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Abstract
Purpose of Review  Early response prediction for locally advanced rectal cancer (LARC) provides an opportunity for response-
tailored treatment management. The goal of this review is to summarize recent advances in applying functional MRI, such 
as diffusion-weighted imaging (DWI) and dynamic contrast-enhanced MRI (DCE-MRI), to predict treatment response for 
LARC patients, as well as to discuss the associated limitations and future directions.
Recent Findings  Many recent studies incorporated advanced data analysis methods, such as radiomics and deep learning, to 
enhance prediction performance. Multi-parametric imaging has also become a trend that utilizes complementary information 
from each technique. However, there are wide variations in patient enrollment, imaging time points, scan parameters, and 
treatment response endpoint definitions, which leads to a range of findings among these studies. Moreover, small sample 
size and lack of independent validation of most studies also weaken conclusions.
Summary  Functional MRI has been shown as a potential early biomarker for rectal cancer treatment response estimation. 
To incorporate functional MRI into clinical workflow, future work with large standardized data are warranted.

Keywords  Rectal cancer · Functional MRI · Treatment response · DWI · DCE

Introduction

Neoadjuvant therapy is standard of care for patients with locally 
advanced rectal adenocarcinomas. These patients have primary 
tumors that either extend beyond the muscularis propria and into 
the surrounding subserosa, abut or are fixed to nearby structures 
(including the pelvic sidewalls, bladder, rectum, and sacrum), or 

tumors that have metastasized to draining pelvic lymph nodes. 
Long-course chemoradiation (LCRT) has traditionally been 
employed in the neoadjuvant setting. This involves concurrent 
delivery of 5-fluorouracil (5-FU) with radiation delivered in 28 
fractions to a total dose of 50.4 Gy followed by total mesorectal 
excision (TME) 6–8 weeks later [1–3].

The French FFCD9203 and German Rectal Cancer Trials 
demonstrated that the best local tumor control can be achieved 
with neoadjuvant LCRT [1, 2]. The French FFCD9203 trial 
showed a significantly lower 5-year local recurrence rate with 
neoadjuvant chemoradiation compared to radiation therapy 
alone [1]. In the German Rectal Cancer Trials, patients receiv-
ing neoadjuvant chemoradiation experienced significantly 
fewer local relapses compared to adjuvant chemoradiation 
[2]. However, both trials did not shown reduction in distant 
metastatic failure or improvements in overall survival with 
neoadjuvant LCRT. In fact, most rectal cancer patients fail at 
distant sites (~ 30% of the time), and 5-year overall survival 
from advanced rectal cancer remains is 65–75% [4–6].

Attempts to improve clinical outcomes from traditional 
neoadjuvant regimens have led to several areas of investiga-
tion. One such area is to identify subsets of patients who 
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would be good or poor treatment responders early in their 
treatment course to tailor their subsequent management of 
the disease. Assessment of rectal cancer treatment response 
is mainly based on histopathology evaluation using different 
tumor regression grade (TRG) such as Dworak’s grading 
system, Ryan grading system, or Mandard grading system 
[7–9]. Pathological complete response (pCR) is defined as 
absence of viable tumor cells in the surgical specimen. Good 
response (GR) usually refers to complete or near-complete 
regression, while the remaining is non-respective (non-GR).

Early treatment response prediction provides a window 
for treatment adaptation and opens the door to personal-
ized treatment. With traditional treatment paradigms, 
10–30% of patients had a complete pathological response 
[10–12]. Whether surgery can be avoided in these respond-
ers to reduce surgical complications and to improve their 
long-term quality of life becomes an active area of research 
[13–15]. A reliable early tumor response assessment mecha-
nism is essential to guide patient-tailored treatments. Func-
tional MRI, such as diffusion-weighted MRI (DWI) and 
dynamic contrast-enhanced MRI (DCE-MRI), has long 
been used for treatment response prediction for rectal can-
cer patients [16–19]. They provide a noninvasive measure-
ment of tumor functional information such as cellularity and 
vascularization. This information could potentially detect 
treatment response before tumor size change [20, 21], which 
is used in the RECIST criteria [22].

There have been several review papers summarizing 
applications of functional MRI for treatment response pre-
diction in rectal cancer [16–19]. In this review, we focused 
on summarizing recent literature, more specifically articles 
published after 2017, to bring the reader up-to-date on the 
current advances of using functional MRI, in particular DWI 
and DCE, for rectal tumor treatment response assessment.

