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Abstract Hyperglycemia is associated with increased mor-
tality and other complications amongst hospitalized patients.
However, the studies of tight glycemic control in a range of
critical illness settings, including intensive care, acute myo-
cardial infarction, and stroke, have produced inconsistent and
divergent results. We examine some of the factors that may
have contributed to the differing results, and their implications
for targeting tight glucose control in critical illness. With these
in mind, most clinical guidelines now recommend moderate
glucose control with an upper glucose target of <10 mmol/L
(180 mg/dL) in critical illness while avoiding hypoglycemia.
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Introduction

The last 20 years has seen considerable interest in the area of
glucose control in critical illness. Trials in the 1990s and early
2000s brought a wave of enthusiasm for tight glucose control,
and this was reflected in clinical management guidelines.
Subsequent studies however, have produced mixed results.
Glucose control in critical illness remains a hotly debated
topic, being the subject of numerous reviews, meta-analyses

and commentaries in recent years. Adopting a broad approach
to the term “critical illness” to include not just patients in
intensive care units (ICU), but also those with acute myocar-
dial infarction (AMI) and stroke, we will examine the key
trials, their implications, and influence on this field.

The Association between Hyperglycemia and Adverse
Hospital Outcomes

The relationship between hyperglycemia and adverse hospital
outcomes including mortality, infection, poor wound healing,
cardiac complications, and increased length of hospital stay, is
well established. There are data from a variety of settings
including intensive care [1, 2], myocardial infarction [3–6],
stroke [7, 8], trauma [9], cardiac surgery [10], total parenteral
nutrition [11], emergency ward [12], and general hospital wards
[13]. There is a dose response, with higher glucose levels being
associated with greater risk. A “j-curve” of risk has also been
described, with hypoglycemia also being associated with in-
creased mortality in ICU [2], emergency [12], and AMI [5, 6].

The question has been whether hyperglycemia contributes
to increased mortality or is merely a marker of increased
severity of illness. While there is clear evidence that critical
illness activates stress hormones and inflammatory processes
resulting in insulin resistance, increased hepatic gluconeogen-
esis, and hyperglycemia [14], there are clinical, animal, and
in vitro studies, which support a pathogenetic role of acute
hyperglycemia as well. Examples include impairment of leu-
cocyte function, increased rates of infection [15–19], in-
creased oxidative stress [20], C-reactive protein and other
inflammatory cytokines [20, 21], and hypercoagulability
[22]. High glucose levels have been associated with increased
myocardial damage and cell apoptosis during ischemia [23,
24] and with the size of stroke and level of salvage of the
ischemic penumbra [25].
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However, randomized controlled trials (RCTs) of tight
glycemic control have produced inconsistent results, so the
benefit of treatment of hyperglycemia in critical illness re-
mains disputed. We will review some of the important trials
below (Table 1).

Key Trials of Tight Glycemic Control in Intensive Care

Leuven Surgical ICU Study

This study included 1548 patients admitted to a single surgical
ICU in Belgium [26]; 13 % had known diabetes; most had
undergone cardiac surgery (63 %). Patients were randomized
to intensive insulin therapy, with an insulin infusion if blood
glucose (BG) exceeded 6.1 mmol/L (110 mg/dL) targeting the
“normal range” of 4.4–6.1 mmol/L (80–110 mg/dL), or con-
ventional therapy, where an insulin infusion was commenced
if the BG was >11.9 mmol/L (215 mg/dL), targeting 10–
11.1 mmol/L (180–200 mg/dL). All patients received intrave-
nous glucose (200–300 g), and the majority parenteral nutri-
tion. Blood glucose was monitored 1–4 hourly, on arterial
samples, with a blood gas analyzer.

The intervention arm achieved a lower mean morning BG
(5.8 vs 8.5 mmol/L, P <0.001). Intensive insulin therapy re-
duced ICU and hospital mortality (4.6 % vs 8 %, P <0.04 and
7.2 % vs 10.9 %, P=0.01, respectively). There was also a
reduction in septicemia by 46 %, need for dialysis or
hemofiltration by 41 %, prolonged ventilatory support by
37 %, critical illness polyneuropathy by 44 %, and prolonged
ICU length of stay by 27%.Multivariate analysis indicated that
it was glucose control, rather than insulin therapy, which was
related to the reduction in mortality [27]. Hypoglycemia, de-
fined as a BG ≤2.2 mmol/L (40 mg/dL) occurred in 5 % of
intensive arm subjects and 1 % of those in the control arm.

