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Abstract
Purpose of Review Early prediction of response to chemoradiotherapy in locally advanced rectal cancer has the potential to
minimize surgical intervention in patients with complete response, while allowing non-responding patients to explore more
aggressive treatments. Functional imaging detection of tumoral microstructural and metabolic changes presents a valuable tool
for preoperative chemoradiation response assessment.
Recent Findings Diffusion-weighted MRI has increasingly been incorporated into study protocols, with the apparent diffusion
coefficient largely found to be the most robust global predictor of neoadjuvant therapy response. However, no definitive
predictive biomarkers have been identified, with inconsistent results across all imaging modalities.
Summary We evaluated the pros and cons of PET/CT imaging; perfusion imaging; and diffusion-weighted, dynamic contrast-
enhanced, multiparametric, and low-field functional MRI in the early prediction of response to chemoradiotherapy. Future
directions of study include combinatorial imaging with both MRI and PET/CT modalities and further investigation of on-
board low-field MRI imaging during radiotherapy treatment delivery.
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Early-response predictive biomarkers

Introduction

In locally advanced rectal cancer (LARC), prediction of
response to neoadjuvant chemoradiotherapy (NCRT) is es-
sential to treatment plan optimization and efforts to create
an individualized treatment approach. Current standard-of-
care treatment for LARC is neoadjuvant chemoradiothera-
py followed by total mesorectal excision (TME) [1, 2], but
the uniform treatment of all patients with this tri-modal
approach is ineffective in chemoradiotherapy non-
responders and potentially introduces surgical morbidities
[3, 4] to patients who have achieved a complete response
after CRT.

Complete pathologic response to chemoradiotherapy has
been correlated with durable response and favorable out-
comes, with improved progression-free survival [5–7], and a
wait-and-see protocol has been proposed and selectively im-
plemented in patients with clinical complete response [8–10].
Sphincter-preserving local excision has also become a viable
treatment option for good responders [11].

Despite these promising findings, however, only 15–27%
of patients achieve pathological complete response (pCR),
with 54–75% of patients achieving partial response and the
rest exhibiting response resistance [7].

Ongoing investigations are focused on identifying imaging
biomarkers in the pursuit of a comprehensive early-response
prediction model. While anatomical imaging cannot distin-
guish between post-treatment fibrosis and persistent disease
[12], functional imaging detects changes in tumoral micro-
structure and metabolic microenvironment that are indicative
of NCRT response and can be identified earlier than anatom-
ical and volumetric tumor changes.

Preoperative prediction of pathologic response may confer
a dual benefit: predicted responders may avoid the complica-
tions of invasive surgical management and pursue

This article is part of the Topical Collection on Radiation Therapy and
Radiation Therapy Innovations in Colorectal Cancer

* Percy Lee
percylee@mednet.ucla.edu

1 Department of Radiation Oncology, David Geffen School of
Medicine at UCLA, 200 UCLA Medical Plaza, Suite B265, Los
Angeles, CA 90095, USA

Current Colorectal Cancer Reports (2018) 14:106–114
https://doi.org/10.1007/s11888-018-0407-8

RADIATION THERAPY AND RADIATION THERAPY INNOVATIONS IN COLORECTAL CANCER (JY WO, SECTION EDITOR)

http://crossmark.crossref.org/dialog/?doi=10.1007/s11888-018-0407-8&domain=pdf
mailto:percylee@mednet.ucla.edu


surveillance-based organ-sparing protocols, while non-
responders may opt for more aggressive treatment alternatives
and undergo intensified treatment regimens [13–15].

Functional imaging NCRT response prediction presents a
key opportunity to improve both the efficacy of treatment and
the value of response assessment.