Functional MRI

Diffusion‑Weighted MRI

Diffusion-weighted MRI is one of the most widely used 
functional MRI techniques for tumor response assessment. It 
quantifies the random Brownian motion of water molecules 
at the voxel level, and provides tissue morphofunctional 
information including cellular density. In DWI imaging, the 
detected signal level Sb decreases exponentially with tissue 
intrinsic diffusivity D and the b-value: Sb/S0 = exp(− bD), 
where the b-value is determined by the pulse gradient wave-
form, and S0 is the signal intensity at b = 0 s/mm2. There-
fore, by applying at least two different b-values, the derived 
parameter apparent diffusion coefficient (ADC) reflects tis-
sue cellularity information. Because of its ability to reflect 
tissue functional information, DWI has been used alone or 

in combination with other imaging, such as T2-weighted 
imaging (T2w), for response assessment.

Studies have shown that incorporating DWI into tumor 
regression grading may improve interobserver agreement 
and provide better agreement with the pathological response 
or disease-free survival (DFS) prediction for patients with 
LARC having undergone neoadjuvant chemoradiotherapy 
(CRT) [23–25]. Heeswijk et al. and Gollub et al. showed 
that despite false-positive findings, the absence of node on 
DWI images is a reliable predictor of yN0, and tumor-bed 
diffusion restriction from DWI detects tumor recurrence 
before endoscopy [26, 27]. Shaverdian et al. acquired lon-
gitudinal DWI (every 3–7 days) on a low-field MR-guided 
radiotherapy system on three patients. They found the trend 
of ADC changes correlated with pathological response [28].

In addition to being used as a qualitative assessment tool, 
DWI has also been used extensively as a quantitative predic-
tor of treatment response (Table 1) [29–35]. However, due 
to heterogeneity of patient enrollment, patient cohort size, 
image acquisition, data processing, and analysis methods, 
there is a range of findings among these studies. For exam-
ple, De Felice et al. acquired DWI prior, during, and post-
CRT on 37 patients, and found the mid-CRT ADC value 
significantly increased in the pCR group [29], whereas in 
a similar study, median pre-CRT ADC was more predic-
tive of pathological response [30]. Moreover, several other 
researchers found that the mean post-CRT ADC value is 
most predictive of differentiating pCR [31, 32]. In another 
study, Tarallo et al. analyzed pre- and post-CRT MRIs on 
32 LARC patients and concluded that both ADC and ADC 
change were not reliable predictors of CR, and post-CRT 
tumor volume based on DWI and tumor volume change 
were more accurate in discriminating CR from non-CR 
[33]. Crimi et al. also did not find a significant correlation 
between ADC and tumor complete regression based on their 
prospective study with 22 patients [34]. Bulens et al. built a 
multivariate model using two T2-volumetric and two DWI 
parameters from pre- and post-CRT MRI, and achieved 0.88 
area under the ROC curve (AUC) in an external validation 
cohort [35]. Both Joye et al. and Schurink et al. showed 
that PET/CT was worse than MRI in rectal cancer response 
assessment [36, 37], indicating the functional information 
provided by MRI is more predictive than molecular mark-
ers from PET/CT. However, the latter group concluded that 
pre-treatment DWI was inferior to T2w MRI. Given the wide 
variation of findings, imaging acquisition standardization 
and external validation are urgently needed.