The publication of this study in 2001 led to the adoption of
protocols aiming for tight glycemic control in many ICUs, and
guidelines recommending these targets.

Leuven Medical ICU Study

Following these results, a similar study was conducted at the
Leuven Medical ICU, where 1200 patients were randomized to
the same treatment arms and glucose targets [28]. However, no
difference was seen in hospital mortality (40 % vs 37.3 %,
hazard ratio 0.93; 95 % CI 0.84–1.06, P=0.31), though
amongst those who stayed ≥3 days in ICU, mortality was lower
with intensive insulin therapy. Conversely, mortality was higher
in those that stayed less than 3 days in ICU. Morbidity was
improved, including reduced acute renal failure, prolonged
mechanical ventilation, and length of stay in ICU and hospital.

Hypoglycemia occurred in 19 % of the intervention group
vs 3 % of controls (HR 5.94; 95 % CI 3.70–9.54, P <0.001).

Normoglycemia in Intensive Care Evaluation–Survival
Using Glucose Algorithm Regulation (NICE-SUGAR)
Study

RCTs subsequent to the Leuven studies have not replicated
their findings in any adult ICU setting [29–34, 35•]. High rates
of hypoglycemia have been problematic, with 1 trial being
terminated early because of this [29].

The largest of these trials was the NICE-SUGAR Study, a
multinational RCT conducted in mixed medical/surgical ICUs
[34]. Six thousand one hundred and four subjects with an
anticipated ICU stay of 3 days or more were randomized to
an intensive glucose target of 4.5–6.0 mmol/L (81–100 mg/dL)
or control target of 8–10 mmol/L (144–180 mg/dL).

The primary end point of 90 day mortality was unexpect-
edly increased with tight control (27.5 vs 24.9 %, odds ratio
1.14, 95 % CI 1.02–1.28, P=0.02). The results were not
different for surgical and nonsurgical patients, or patients with
and without diabetes. There was no difference in any second-
ary outcome. There was a higher incidence of death from
cardiovascular causes in the intensive group. Both severe
(BG≤2.2 mmol/L) and moderate hypoglycemia (2.3–
3.9 mmol/L) were increased (6.8 % vs 0.5 %, P <0.001 and
72.4 % vs 15.8 %, respectively) [35•].

Key Trials of Tight Glycemic Control in Myocardial
Infarction

Most cardiac trials of insulin therapy in AMI have focused on
the delivery of glucose-insulin-potassium solutions rather than
glucose control [36]. There are only 3 large RCTs with pri-
marily a glycemia focus.

Diabetes Mellitus, Insulin Glucose Infusion in Acute
Myocardial Infarction (DIGAMI) Study

DIGAMIwas the first RCT to examine the impact of glycemic
control in AMI. Subjects with BG >11 mmol/L (198 mg/dL)
were randomized to a combined intervention of insulin infu-
sion for at least 24 hours (target BG 7–10 mmol/L [126–
180 mg/dL]) followed by at least 3 months of intensive
subcutaneous insulin therapy, or to usual care [37].

After 24 hours, BG was lower in the intervention group
(9.6±3.3 vs 11.7±4.1, P <0.0001). At 3 months, HbA1c was
lower in the intervention group (7.0±1.6 vs 7.5±1.8 %,
P <0.001). Mortality was similar at discharge and at 3 months
but was reduced at 12 months (18.6 % vs 26.1 %, P=0.0273).
This survival benefit persisted at 3.5 years follow-up [38].

While these results demonstrated the benefits of glycemic
control after AMI, it remained unclear to what extent this
resulted from improved inpatient control, as opposed to
postdischarge care.
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DIGAMI-2

DIGAMI 2 was designed to examine the treatment effect of
the 2 aspects of DIGAMI separately: acute glucose control
and long-term subcutaneous insulin. One thousand two hun-
dred and fifty-three patients were randomized to 3 groups:
insulin infusion followed by intensive subcutaneous insulin
therapy after discharge, insulin infusion followed by usual
care, and usual care only [39].