PET/CT

PET/CT has traditionally been employed to functionally as-
sess and dete rmine disease response , and 18F-
Fluorodeoxyglucose (FDG) PET imaging was first utilized
to assess therapy response in LARC in 1992, though no con-
sensus was reached on the accuracy of NCRT response dis-
crimination and optimal imaging timing [16]. The most stud-
ied parameter is maximum standardized uptake (SUVmax) [17,
18], which quantifies tumoral FDG uptake and reflects cell
viability, and an investigation of 15 different 18F-FDG PET/
CT qualitative/quantitative prediction parameters found that
post-NCRT SUVmax is the best predictor of response [19].

The utility of 18F-FDG PET/CTwas further demonstrated
in a study of 103 patients, which found post-NCRT SUVmax

and percent change SUVmax to be significant factors, with a
sensitivity of 68.2% and specificity of 87.7%, and a sensitivity
of 90.9% and specificity of 80.3%, respectively, in the predic-
tion pCR [20]. Other studies have reported 81% sensitivity,
100% specificity, and 90% overall accuracy for a post-NCRT
SUVmax threshold of 5.4 [21]; 79.5% sensitivity and 66.7%
specificity for an SUVmax cutoff of 4.3 [22]; 73.7% sensitivity,
63.7% specificity, and 64.9% accuracy for a cutoff of 3.55
[23]; and 75% sensitivity and 100% specificity for a percent
change in SUVmax of 32% [24].

A study of 41 LARC patients imaged with 18F-FDG PET/
CT at three timepoints (baseline, delivered dose of 40 Gy, and
end of neoadjuvant therapy) revealed significant differences in
early SUVmax percent reduction (p = .04), with a cut off of
57% [25].

Simultaneously, however, trials have surmised that PET/
CT imaging has little value [26], SUVmax reflects a single
point and is not representative of the whole [27], and assess-
ment accuracy declines rapidly with lesions smaller than 1 cm.

Other PET/CT techniques have been explored, among
them 18F-fluoromisonidazole (18F-FMISO), which attempts
to identify severe or prolonged tumor hypoxia that can lead to
radio-resistance. Increased retention of 18F-FMISO in tumor
cells pre-treatment is suggestive of hypoxia due to poor tumor
microvasculature, increased diffusion distances, or reduction
in blood oxygen transport capacity, but preliminary data does
not support that reduced 18F-FMISO uptake is predictive of
clinical response—and fundamental difficulties in interpreta-
tion arising from the spill-in from non-tumor activity in the
rectum and bladder limit the clinical applicability [28].

The greatest shortcoming of PET/CT response prediction
across all techniques remains the difficulty interpreting fibrot-
ic scar tissue and inflammation [29], and the resulting neces-
sity to delay imaging after treatment completion to account for
post-radiation effects. This creates a window of time between
treatment and response assessment during which progression
may be undetected and further treatment strategies may be
formulated on a flawed basis.

DW-MRI

Diffusion-weightedMRI (DW-MRI) is one of the most widely
studied functional imaging techniques, and has been adopted
in many protocols for both preoperative therapeutic response
prediction and post-chemoradiotherapy restaging. DW-MRI
differentiates between tumor and normal tissue on the basis
of the diffusion properties of water arising from the micro-
scopic Brownian motion of water molecules in intracellular
and extracellular space, and quantifies intratumoral changes
throughout the course of NCRT with the apparent diffusion
coefficient (ADC) [30, 31]. The diffusion of water is contin-
gent upon the density of cellular structures, and DW-MRI is
uniquely sensitive to modulations in intratumoral cellularity
and cell membrane integrity resulting from NCRT.

Low ADC is indicative of greater cellular density, while
higher ADC is histologically correlated with areas of necrotic
tissue and reduced cell density with a variable degree of ede-
ma, fibrosis, and inflammation [31–33]. Greater initial ADC is
therefore prognostic of necrotic tumor tissue and compromised
membrane structure, characterized by poor tissue perfusion,
low oxygen concentration, and an acidic-hypoxic microenvi-
ronment responsible for greater therapy resistance [31, 34, 35].