In the last few decades, more advanced prediction mod-
els such as radiomics and deep learning have been applied 
in rectal cancer treatment response assessment [38••, 
39–44]. By extracting high-dimensional quantitative fea-
tures, it aims to uncover predictive information that is not 
obvious to human eyes [45]. Some of the key findings of 
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those studies are summarized in Table 1. Griethuysen et al. 
compared response prediction between expert radiologists’ 
visual morphologic assessment and radiomics models using 
staging MRIs on 133 patients, and found comparable results 
between the two methods in predicting pCR and GR [42]. 
In a large study with 222 patients, Tang et al. combined 
pre-CRT and pre-surgery DWI radiomics features with 
clinical characteristics, and the combined model provided 
an AUC of 0.89 in identifying pathological good response 
of down-staging to ypT0-1N0 on the independent valida-
tion set [38••]. By visual comparison, they showed that 
one radiomics feature, Neighborhood Gray Tone Difference 
Matrix (TGTDM), appeared brighter after CRT for the pGR 
patient, whereas the contrast remained unchanged for the 
non-pGR patient (Fig. 1). Bulens et al. extracted radiomics 
and semantic features from T2w, DWI, and ADC images 
acquired before and after CRT. After principal component 
analysis (PCA) and LASSO regression analysis, the opti-
mal model provided a 0.86 AUC of pGR prediction on an 
external cohort [39]. Chen et al. found that by adding T2w 
and contrast-enhanced T1-weighted volume interpolated 
body examination (VIBE) in addition to DWI radiomics, 
the model AUC increased from 0.75 to 0.86 [40]. In a ret-
rospective study with 165 LARC patients, Wan et al. found 
that delta-radiomics, defined as percentage change of a radi-
omics feature from pre- to post-CRT MRI, had the highest 
AUC [41]. Nardone et al. showed that radiomics features 
from pre-CRT DWI may be helpful in identifying patients 

that develop early progression [43]. To compare prediction 
performance using radiomics features with deep learning-
based (DL) features, Fu et al. compared the LASSO-logistic 
regression models using radiomics and DL-based features 
based on pre-CRT DWIs on 43 patients. They found DL-
based features significantly outperformed radiomics features 
(AUC 0.73 v.s. 0.64) [44].

The conventional DWI assumes mono-exponential signal 
decay with respect to the b-value. However, Le Bihan et al. 
found that at lower b-values, especially less than 200 s/mm2, 
the signal attenuation is primarily due to microcirculation 
of blood in the capillary network, or microscopic perfusion 
[46]. The proposed intravoxel incoherent motion (IVIM) 
model formulates signal decay as the following:

where f is the perfusion fraction, D is the true diffusion 
coefficient, and D* is the pseudo-diffusion coefficient. To 
estimate IVIM parameters, a series of DWI images including 
several low b-value images were acquired. Several studies 
found that IVIM-derived D value or ∆%D provided higher 
performance than the conventional ADC value [47–49] in 
terms of response prediction. Zhu et al. and Liang et al. 
applied the stretched-exponential model (SEM) to derive 
the distributed diffusion coefficient (DDC) and hetero-
geneity index α. Both groups claim that ADC and SEM-
derived parameters were superior to IVIM models in pCR 

Sb∕S0 = (1 − f )exp(−bD) + fexp(−bD∗)

Fig. 1   The voxel-based contrast of NGTDM and original MR 
images of pGR and non-pGR patients. The voxel-based contrast of 
NGTDM, b0, b1000, and ADC images of pGR and non-pGR patients 
is displayed in each row. Columns (a) and (c) represent the pre- and 
post-nCRT images of the pGR patient. Columns (b) and (d) are the 

enlarged tumor regions in (a) and (c). Columns (e) and (g) represent 
the pre- and post-nCRT images of the non-pGR patient. Columns (f) 
and (h) are the corresponding enlarged tumor regions in (e) and (g). 
Image from Tang et al. [38••]. Reprinted with permission

80 Current Colorectal Cancer Reports (2021) 17:77–87
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prediction [50, 51]. To evaluate IVIM texture features for 
pCR assessment, Liu et al. acquired IVIM-DWI prospec-
tively on 41 patients 1–3 days before CRT. They found that 
IVIM-derived parameters and first-order texture features did 
not show statistically significant differences between pCR 
and non-pCR. Several higher-order texture features had sig-
nificant differences between the two groups, and the highest 
AUC was 0.837 [52]. One issue with those studies is that 
IVIM protocols were not uniform across the studies. A total 
of 9 to 16 b-values were applied in the acquisition, with the 
maximum b value between 800 and 2000s/mm2.

DWI also assumes water diffusion within a voxel follows 
a Gaussian behavior. However, non-Gaussian behavior 
becomes more obvious at higher b-values and this leads to 
a lower than expected apparent diffusion coefficient. This 
non-Gaussian diffusion kurtosis imaging (DKI) proposes the 
signal decay as Sb/S0 = exp(− bD + 16b2D2k), where k is the 
diffusion kurtosis coefficient that reflects molecular motion 
deviation from Gaussian distribution [53]. In one prospec-
tive study with 56 patients, pre- and post- CRT MRI were 
acquired, and ADC, mean diffusion (MD), mean kurtosis 
(MK), and their change ratios before and after CRT were cal-
culated. They found that DKI was overall better than ADC in 
differentiating pCR from non-pCR, and MKpost was found 
to be the most promising parameters [54].