Baseline HbA1c was 7.2 %–7.3 % across groups; notably
better than DIGAMI. Glucose was only modestly lower after
24 hours in the insulin infusion groups (9.1 mmol/L each),
compared with usual care (10.0 mmol/L). At discharge less
than half of group 1 patients continued to receive multidose
insulin injections, and long-term glucose targets were not
achieved. There was no significant difference in mortality or
morbidity between the 3 groups.

Hyperglycemia: Intensive Insulin Infusion in Infarction (HI-5)
Study

The HI-5 study was designed to test the impact of glycemic
control using insulin infusion therapy in the peri-infarct set-
ting. 240 subjects with diabetes (48 %) or BG ≥7.8 mmol/L
and suspected AMI were randomized to an insulin/dextrose
infusion for 24 hours postadmission (target 4.0–10 mmol/L),
or routine care [40]. Insulin titration was based on the initia-
tive of the attending nurse, with no specific algorithm.

At 24 hours, there was no statistical difference in BG
between groups (8.3±2.2 and 9.0±2.8 mmol/L). Mortality at
hospital discharge, 3 and 6 months were similar. There was a
lower incidence of cardiac failure and re-infarction within
3 months in the intervention group. Post hoc analysis revealed
those with BG <8 mmol/L at 24 hours had lower mortality
than those with BG ≥8 mmol/L. Hypoglycemia (BG
<3.5 mmol/L) occurred in 7 % of the intervention group and
0.9 % of the control group (P=0.02), with none of the epi-
sodes being symptomatic.

With no BG difference achieved, the hypothesis that tight
glycemic control in the peri-infarct setting might reduce mor-
tality was not adequately tested.

Key Trials of Tight Glycemic Control in Stroke

While there are a number of RCTs of glucose control in acute
stroke, the 2 most significant are the GIST-UK and QASC
Trials.

UK Glucose Insulin in Stroke (GIST-UK) Trial

GIST-UK recruited 933 subjects with BG 6.0– 17.0 mmol/L
and within 24 hours of stroke onset and randomized them to

either insulin/glucose/potassium infusion therapy (target 4.5–
7.0 mmol/L) or saline infusion for 24 hours [41].

The trial was stopped early due to slow recruitment and
was therefore underpowered. Most patients had only mild
hyperglycemia (median BG 7.6 mmol/L) on admission. BG
fell in both groups at 24 hours, but was slightly lower in the
intervention group (0.57 mmol/L difference, P <0.001). There
was no difference in 90 day mortality or morbidity between
groups. Persistent hypoglycemia (<4 mmol/L) >30 minutes
requiring rescue treatment occurred in 15.7 % of the interven-
tion group.

Quality in Acute Stroke Care (QASC) Study

In the QASC trial, 19 acute stroke units (ASU)were enrolled in a
cluster randomized trial [42•]. The intervention comprised a
package of nursing-based education and protocols directed at
fever, hyperglycemia, and dysphagiamanagement. Treatment for
hyperglycemia involved an insulin infusion if BG >11 mmol/L
(in patients with diabetes) or BG >16 mmol/L if not. Control
ASUs received an abridged version of the guidelines only. The
primary outcome was a composite of death and dependency.

At 90 days postdischarge, fewer patients at the intervention
hospitals were dead or dependent (42 % vs 58 %, P=0.002).
The mean BG was only slightly lower amongst the interven-
tion subjects (6.8 vs 7.0 mmol/L, adjusted absolute reduction
0.54 mmol/L, 95 % CI 0.08–1.01, P=0.02). While this sug-
gests that even modest glucose lowering may be beneficial,
the multifaceted intervention design did not enable this to be
determined with certainty.

Trials of Tight Glycemic Control in General Wards

RABBIT2-Surgery Study

The RABBIT2-Surgery Study did not include critically ill
patients, but it is instructive to examine as it provides evidence
of benefit of glucose control in the hospital setting. This study
was primarily designed to compare 2 protocols for achieving
tight glycemic control in diabetic patients admitted for surgery
[43•]. 211 diabetic subjects with an admission BG of 7.8–
22.2 mmol/L (140–400 mg/dL) were randomized to receive
basal bolus and correction insulin or sliding scale insulin to
achieve a target fasting and premeal BG of 5.6–7.8 mmol/L
(100–140 mg/dL) for the duration of their admission.

