cells.
The liver displays a high regenerative capacity, in which the
type of the regenerating cells depends on the type of the liver
damage; in mouse liver homeostasis, axin2-positive hepato-
cytes located around the central vein have a higher prolifera-
tive capacity than hepatocytes located in the mediolobular or
the in periportal area [22]. After a mild chronic damage, the
undamaged hepatocytes located around the portal vein prefer-
entially repopulate the liver. Conversely, a severe chronic liver
damage induces a ductular reaction composed of ductal cells
and liver progenitor cells. It is not yet determined whether
these cells participate in liver regeneration in human patho-
logic conditions [54•, 55]. Thus, if cell proliferation is

associated with increased cellular plasticity manifested at the
level of chromatin compaction, then the ectopic pTFs may
differentially affect cells localized in distinct areas in the liver
[21•].

In vivo studies in mice demonstrated the activation of
insulin- and glucagon-producing cells in adult liver cells.
However, different experiments resulted in different locations
of these hormone-producing cells. In our previous studies,
these cells were located at the vicinity of central veins, despite
the random and uniform expression of ectopic PDX1 in 40–
50% of the cells [1]. This preferred localization of
transdifferentiated cells was exhibited in several studies [5,
1, 45]. Other groups reported that the hormone-producing
cells were generated in parenchymal hepatocytes and later in
periportal areas of the liver. While the expression of the hor-
mones in the parenchymal hepatocytes was transient, the ex-
pression in the periportal areas was stable [39, 40, 56, 57].
Lineage tracing analyses revealed that the stable population
of cells located in duct-like structures originated from SOX9
positive cells near the Canals of Hering in periportal areas of
the liver [39, 40].

Taken together, the hepatic TD propensity to the pancreas
could be related to several populations of hepatic progenitors
displaying a relatively high level of plasticity [21•].

TD Is Activated in Predisposed Human Liver Cells,
in Vitro

Despite the uniformmorphology of the human hepatic derived
cultures, in vitro, ectopic pTFs expression and the repression
of the hepatic repertoire in > 90% of the cells, the activation of
insulin expression occurred only in 5–15% of the cells [32,
33]. This may suggest that liver cells display a differential TD
propensity and most of the human liver-derived cells in vitro
resist pTF-induced activation of the pancreatic fate.

To analyze whether the in vivo TD predisposition is
recapitulated in human liver cells propagated in vitro, pri-
mary cultures from different donors were separated into 2
groups based on GLUL (glutamine synthetase) enhancer
activation, lineage tracing approach [36••]. The GLUL
enhancer activity was chosen due to its restricted expres-
sion in hepatic pericentral cells [49]. GLUL-enhancer-
controlled recombinase activity irreversibly and consis-
tently “tagged” 5–15% of the cells in the liver cultures
by GFP. GFP+ and GFP− cells were separately propagat-
ed and individually analyzed for pTF-induced TD. The
GFP+ cells consistently exhibited efficient TD and insulin
production in 64.1 ± 7.9% of the cells. The GFP− cells
resisted the activation of the pancreatic lineage. Both
TD-permissive (GFP+) and TD-resistant (GFP−) cells ex-
press the ectopic pTFs with similar efficiencies and dis-
play similar repression of hepatic genes [36••]. These data
suggest that TD occurs in reprogramming-prone liver cells
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also in vitro. TD propensity has been proven stable and is
inherited to daughter cells, as the cells proliferate in cul-
ture [36••].

Epigenetic Modulators Affect TD Propensity of Adult
Liver Cells

Initial characterization of the TD-resistant and TD-prone
liver cells suggested that the cells display epigenetic dif-
ferences (Moshe Szyf and SF unpublished results).
Modulation of genome-wide DNA and histone modifica-
tions may impact cellular gene expression pattern.
Numerous smal l molecules tha t inh ibi t h i s tone
deacetylases (HDACs), histone methyltransferases, and
DNA methyltransferases (DNMTs) were used to increase
reprogramming efficiency of extra-pancreatic tissues to-
ward pancreas. PTF-induced reprogramming of human
skin fibroblast into insulin-producing cells was significant-
ly improved by supplementing the TD process with
romidepsin (Romi; an inhibitor of enzymatic activity of
HDACs) and 5-azacytidine (5-Aza, an inhibitor of
DNMT) [58]. Inhibition of histone lysine methyltransfer-
ase inhibitor substantially increased the number of insulin-
positive cells in the liver [59]. Indeed, epigenetic alter-
ations of TD-resistant human liver cells using HDAC in-
hibitors as sodium butyrate or suberoylanilide hydroxamic
acid convert them into TD-prone cells [36••].

.