Dynamic Contrast‑Enhanced MRI

DCE-MRI uses a series of MRIs to measure the T1 change 
of an injected contrast agent, usually gadolinium (Gd), 
between the vasculature and interstitial space. T1-weighted 
3D-spoiled gradient echo technique is usually used for imag-
ing. After imaging, the DCE intensity is converted to gado-
linium concentration for concentration–time curve analysis. 
DCE provides information on tissue vascularization, perfu-
sion, capillary permeability, and composition of the inter-
stitial space. Malignant and aggressive neoplasms tend to 
have a greater degree of vascularity to supply nutrients to the 
rapidly proliferating cells. As a result, DCE has been theo-
rized to be a promising diagnostic and treatment response 
tool for rectal cancer patients undergoing CRT.

DCE-MRI’s concentration–time curves can be evaluated 
visually, semi-quantitatively, or quantitatively. The key find-
ings in DCE studies for CRT treatment response are shown 
in Table 2. In visual DCE analysis, patterns of contrast 
uptake are observed, and tissue blood flow, blood volume, 
capillary area/permeability, and tissue extracellular space 
are qualitatively evaluated. In a visual DCE study with 158 
LARC patients, Petrillo et al. showed that visually inspecting 
DCE after CRT was superior to morphological MRI using 
T2-weighted MRI for predicting CRT responders [55]. DCE 
achieved sensitivity, specificity, and the accuracy of 81%, 

85%, and 82%, while T2-weighted MRI achieved 52%, 78%, 
and 62%, respectfully.

In semi-quantitative DCE analysis, DCE concentra-
tion–time curve’s peak, slope (wash-in/out rate), and AUC 
are measured. In a prospective semi-quantitative DCE study 
with 28 LARC patients, Ippolito et al. showed perfusion 
was significantly higher in rectal cancer tumor tissue than in 
healthy tissue. Moreover, prior to CRT, there was no signifi-
cant difference in perfusion parameters between responders 
and non-responders, whereas after CRT, responders showed 
significantly lower perfusion values than non-responders. 
Additionally, responder perfusion values decreased signifi-
cantly from pre- to post-cRT [56]. In contrast, Attenberger 
et al. showed the change in perfusion, after CRT, did not 
correlate with regression grade (RG) in their study popu-
lation with 21 LARC patients, although perfusion values 
were significantly higher in RG1 than RG2 at both pre- and 
post-cRT timepoints [65]. Several factors may contrib-
ute to the controversial findings, including small patient 
cohort size, differences in MR field strength and MR pulse 
sequence, and inherent random errors due to inconsistent 
timing between contrast injection and image acquisition. 
In two prospective semi-quantitative DCE studies with 75 
and 88 LARC patients, Petrillo et al. showed the post-CRT 
standardized index of shape (SIS) of DCE was a superior 
predictor of treatment response, than IVIM and PET imag-
ing, respectively [57, 58]. SIS is defined as the linear clas-
sifier maximizing area under ROC for change in maximum 
signal difference (MSD) and wash out slope (WOS). In the 
first study, ΔSIS achieved improved AUC of 0.86 and 0.82 
than 18F-FDG PET-CT parameters for predicting responders 
(TRG1-2) and for predicting complete response (pCR) [57]. 
Similarly, in their second study, ΔSIS showed higher AUC 
than IVIM parameters in response prediction [58].

In quantitative DCE analysis, pharmacokinetic model 
fitting, usually the Tofts Model [66, 67], is applied to DCE 
concertation-time curve. From the Tofts Model, four main 
parameters can be extracted: Ktrans (the transfer constant 
from vascular to extravascular extracellular space (EES)), 
ve (volume fraction of EES in tissue), vp (volume frac-
tion of plasma in tissue), and kep (rate constant between 
the EES and the blood plasma). In a retrospective study 
with 40 LARC patients, Ciolina et al. showed pre-CRT 
Ktrans was significantly higher for CR patients, suggest-
ing Ktrans could predict therapy response [59]. Addition-
ally, Palmisano et al. prospectively analyzed quantitative 
pre-CRT DCE on 21 rectal cancer patients using a histo-
gram-based approach and showed ve skewness and kurto-
sis were significantly higher in non-GR than GR patients 
[60]. However, Yeo et al. applied histogram analysis on 
pre-CRT DCE MRI, and did not find a significant cor-
relation between quantitative DCE parameters and TRG 
[68]. Zou et al. implemented texture analysis on pre- and 
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1 3

post-CRT DCE MRI, and showed tumor volume, mean 
Ktrans, entropy, and correlation decreased, while energy 
increased significantly for CR and GR patients. Moreover, 
change in correlation achieved an AUC of 0.895 for iden-
tifying CR and GR patients [61].

