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Abstract
Purpose of the Review To summarize advances in genomic medicine and anticipated future directions to improve cardiovascular
risk reduction.
Recent Findings Mendelian randomization and genome-wide association studies have given significant insights into the role of
genetics in dyslipidemia and cardiovascular disease (CVD), with over 160 gene loci found to be associated with coronary artery
disease to date. This has enabled the creation of genetic risk scores that have demonstrated improved risk prediction when added
to clinical markers of CVD risk.
Summary Incorporation of genomic data into clinical patient care is on the horizon. Genomic medicine is expected to offer
improved risk assessment, determination of targeted treatment strategies, and improved detection of lipid disorders causal to
CVD development.

Keywords Genomics . Genetic risk score for coronary artery disease . Cardiovascular prevention . Genome-wide association
studies . Polygenic lipid disorder

Introduction

Incorporation of genetic information into the diagnosis and
management of lipid disorders and cardiovascular risk

reduction is an important and well-recognized advancement
in patient care. One of the biggest breakthroughs was the
discovery of low-density lipoprotein (LDL) receptor muta-
tions in patients with homozygous familial hypercholesterol-
emia (FH) by Brown and Goldstein in 1974 [1]. Additional
mutations have since been discovered and genetic testing is
now an option in the diagnostic approach of FH [2]. In fact,
the Familial Hypercholesterolemia Foundation Expert
Consensus Panel now recommends genetic testing on all pa-
tients meeting definite or probable clinical criteria for FH in
hopes to improve detection and treatment [3••]. Similar use of
genetic information is available for other lipid disorders, as
well other conditions that may increase the risk of cardiovas-
cular disease (CVD). This is especially helpful when identifi-
cation of harmful mutations enables targeted treatment to re-
duce CVD risk. More recently, Mendelian randomization
(MR) studies and genome-wide association studies (GWAS)
have increased our understanding of genes causally related to
and associated with, respectively, lipid disorders and CVD.

Increased focus on CVD prevention led to the development
of guidelines that utilize laboratory data, imaging tests, comor-
bid diagnoses and other anthropometric parameters to help
determine appropriate preventive strategies. Even with opti-
mal implementation and patient adherence, risk still remains,
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and to an alarming degree for some patients. Genomics refers
to the study of all, or a large proportion of the genome, as
opposed to genetics, which is a more focused study of indi-
vidual genes. The continued advancement in genomics is an-
ticipated to yield improved assessment of CVD risk as well as
strategies for additional risk reduction.

Current Applications of Genetic Information

Genetic testing for specific lipid disorders has been the pre-
dominant use of genetic information in the management of
lipid disorders and CVD risk reduction to date. As previously
mentioned, this largely began with the discovery of LDL-
receptor (LDL-R) mutations in patients with FH in 1974 [1].
Identification of mutations in apolipoprotein B (apoB) and
proprotein convertase subtilisin/kexin type 9 (PCSK9) follow-
ed as other causes of FH with autosomal dominant inheritance
[4–6]. Genetic testing of LDL-R, apoB, and PCSK9 is fre-
quently used for diagnosing FH, especially if there is a new
index case and/or the diagnosis is uncertain based on clinical
criteria alone. A similar, but more recent application of genetic
information can be performed as part of the diagnostic work-
up for familial chylomicronemia syndrome (FCS), a much
rarer inherited dyslipidemia affecting an estimated 1–2 per
million [7, 8]. FCS most classically yields a Fredrickson type
I phenotype consisting of chylomicronemia and severe
hypertriglyceridemia due to ineffective triglyceride metabo-
lism by lipoprotein lipase (LPL). This often leads to recurrent
bouts of acute pancreatitis. FCS was initially considered to be
a monogenic autosomal recessive disease due to mutations in
LPL or in one of four cofactors [9]. More recently, polygenic
forms have been acknowledged, making genetic testing more
complex [10]. Despite the recent inclusion of polygenic forms,
testing for mutations in LPL and its four cofactors implicated
in FCS is an option in the diagnostic approach.