The Role of Wnt Signaling Pathways in Liver
to Pancreas TD

Wnt signaling is an important regulator of liver develop-
ment and liver zonation, orchestrating the division of the
liver into functionally distinct metabolic zones [46]. Active
Wnt signaling has been found obligatory for the pTFs in-
duced liver to pancreas TD [36••]. Transient disruption of
active Wnt signaling (by DKK), irreversibly prevent the
pTF-induced TD activation also in the TD-predisposed
group of liver cells [36••]. Thus, Wnt signaling inhibition
converted TD-predisposed cells into TD-resistant liver
cells. While active Wnt signaling per se was insufficient
to activate a pTF-induced TD in resistant cells, it augment-
ed the effect of the epigenetic alterations on promoting
pTF-induced TD in resistant liver cells. Taken together,
these data suggest a role for active Wnt signaling in stabi-
lizing a TD-permissive epigenome [36••]. Interestingly, the
combined effect of epigenetic modifications and canonical
Wnt signaling activity has been suggested also to underlie
the TD process of non-osteogenic cells into osteoblasts
[60].

The Effect of the Vasculature and Extracellular Niche
on TD Cells’ β-like Maturation

Pancreatic islets are highly vascularized structures. The
blood vessels play an important role in providing nutrients
as well as non-nutritional signals to pancreatic islets, cre-
ating a vascular niche in which cross talk between endo-
crine β cells and endothelial cells is essential to ensure
proper β cell development and function [61–65]. The vas-
culature secretes several paracrine factors that modulate
gene expression, proliferation, and β cell survival.
Endocrine pancreatic cells express VEGF-A, a crucial fac-
tor in maintaining the microvasculature of the islet, main-
tenance of β cell mass and the revascularization of islets
following transplantation [61, 65, 66]. A recent study sug-
gests that co-implantation of Mesenchymal stem cells
(MSCs) and Endothelial progenitor cells (EPCs) with AIP
cells derived from TD liver cells led to doubling the sur-
vival rates and a threefold increase in insulin production,
in vivo [37••]. Using EPC and MSC co-culture and its
conditioned medium resulted in a significantly increased
expression of pancreatic specific genes and an increase in
glucose-regulated insulin secretion, compared with AIP
cells that were cultured alone [37••]. Vasculature recon-
struction is an important player in all regenerative medi-
cine approaches including that for diabetes.

The reconstitution of the in vivo niche is expected to pro-
mote the liver to pancreas TD and the maturation of AIP cells.
Indeed, Chaimov et al. have developed a novel artificial pan-
creas encapsulation platform for the treatment of diabetes, that
is based on solubilized whole porcine pancreatic extracellular
matrix (ECM) [35•]. These unique capsules were used to en-
trap AIP cells. The ECM-microcapsule provided both a pan-
creatic ECM and a natural fibrous 3D niche. The ECM-
microcapsule increased the viability of the AIP cells and sig-
nificantly improved insulin delivery upon in vivo implantation
[35•].

In summary, pTFs induced liver to pancreas TD most
probably results in AIP cells that are at a heterogeneous
level of β cell-like maturation, in vitro. Exposing the cells
to an in vivo-like niche may substantially induce their
maturation, bringing them closer to their therapeutic
implementation.

Summary and Directions for Future Research

The liver displays a high level of plasticity and an exten-
sive rate of proliferation. Expanded liver cells can be bio-
banked for future use. Together with its relative accessi-
bility, the liver could serve as an advantageous cellular
source for regenerating pancreas and possibly additional
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degenerated organs. The following findings characterize
the process of fate conversion between liver and pancreas:

& pTF-induced liver to pancreas TD takes place in animal
models in vivo as well as in tissue cultures.

& The pancreatic transcription factor PDX1 is indispens-
able in activating the pancreatic lineage; additional
pTFs promote its effects on hepatic reprogramming.

& PDX1 plays a dual role in liver to pancreas TD; it activates
the pancreatic function only in predisposed liver cells, but
represses the hepatic repertoire in all cells. Therefore,
pTFs targeting to predisposed liver cells should increase
TD safety in vivo.

& Several populations of liver cells may display preferred
propensity to TD. These cells are characterized by in-
creased plasticity.

& Active Wnt signaling is obligatory for pTF-induced liver
to pancreas TD. Continuously active Wnt signaling most
probably plays a role in maintaining a “permissive” epi-
genome needed for the developmental switch.

& Pre-isolation and separate propagation of TD-predisposed
liver cells increase the process efficiency upon ectopic
expression of pTFs.

& Both the vasculature and the pancreatic niche restora-
tions promote the TD cells’ maturation both in vivo and
in vitro.

Challenges and Future Studies

& TD cells may display a heterogeneous level of β cell-like
maturation which should be further analyzed by RNA
sequencing in vitro and upon cells retrieval after in vivo
implantation.

& 2D cultures used in the above TD experimental systems
probably hinder the maturation of the generated cells. 3D
clustering, which induces metabolic maturation by driving
mitochondrial oxidative respiration (a process central to
stimulus–secretion coupling in mature β cells [67]),
should be used in the TD cultures.

& The identification of membrane markers of mature TD
cells, allowing their isolation prior to 3D clustering,
should improve these cells’ therapeutic outcome.
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