Semi-quantitative are less time-consuming and are 
easier to reproduce in comparison with quantitative [69]. 
Dijkhoff et al. showed a strong correlation between quan-
titative (Ktrans, Vp) and semi-quantitative (peak-enhance-
ment, wash-in) parameters in DCE for rectal cancer 
patients, before and after CRT [70]. As a result, semi-
quantitative analysis can be used as a substitute for quan-
titative analysis.

Multi-parametric imaging has the potential to increase 
diagnostic and treatment response accuracy for LARC 
patients, utilizing key features or parameters of each tech-
nique. The key findings in multi-parametric studies for 
CRT treatment response are shown in Table 2. In a ret-
rospectives study with 65 LARC patients, Gollub et al. 
showed visual inspection of post-CRT T2w and DWI 
achieved an AUC of 0.66, compared to digital rectal exams 
and endoscopy notes achieving an AUC of 0.69 to detect 
complete CRT responders. Furthermore, by combining 
the two techniques and adding visual DCE, observers 
were able to achieve an AUC of 0.72 [71]. In a similar 
study with 21 LARC patients, Napoletano et al. showed 
post-CRT T1w + T2w + visual DCE had a diagnostic 
capacity of 71.40% for detecting LARC CRT response. 
Then by adding qualitative DWI, the diagnostic capacity 
increased to 90.40% [62]. In contrast, study from Petrillo 
et al. showed linearly combining post-CRT semi-quanti-
tative DCE and quantitative IVIM-DWI parameters did 
not improve response prediction performance compared 
to using standardized index of shape (SIS) from DCE or 
∆ADC alone. [58]

Through radiomics or deep learning methods, various 
multi-modal or multi-parametric values can be combined 
into high-dimensional quantitative features, revealing non-
trivial disease markers. In a retrospective study with 51 
LARC patients, Shi et al. used T1w, T2w, DWI, and DCE at 
pre- and mid-CRT treatment to generate a radiomics model 
using ROI-based, GLCM texture, and histogram parameters 
[63]. Additionally, a convolutional neural network (CNN) 
was designed using multi-parametric MRIs. The radiomics 
model achieved an AUC of 0.86 and 0.93, while the CNN 
achieved an AUC of 0.83 and 0.74 for predicting CR and 
GR. In a retrospective with 118 LARC patients, Li et al. 
developed a multi-modal radiomics to detect CRT response, 
combining pre-CRT CT and multi-parametric MRI [64]. 
Individually, the radiomics models for CT, T2w MRI, DCE, 
and ADC DWI achieved an AUC of 0.766, 0.859, 0.812, and 
0.828. By combining all the techniques, the multi-modal 
radiomics model was able to achieve an AUC of 0.93.Ta
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Other Functional Imaging

In addition to diffusion and perfusion imaging, there are 
several other potential functional imaging biomarkers such 
as chemical exchange saturation transfer (CEST), blood 
oxygen level dependent (BOLD), or MR spectroscopy. In 
CEST imaging, a saturation pulse is applied, which is at the 
resonance frequency of a chemical species of interest and is 
capable of exchanging its 1H protons with water. This satura-
tion will be spontaneously transferred to water via chemical 
exchange and lead to a decrease in water signal that can be 
detected and used to reflect the concentration of the species 
of interest [72]. Nishie et al. acquired amide proton trans-
fer (APT) imaging, an endogenous CEST technique, on 17 
rectal cancer patients who underwent surgery after CRT. 
They found that the mean APT signal intensity of the low-
response group was significantly higher than the intensity for 
the high-response group, whereas no difference was found 
based on ADC map [73].