Genome-Wide Association Studies

The advent of genome-wide association studies (GWAS) in the
late 2000s has provided clear starting points to determine genet-
ic contributions and potential therapeutic targets to cardiovascu-
lar risk factors and disease [11]. GWAS follow two classic ep-
idemiological frameworks: case-control study, which compares
the prevalence of single-nucleotide polymorphisms (SNPs) in
cases to controls, and quantitative trait association, which com-
pares mean values of a continuous phenotype between homo-
and heterozygotes, to identify novel SNPs of varying levels of
significance. Risk-associated SNPs can be present in coding
regions (exons) or non-coding regions (introns) of DNA, may
directly or indirectly act on the cardiovascular phenotype of
interest or may serve as “tagging SNPs” that are in linkage

disequilibrium with the true functional (disease causing) vari-
ants and loci that are not tested for in GWAS [12, 13].

To date, GWAS have identified several hundred SNPs for
CVD and cardiovascular risk factors [14, 15••]. Traits identified
include loci associated with coronary artery disease (CAD),
lipids, type 2 diabetes mellitus, blood pressure, C-reactive pro-
tein, and body mass index [16]. This list continues to rapidly
expand, especially within the last decade, as GWAS have cap-
tured more genome-wide significant SNPs by incorporation of
large international consortiums and imputation from various
catalogs (e.g., 1000 Genomes Project, UK Biobank, Million
Veteran Program, cARDIoGRAMplusC4D, etc.) [17]. In fact,
between 2017 and 2018, the number of loci associated with
CAD more than doubled to 161 [15••]. While the clinical rel-
evance of themajority of GWAS-discovered SNPs has yet to be
elucidated, this finding affords great potential for new thera-
peutic targets and improved risk stratification.

Albeit promising, there are known limitations of GWAS-
obtained evidence. First, GWAS tend to find small effect sizes
[14, 18]. This translates into a need for understanding the
complex interplay of loci and further studies to confirm asso-
ciations. Small effect sizes do not mean GWAS lack utility.
Case in point,HMGCR variants are only associated with small
changes in LDL-C, yet drugs targeted at this pathway (i.e.,
statins) have large effects on LDL-C levels and disease risk
reduction [18]. To date, the majority of GWAS focused pre-
dominantly in populations of European and Asian ancestry,
leaving other ancestry groups underrepresented and may fur-
ther exacerbate disparities in CVD [15••, 19]. In fact, no locus
has reached genome-wide significance in African populations
and only three separate loci have been replicated in Hispanic
populations [15••, 20]. This limitation may contribute to both
lack of predictability of genetic scores within these popula-
tions and more broadly contribute to lack of discovering rare
frequency variants that have a large effect size or present new
therapeutic targets [20]. These limitations can be overcome by
larger, more diverse studies and pooling of cohorts [12].

Mendelian Randomization

The MR method uses random and naturally assorted genetic
variants to determine if an association between a risk factor
and outcome goes beyond association to causation [21••].
Emersion of large collections of genetic samples along with
GWAS has made MR studies possible [22]. Often, studied
variants are known to alter a measurable biomarker or target,
such as LDL or a disease state, such as myocardial infarction
[23]. Individuals are followed over time and then compared
for outcomes of interest. The strength of an MR study lies in
the random assortment of variants within a population, which
occurs at conception during meiosis. This random assortment
minimizes potential confounders, reverse causation, and other
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biases [24]. Identification of potentially causal genes and var-
iants via MR is rapidly improving the ability to assess individ-
ual risk and accelerating the search for viable drug targets [25].

Lipoprotein(a) (Lp(a)) is a prime example of howMR studies
improve our understanding of causality and identification of
treatment targets. Despite its discovery in 1963, the independent
causal role of Lp(a) was difficult to prove. In the 1990s, as
interest was waning in Lp(a) as independently causative of
CVD, MR studies resurrected this interest by finding it to be
causative [26, 27]. More recently, a MR analysis found that a
decrease in Lp(a) of 101.5 mg/dL independently reduced
Coronary Heart Disease (CHD) risk to a similar degree as a
decrease in LDL-C by 38.67 mg/dL, which was previously
found to correspond to a 20–25% decrease in CHD risk [28].
This role in causality may prove its importance in the therapeutic
realm with the ongoing clinical trial of an antisense oligonucle-
otide (IONIS-APO(a)Rx) to Lp(a) [29].