Basal bolus insulin achieved better glycemic control with a
mean glucose during admission of 8.7±1.8 mmol/L vs 9.8±
2.4 mmol/L (P <0.001), and a higher percent of readings in
the target range (51.8 % vs 31.7 %, P <0.001). There was a
reduction in postoperative complications (composite of
wound infection, pneumonia, bacteremia, respiratory failure,
and acute renal failure), occurring in 9 % patients in the basal
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bolus group compared with 24 % in the sliding scale group
(P=0.003). The difference in wound infections was also close
to significance (P=0.05).

Hypoglycemia (<3.9 mmol/L) was more common with
basal bolus insulin (23.1 vs 4.7 %, P <0.001), though rarely
severe (BG ≤2.2 mmol/L, 3.8 v 0 %, P=0.053).

The RABBIT2-Surgery study effectively tested 2 different
levels of glycemic control, demonstrating that surgical com-
plications are less likely when the patient has a mean pre-meal
BG of 8.7 mmol/L.

Meta-Analyses of Tight Glycemic Control in Critical
Illness

Several meta-analyses have attempted to synthesize the evi-
dence for glycemic control in ICU and hospital settings [44–51]
(Table 2). None have found a benefit of tight control on mor-
tality. Three meta-analyses suggest a benefit in surgical patients
[44–46], and 3 have found a reduction in infection overall or
amongst surgical patients [45–47]. Of the 3 meta-analyses on
neurologic patients [47–49], 2 suggest some benefit of glucose
control on neurologic outcome [47, 48], even without inclusion
of the recent QASC Study. Although the majority of the meta-
analyses found no evidence of heterogeneity across the studies,
factors such as method of glucose testing were not analyzed. In
all settings, intensive control increases hypoglycemia, by 3– 25
times compared with conventional control.

Why Have There Been Such Disparate Results
in the Trials?

Much has beenwritten in the last 3 years comparing the Leuven
Trials with the NICE-SUGARTrial. Van den Berghe has point-
ed out that the control group in the NICE-SUGAR study had a
lower target range (8–10 mmol/L) than in the Leuven Studies
(10–11 mmol/L) hence the likelihood of observing a benefit
was smaller [52]. Furthermore, <50 % of patients in the inten-
sive group of NICE-SUGARwere on average, within the target
range. Questions about the accuracy of glucose testing, which
would affect attainment of glucose targets and occurrence of
hypoglycemia, have been raised (see below). There are also
concerns as to whether there was adequate testing for and
management of hypokalemia arising from insulin therapy.
There was a more aggressive feeding regimen in the Leuven
study, which possibly benefited from the co-treatment with
insulin. Finally, the Leuven study was conducted in a single
experienced center, while NICE-SUGAR involved 41 centers.
Lack of experience and unfamiliarity with protocols in busy
ICUs may affect a unit’s ability to safely target tight glycemic
control. Given these disparities, many have not discounted the
benefits of tight glycemic control in ICU.

In the area of AMI, there are several factors which may have
contributed to the failure of themore recent trials to demonstrate
better outcomes with tight control. These include the failure to
achieve a sufficient glycemic difference between intervention
and control arms, in part due to the relatively low glucose levels
in the control subjects of HI-5 and DIGAMI-2, which were
even lower than the intervention subjects in DIGAMI. Another
major factor is the dramatic fall in mortality in the years since
DIGAMI, with the advent of rapid angioplasty, aspirin, beta-
blockade, and statin therapy (26.1 % 1 year mortality in the
control group of DIGAMI compared with 8.9 % in HI-5). This
does not mean that glucose control is not important, but its
relative mortality impact is smaller, and its effect becomes more
difficult to demonstrate [53].

Improving Safety of Tight Glucose Control

Prevention and Recognition of Hypoglycemia

The major concern with tight glucose control is the risk of
hypoglycemia. A post-hoc analysis of the NICE-SUGAR
Study found an independent and dose-dependent effect of
hypoglycemia on mortality, irrespective of underlying diabe-
tes [35•], and there are other observational data that low
glucose is associatedwith increased ICUmortality [54].While
these data do not prove causality, there are nonetheless obvi-
ous and established reasons for avoiding hypoglycemia, not
least that the brain relies on glucose as an obligate fuel source
and this is an insulin-independent process [55].