NCRT treatment induces an initial rise in ADC—a reflec-
tion of acute vascular and cell membrane disruption, and tu-
mor necrosis [36, 37]—which is followed by re-equilibration
as a result of interstitial fibrosis with reabsorption of extracel-
lular fluid [31, 32, 38].

A study of 31 rectal cancer patients revealed the relative
strength of the percent change in ADC (sensitivity 100%, spec-
ificity 70.37%) [39], which was a stronger diagnostic marker
for pCR than both pre-and post-treatment ADC. Further evi-
dence was presented in a meta-analysis of 11 studies with 615
cumulative patients [40], which corroborated that the percent
change in ADCwas the preferred global parameter of response
prediction, with a sensitivity of 90% and specificity of 86%.

An associated study of rectal adenocarcinoma patients
treated with NCRT followed by TME examined 50 patients
with pCR and 50 non-responders [41•] and found that pre-
treatment ADC and percent change ADC were both moderate
predictors of response, with percent change yielding a higher
accuracy: pre-treatment ADC values were significantly lower
in pCR patients (p = .003) and the percent change between
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pre- and post-treatment ADC was 68% for patients achieving
pCR compared to 48% for non-pCR patients (p < .001). Post-
treatment ADC values were significantly higher in pCR pa-
tients, which supported related findings that post-NCRTADC
values obtained in a single-slice region of interest (ROI) con-
taining the whole visible tumor area increased the diagnostic
performance ofMRI and achieved the highest accuracy, with a
sensitivity of 96.1% and a specificity of 71.4% [42].

Importantly, this also matched with the results of a study of
34 patients evaluated for response to NCRT [43], which re-
ported that both mean post-NCRTADC and percent change in
ADC in responders were significantly higher compared to
non-responders (p = .001; p = .01).

Pre-NCRT ADC values alone were not reliable as a
differentiator, and while post-NCRT ADC was stronger than
change in ADC with respect to diagnostic performance, the
challenges outlined in the previous study (namely limited im-
aging resolution and difficult ROI delineation for small
regressed tumors) elucidated the limitations of post-
treatment ADC as a global predictive factor.

The superiority of the percent change in ADC over both pre-
and post-treatment ADC values was further highlighted in a
study of 43 patients [44••] evaluated with 3.0 T DW-MRI be-
fore treatment, 2 weeks into NCRT, and 8 weeks post-treat-
ment, which found that the percent change in ADC between
pre-treatment and both the 2-week and post-treatment evalua-
tion was significantly higher in complete responders (33.9 and
57% during and post, respectively, versus 13.5 and 2.2% in
non-responders; p = .006 and p < .001). The change in ADC
2 weeks into NCRT resulted in a sensitivity of 75% and a
specificity of 76.5%, and the change in ADC post-treatment
showed a sensitivity of 95% and a specificity of 82.4%.

However, there was a discrepancy between the results re-
ported for the 2-week evaluation and a parallel study, which
purported that there were no significant differences in the per-
cent ADC increase [44••]. This dichotomy likely resulted from
differing numbers of b values for DW-MRI and ROI drawing
techniques, whereby ADC was measured using consecutive
ROIs throughout whole tumor instead of considering the level
with the largest diameter.

Selection of ROI was a limitation in further trials, and re-
sulted in inconclusive results in a study of 37 patients imaged
with DW-MRI, where ADC values were insignificant as a
predictive biomarker [45]. ADC values were ascribed little
utility in a similar study of 45 patients, with no significant
differences in pre-NCRT, post-NCRT, and percent change
ADC between responders and non-responders [46], attributed
to tumor heterogeneity. Relapsing tumor could not be differ-
entiated from inflammation, which can simulate the presence
of persistent tumor—both the absence of DW-MRI signal and
residual hyperintensity on b800 DW-MRI (which is likely due
to fibrotic scar tissue within the rectal wall simulating residual
tumor) corresponded to complete response [38, 46].