BOLD imaging is based on the fact that deoxyhemo-
globin is paramagnetic and has shorter T2 and T2*. There-
fore, the image contrast reflects vascular oxygenation infor-
mation that is potentially predictive of treatment response 
and patient prognosis. However, studies suggest that image 
contrast is more likely to reflect perfusion-related acute tis-
sue hypoxia instead of diffusion-related chronic hypoxia 
caused by increased tumor expansion [74]. To date, there 
are not many studies investigating the correlation of BOLD-
MRI with rectal treatment response.

MR spectroscopy measures spectral information within 
the imaging volume and provides important information for 
cancer chemical metabolism. Kim et al. acquired 1H-MRS 
pre- and/or post-CRT on 134 patients [75]. A choline peak at 
3.2 ppm was found on pre-CRT MRS, which can be used as 
a characteristic of rectal adenocarcinoma. For the 34 patients 
with both pre- and post-1H-MRS, this choline peak disap-
peared on 97% of the patients, suggesting tumor response 
to CRT. Despite the promises, MR spectroscopy is mainly 
used in ex vivo setting than in clinical applications for rectal 
cancer due to limitations of low signal level, low spatial 
resolution, relatively long acquisition time, susceptibility to 
motion artifact, and non-ideal spectra quality due to local 
inhomogeneous [16]

Discussion and Future Directions

Functional MRI provides a promising tool for non-invasive 
treatment response assessment for LARC patients and has 
become an active research area. Despite promising preliminary 
results, applying functional MRI into clinical rectal cancer 
response assessment is still far from routine practice. One of 
the major issues is the lack of standardization. The majority of 

existing studies are performed retrospectively, which leads to 
large variations in terms of patient enrollment, imaging param-
eters, imaging time points, treatment prescription, endpoint 
definition, and analysis methods, etc. Because of this, a range 
of results were observed by different groups. For example, in 
terms of the best imaging time point of DWI for pCR predic-
tion, there are studies supporting imaging at pre-CRT, mid-
CRT, and post-CRT [29–35]. Therefore, it is crucial to stand-
ardize the workflow to comprehensively evaluate the usage of 
functional MRI for clinical rectal cancer response prediction.

Pham et al. proposed a detailed prospective study proto-
col for combined DWI, DCE, and PET/CT for therapeutic 
response prediction [76]. In this protocol, they clearly outlined 
patient selection criteria, imaging acquisition timeline, detailed 
imaging protocol, image analysis methods, and endpoint 
evaluation. This comprehensive study protocol could help to 
minimize the aforementioned variations, and may serve as an 
example protocol for multi-institutional collaboration.

Another limitation of many existing studies is the rela-
tively small patient cohort size and lack of external valida-
tion. It is challenging to obtain large standardized medical 
data. However, the conclusion is vulnerable without the sup-
port of a sufficiently large patient number. Many studies only 
showed that the proposed imaging biomarker is able to suc-
cessfully predict treatment response on their selected patient 
cohort. It is important to validate the model on a different 
group of patients, ideally external patients, to fully evalu-
ate the prediction robustness. Therefore, cross-institution 
collaboration is a crucial step to collect a large number of 
patients, and ultimately enable the incorporation of func-
tional MRI into the clinical care workflow.

In recent years, more studies have focused on multi-para-
metric imaging and quantitative analysis. Instead of using a 
signal contrast with limited information, combining differ-
ent imaging contrasts, such as DWI, DCE, T2w, and T1w, 
provides a comprehensive view of tumor cellularity, vas-
cularity, and morphological status post-CRT, which holds 
the promise of improved response prediction performance. 
Quantitative analysis such as radiomics and deep learning 
are now being widely used to uncover features that are not 
straightforward to human eyes. Although radiomic features 
and deep learning usually provide better prediction accuracy 
than conventional features, it is challenging to understand 
the mechanism of those features and models. Also, robust-
ness and reproducibility of the selected features and models 
on other different cohorts warranted a thorough study.

Conclusions

Applying functional MRI to rectal cancer treatment response 
assessment is a promising area and has the potential of iden-
tifying patients with good and poor response for subsequent 

84 Current Colorectal Cancer Reports (2021) 17:77–87



1 3

individualized management. Current studies are still prelimi-
nary and focus mainly on the feasibility on a small selected 
patient cohort. To incorporate functional MRI into clinical 
workflow, standardization of the entire workflow and cross-
institution collaboration are urgently needed. In the mean-
time, multi-parametric imaging and quantitative analysis 
are also future directions that could potentially improve the 
overall prediction accuracy.
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