The cardiac and stroke studies have reported rates of hy-
poglycemia of up to 15 %, but very few of these cases were of
a severity to the same level as the ICU studies. Hypoglycemia
therefore has predominantly been an ICU issue. In fact, the
true incidence of hypoglycemia may be considerably higher
than what has been reported, as detection in sedated ICU
patients (unlike coronary care patients) relies purely on glu-
cose testing. For the same reason, hypoglycemia ismore likely
to be severe amongst ICU patients.

When aiming for tight glycemic control with insulin infu-
sion, frequent testing is mandatory. Both the NICE-SUGAR
and Leuven protocols allowed for 2 hourly testing when
patients were in the target range (average tested 2½ hourly
in NICE-SUGAR). This may result in delay in detection of
hypoglycemia, particularly in unstable patients with frequent
changes in medication and nutrition delivery. Even in most
general wards, patients on insulin-glucose infusions with more
liberal targets would receive hourly testing. One tool which
shows early promise to facilitate the early detection of hypo-
glycemia is real-time continuous glucose monitoring (RT-
CGMS). This has been demonstrated to reduce the rate of
severe hypoglycemia in the ICU setting [56]. Although RT-
CGMS is not common practice or recommended in any
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guidelines, and is currently limited by cost, the need for staff
training, and technical considerations, this may well be an
important ICU technology of the future, when attempting tight
glucose control. It is routine to continuously or frequently
electronically monitor other vital signs so why not glucose
as well?

The timing of repeat testing after hypoglycemia is impor-
tant. The Leuven protocol recommended repeat glucose test-
ing after 1 hour, and the NICE-SUGAR protocol did not call
for repeat testing of until 30 minutes after its treatment though
it did require that a doctor be called [35•]. It is recommended
that conscious patients with even mild hypoglycemia check
their blood glucose 15 minutes after treatment [57], and in
most hospital wards this would be standard procedure.
Delaying repeat testing for 30–60 minutes may result in
unnecessarily prolonged exposure to hypoglycemia.

Accuracy of Glucose Testing

Accurate and rapid glucose measurement is essential when
targeting tight control in the ICU. In the ICU RCTs, glucose
testing has generally been performed with glucometers or
arterial blood gas analyzers. However, glucometers were de-
signed for home monitoring where the international industry
standard only requires that 95 % of glucose results fall within
0.83 mmol/L at glucose concentrations <4.2 mmol/L and
within 20 % at higher concentrations. While some meters
outperform this minimum standard, even with an error of
10 %, computer simulations have suggested that 16 %–45 %
of insulin doses would be in error when following an insulin
dosing algorithm [58]. If testing capillary samples, drug inter-
actions, anemia, and poor tissue perfusion add to the error.

Notably the NICE-SUGAR Study allowed the use of
glucometers, and also discouraged, but permitted capillary
testing. A systematic review of 11 studies confirmed that
glucose measurement using arterial blood was more accurate
than capillary blood, relative to laboratory testing, and there
was a trend for blood gas analyzers to be more accurate than
glucometers in the measurement of arterial blood [59•]. Both
methods of measurement were less accurate in the hypogly-
cemic range, with 11 %–22 % of readings overestimating the
glucose level. In ICU blood gas analyzers are usually available
so their use should be considered mandatory when aiming for
tight glucose control. Whenever possible, arterial lines should
be the source of blood for glucose testing.

Other Considerations

Glucose Variability

Experimental studies have found that fluctuating or intermit-
tently elevated glucose levels increases oxidative stress and

cell apoptosis [60–62]. Following this, a number of clinical
studies have identified an association between glucose vari-
ability and increased mortality in coronary care [63, 64] and
the ICU [65, 66], and there have been calls to specifically
target this [67]. However, an effect of glucose variability on
mortality was not seen in the DIGAMI-2 cohort [68], and in a
post-hoc analysis of the Leuven studies, intensive insulin
therapy did not reduce the standard deviation of the daily
glucose readings nor glucose pattern irregularity, suggesting
that the lowering of mortality was not related to reduced
glucose variability [69]. It remains to be seen how best to
address glycemic variability and whether this is truly benefi-
cial beyond the avoidance of hypo and hyperglycemia.