A fundamental difficulty with DW-MRI is the lack of
standardization of technique, with great variability in
ADCmeasurements, which are influenced by imaging qual-
ity, spatial resolution, size, and ROI positioning [47]. ROI
positioning in particular is an active area of research since it
has thus far remained unclear whether the ROI for ADC
should incorporate the entire tumor volume, a single tumor
slice, or small tumor samples [47]. The impact of three dif-
ferent methods of ROI positioning for ADC measurements
(three circular ROIs, single-section, and whole-tumor vol-
ume) was investigated in 62 patients [48••], and single-
section and whole-tumor volume showed higher accuracy
than three ROIs, but a definitively superior method was not
identified. Each ROI produced different data, but the post-
NCRT ADC values were comparable in all. While larger
area measurements exhibited greater accuracy in response
assessment and whole-tumor volume measurement of per-
cent change provided the best results (with post-NCRT
ADC and percent change in ADC both shown to accurately
identify non-responders), the quickest method was single-
section [48••], and it became a subjective trade-off.
Furthermore, DW-MRI interpretation is operator-depen-
dent, which is reflected by inter-observer differences in
ADC measurements. In a report in which two independent
non-expert readers scored the restaging DW-MRI in 100
patients for the likelihood of complete response versus re-
sidual tumor [49], the most common pitfalls were the inter-
pretation of low signal on the ADCmap (hypointense fibro-
sis), small susceptibility artifacts, T2 shine-through effects,
suboptimal sequence angulation, and collapsed rectal wall.

Perfusion Imaging (Perfusion CT
and DCE-MRI)

The motion of water molecules in viable tissues is influ-
enced by both thermally driven motion (pure diffusion)
and microcirculation blood perfusion, which cannot be
captured by diffusion imaging alone. Dynamic contrast-
enhanced MRI (DCE-MRI) provides information regard-
ing the microcirculation perfusion of tissues and measures
a volume transfer constant, Ktrans, which is dependent on
the perfusion and the permeability of the tumor vascula-
ture [50]. However, it is limited in its clinical application
due to the necessary administration of an exogenous
gadolinium-containing contrast agent (which is costly
and associated with medical risks) and the required deri-
vation of model-based Ktrans in comparison with straight-
forward visual assessment of signal intensity in DW-MRI
[51]. DCE-MRI has been found to more accurately iden-
tify good responders than complete responders [52], and
in a study of 37 patients who were imaged post-treatment
with DCE-MRI [51], Ktrans (volume transfer coefficient)

108 Curr Colorectal Cancer Rep (2018) 14:106–114



could not distinguish pCR, but was an indicator of at least
90% response. In the context of DW-MRI, DCE-MRI has
inferior results, and a study combining functional and
volumetric approaches determined that ADC was a supe-
rior surrogate of response regardless of volumetry—DCE-
MRI did not add value for response assessment [53].

Perfusion, or dynamic contrast-enhanced, CT imaging sim-
ilarly aims to determine blood flow patterns and changes, and
has yielded promising early results as a method of NCRT
response prediction. A study of 17 patients imaged with per-
fusion CT analyzed three perfusion parameters for both ROIs
incorporating only hotspots of pronounced vascularity in a
single axial plane and whole tumor measurements on multiple
contiguous slices [54]. The findings revealed that peak hot
spot blood volume 1–2 weeks into therapy and hot spot per-
meability decline 12 weeks after initiation were significant
predictors of complete pathologic response outcome, thought
to result from tumor vascularity increases in early stages due
to inflammation and interaction between radiation-induced
inflammation and cytotoxic/anti-angiogenic effects of chemo.

Initially, a proposed advantage of perfusion CTwas the ease of
incorporation into routine diagnostic and serial CT scans, but
as more advanced MRI imaging techniques were introduced
with superior soft-tissue visualization and detail of evaluation
of local disease, MRI became integrated into standard-of-care
protocols. The results of early studies, while promising, have
been attenuated by the complexity of perfusion CT protocols
and subsequent variability, a dearth of inter-observer agree-
ment and reproducibility, and complication of data acquisition
by motion artifacts in colorectal tumor imaging [55].

Perfusion imaging as a whole is complicated by technical
challenges, characterized by a lack of standardized post-
processing techniques and cut-off values, signal variabilities,
and planning difficulties [55, 56] that limit clinical application.

Multiparametric MRI

Multiparametric MRI (mMRI) combines anatomical and
functional imaging and may overcome the inherent limitations

a

b

c

Patient CPatient A Patient B

Fig. 1 Functional diffusion map (fDM) showing longitudinal pixel-wise
evaluation of apparent diffusion coefficient (ADC) changes throughout
neoadjuvant chemoradiation (NCRT). Darker regions represent a
negative slope of ADC change throughout NCRT, reflecting a decrease
in ADC. Brighter regions show a positive slope in ADC value changes,

reflecting an increasing ADC. Analysis was performed for the first half of
NCRT (a) and for the entire course of NCRT (b). Arrows point to discrete
areas of darkness within the tumor ROI for Patient A during the first
portion of NCRT
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of singular imaging modalities. While DCE-MRI reveals per-
fusion and vascularity, DW-MRI quantifies cellularity, and
combining the two imaging modalities might achieve a stron-
ger predictive model.

A study of 21 patients imaged with 3.0 T mMRI before
and after NCRT determined that high initial ADC values
could predict treatment response, but changes in DCE-
MRI neovascularization markers did not reflect response
[56]. An analogous study of 12 patients reported no signif-
icant difference in ADC between responders and non-re-
sponders, and no significant difference in perfusion MRI
parameters except the volume of ext ravascula r /
extracellular space per unit volume of tissue, which was
lower in the pCR group [57], but the results were compro-
mised by insufficient statistical power from the small num-
ber of patients. Another study of LARC patients imaged
with DCE-MRI and DW-MRI before and after NCRT
ascertained that while tumor volumetry on both post-
treatment DCE-MRI and DW-MRI correlated with tumor
regression, no correlation existed with functional parame-
ters [58]. This was further corroborated by a study of 67

patients, which concluded that mMRI is not sensitive
enough to accurately predict complete response [59].

Overall, DCE-MRI was found to add little value to re-
sponse assessment models, and mMRI was unable to reliably
predict complete therapeutic response.

IVIM and Non-Gaussian Diffusion Models

Traditional diffusion imaging is based on the assumption that
water diffusion follows Gaussian behavior and diffuses with-
out restriction [60], and ADC is calculated using a mono-
exponential model. In living tissue, however, diffusion is re-
stricted by tissue microstructure, and random motion of ther-
mally agitated water molecules within biologic tissues ex-
hibits non-Gaussian phenomena [61].

Intravoxel incoherent motion (IVIM) DW-MRI can sepa-
rately quantify pure diffusion motion and perfusion-related
motion of water molecules without using an exogenous con-
trast agent as required in DCE-MRI [62]. Findings indicate
pre-NCRT perfusion parametric values and post-NCRT

a

Patient C. Surgical pathology showing

abundant necrosis among single and rare

groups of cancer cells.

Patient B. Surgical pathology showing

necrosis among groups of residual

cancer cells.

Patient A. Surgical pathology showing

little necrosis and extensive residual

cancer around mucous glands.

b

Fig. 2 Longitudinal evaluation of apparent diffusion coefficient (ADC)
values from the region of interest (ROI) throughout neoadjuvant
chemoradiation for patients A, B, and C (a). Normalized ADC values

of the ROI with respect to the initial measurement during neoadjuvant
chemoradiation (b). Representative pathological slides from surgical
resection after neoadjuvant chemoradiation for patients A, B, and C (c)
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diffusion parametric values play an important and reliable role
in noninvasively identifying pCR response, with higher mi-
crocirculatory perfusion, vascularization, and oxygenation
levels at baseline leading to a better therapeutic response and
IVIM-based diffusion values showing superior differentiation
performance to purely DW-MRI-based ADC [63•].