Diabetes vs Stress Hyperglycemia

It has been suggested that the glucose targets for people with
diabetes should be less stringent than for people with stress
hyperglycemia [70], as the glucose threshold for increased
mortality risk is higher for people with diabetes, and the
relationship is weaker [12, 71–74]. It is possible that chronic
hyperglycemia leads to protective mechanisms in people with
diabetes [75], but another explanation may simply be that
hyperglycemic people with diabetes are just less unwell, ie,
the stress contribution to hyperglycemia is smaller [76].

In the Leuven studies people with diabetes benefited equal-
ly from intensive glucose control, and the RABBIT-2 Surgery
was conducted in people with diabetes so there is no trial
evidence that glucose in people with diabetes should be man-
aged less intensively. Intriguingly,1 observational study found
that nonsurvivors had lower glucose levels than survivors if
the HbA1c was >6.8 %, so HbA1c may be a better discrim-
inator of patients exposed to chronic hyperglycemia [77], and
this should be examined in future RCTs.

Fig. 1 Relationship between glucose and mortality and adverse out-
comes, and the setting of glucose targets
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Medical vs Surgical Patients

Several of the meta-analyses suggest that surgical patients
benefit more from tight glycemic control, though this is largely
driven by the Leuven Surgical ICU study. They also suggest
that infection is the complication that is most responsive to tight
glycemic control. As surgical patients are at greater risk they
may thus derive the greatest benefit. It has been speculated that
for medical patients who may have had stress hyperglycemia
for some time, adaptive changes to hyperglycemia could have
occurred, or the window of opportunity to prevent harm may
have passed [52]. Conversely for surgical patients, the onset of
hyperglycemia would have been more acute, and therefore
prompt glucose control confers more benefit.

There is evidence of benefit of tight glucose control in
nonsurgical critical illness [37, 43•], and medical patients are
not immune from many of the complications of surgical
patients. Therefore it may be premature to set differential
glucose targets for surgical and medical patients.

The Evidence for Tight Glucose Control has not Vanished

Some have stated that with the results of NICE-SUGAR the
evidence for tight glycemic control in intensive care units has
vanished, that stress hyperglycemia is a natural protective phe-
nomenon [78], and recommended that intensive insulin therapy
should not be used to strictly control blood glucose in either
ICU or non-ICU settings [79]. The alternative view is that
glucose control is important, but there are practical factors that
need to be considered for tight glycemic control to be safely
implemented [52, 80]. There are sufficient concerns about
various aspects of the negative trials that one cannot consider
them definitive for disproving the benefits of tight glycemic
control. Since the publication of the NICE-SUGAR Study, the
major piece of original data that has emerged is the RABBIT2-
Surgery Study, which indicates that glucose control achieves
clinical benefits. Although this was not conducted in critically
ill patients, the pathophysiological processes induced by hyper-
glycemia should be the same regardless of hospital setting.

Perhaps the J Curve association between blood glucose and
mortality should be seen as a U-shaped curve that is skewed to
the left (Fig. 1). At the hypoglycemic end of the spectrum,
there is a sharp rise in risk, but on the hyperglycemia end, the
increase in risk is more gradual. Therefore in a situation of
critical illness, where there are multiple factors which may
impact on glucose measurement and control, it makes sense to
aim for a real world target, which accepts a modest increase in
risk in the hyperglycemia range, but ensures there is sufficient
buffer to avoid hypoglycemia.

The glucose targets currently recommended by most profes-
sional bodies have adopted this approach, with most suggesting
an upper glucose target of 10 mmol/L (180 mg/dL) across the

spectrum of critical illness [81–85], though the Society of
Critical Care Medicine recommends a target <8.3 mmol/L
[86]. All recommend avoidance of hypoglycemia, with adjust-
ment of glucose lowering therapy at a BG below 3.9–7.8mmol/
L [81, 83, 84, 86]. Ultimately the lower end of the glucose
target should be based on what can safely be achieved, and this
may depend on local circumstances.

Conclusions

In 2013, sufficient evidence remains to support the practice of
tight glucose control in critical illness and it is not going away.
Current guidelines are largely pragmatic, developed with
safety in mind. Questions remain as to what the ideal glucose
target is, and there are practical considerations as to how this
can be safely attained.
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