However, these results were contradicted by a study of 98
patients evaluated at three timepoints (before, during, and after
NCRT), which indicated that single-slice ROI IVIM parame-
ters were inadequate for NCRT response prediction due to low
reproducibility [64]. A retrospective comparison between
single-section and whole-tumor volume ROI analysis ad-
dressed this issue, and the study of 31 patients evidenced the
superior reproducibility of volumetric analysis and reported
that both ADC- and IVIM-derived slow diffusion coefficient
(D) were correlated with tumor response [65•]. This was cor-
roborated by the phase II trial, LARC—radiation response
prediction [66], which assessed 27 patients prior to neoadju-
vant chemotherapy initiation and after the first three delivered
radiation fractions, and found that a high baseline perfusion
fraction (estimated from a simplified approach to the IVIM
model) reflected tumor response with a sensitivity of 69%
and specificity of 100%, and baseline perfusion fraction and
tumor volume together predicted response with a sensitivity of
88% and specificity of 91% (p < .001).

A further study of 19 patients with rectal adenocarcinoma
imaged with 1.5 T MRI with 7-b value diffusion sequences
compared four diffusion models—mono- and bi-exponential
Gaussian and non-Gaussian—and concluded that all candi-
date models exhibited good fitting performance, but no single
diffusion model accurately described tumors [67•]. This was
explained by increased tumor heterogeneity, whereby areas
with high vascularity fit better with bi-exponential models
and areas with necrosis mostly follow mono-exponential be-
havior. The two most complex models, bi-exponential
Gaussian (14/19 patients best fitting) and bi-exponential
non-Gaussian (best fitted tumor areas from all patients), ex-
hibited the best fitting performance, but mono-exponential
Gaussian remained the most reliable fitting algorithm [67•].

Low-Field 0.35 T fMRI

Across all imagingmodalities, the timing of imaging in relation
to chemoradiotherapy remains a point of contention, with im-
aging most often performed only before and after the treatment
course, and some studies adding a 1 to 2-week early evaluation.
A study of patients evaluated with on-board diffusion-weight-
ed imaging with an integrated low-field .There is 35 T MRI
radiotherapy system [68••] allowed for longitudinal, seamless
DW-MRI imaging integration and enabled the creation of func-
tional diffusion maps showing ADC changes in tumor sub-
regions identifying potentially resistant regions (Fig. 1).

The study successfully demonstrated the utility of low-field
MRI (in contrast to earlier studies, which used 1.5 T or higher
fields) and the ability to serially image patients with DW-MRI.
The study was also able to identify the slope of change in
tumor ADC both over the entire treatment course and different
segments of NCRT as early surrogates of response (Fig. 2).

Importantly, the study yielded promising results in a new
direction of research and warrants further analysis of the inte-
gration of simultaneous radiotherapy and response evaluation
imaging.

Conclusions

Response assessment timing is a key issue that must be further
investigated, and on-board MRI response assessment during
radiotherapy is a promising new avenue of research. Other
studies are already underway to determine the predictive pow-
er of combining MRI and PET functional imaging. The study
protocol: multiparametric magnetic resonance imaging for
therapeutic response prediction in rectal cancer (Australia,
New Zealand ACTRN12616001690448) plans to combine
DW-MRI and DCE-MRI with PET, and a similar single-arm
study: Predicting radiotherapy response of rectal cancer with
MRI and PET (PRISM; Royal North Shore Hospital
NCT02233374) expects to enroll 44 patients who will under-
go 18F-FDG PET/CT and DW-MRI scans 2 weeks into
NCRT treatment and 6 weeks after. Further trials are necessary
to evaluate prediction models and emerging imaging tech-
nique applications in colorectal response assessment, includ-
ing low-field MRI and non-Gaussian diffusion models.
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