The list of genes evaluated byMR studies as causal in the risk
for CVD and potential therapeutic targets continues to grow,
especially among lipid-related targets, which includes those re-
lating to LDL-C (LDL-R, HMGCR, NPC1L1, PCSK9, APOB,
ABCG5/G8, CETP, MTTP), Lp(a) (LPA), and triglyceride-rich
remnant particles (LPL, APOC3, ANGPTL3, ANGPTL4,
APOA5, TRIB1), but interestingly not high-density lipoprotein
cholesterol (HDL-C) [24, 25, 30, 31]. For HDL-C, this is espe-
cially important since multiple drug trials that raise HDL-C have
failed to show a benefit, which is congruent with MR observa-
tions, suggesting HDL-C is a risk marker rather than a causal
factor [25, 30]. Evaluation of inflammatory markers found a role
for the interleukin-6 signaling pathway, but not for C-reactive
protein or lipoprotein-associated phospholipase A2 [23, 32].MR
cohorts may also evaluate for causal phenotypes in CVD, which
found education and BMI to have causal roles [33–35]. There
are many other risk factors being analyzed, including those
linked to hypertension and type 2 diabetes, that are not discussed
here but may play an important role in precision assessment of
patients. Table 1 summarizes key biomarkers and phenotypes
studied by MR and their causal relationship with CAD.

Although MR studies have substantial potential, one should
also be cautious of their limitations. Identification of causal
pathways and risk variants need be understood within the plu-
rality of genes conferring risk for an individual [21••]. As will be
discussed, utilization of genetic risk scores substantially inte-
grates the pleiotropic effects from an array of variants to better
assess the precise risk and treatments for an individual [21••, 36].

Future Application of Genomic Medicine

Genetic Risk Score

The addition of genomic information to established clinical
markers of CVD risk would enable improved calculation of a

genetic risk score (GRS) as well as provide potential treatment
targets based on which harmful alleles are identified. A GRS
can be created by assigning a numerical value to each harmful
allele that reflects its association with CVD as determined by
GWAS, and then summing or averaging these values. GRSs
have already been created for study purposes and new variants
continue to be discovered. Study of the Atherosclerosis Risk in
Communities (ARIC) cohort demonstrated improvedCAD risk
discrimination when a GRS containing 45 SNPs was added to
clinical risk scores [37]. Other studies have also shown that use
of a GRS improves CVD risk prediction of large cohorts such
as the Framingham Heart Study [38, 39••, 40••]. Use of a GRS
for CAD risk prediction appears to be beneficial in populations
already known to be at greater CVD risk [41]; a retrospective
study of 725 patients with an FH-causing mutation found that
use of a GRS predicted risk of a CVD event that included an
acute coronary event or coronary revascularization, peripheral
vascular disease, or a cerebrovascular event. Those with a GRS
calculated from 192 SNPs in the highest tertile had a signifi-
cantly higher event rate than those in the lowest GRS tertile
after adjustments were made for CVD risk factors, including
lipid levels (40.9% vs. 24.7%, p < 0.0001).

While it is conceivable that the addition of a GRS into
current prevention algorithms is on the horizon, several uncer-
tainties need to be further elucidated. Components that are yet
to be determined include construct of the optimal GRS that
reflects risk of a multiethnic population, patient population
selection, and additional genetic information of benefit, such
as sequencing of genes related to drugmetabolism. In addition
to helping estimate risk with a GRS, incorporating genomic
data will improve diagnosis of FH and other lipid disorders.

Genome Sequencing Selection

Adding genomic information to CVD prevention models re-
quires selection of areas within the genome for sequencing

Table 1 Biomarkers and phenotypes and their causal relationship with
coronary artery disease according to Mendelian randomization studies

Causally related to
CAD by MR

Not causally related to
CAD by MR

LDL-C HDL-C

TG-rich lipoproteins CRP

Lp(a) Fibrinogen

IL-6 signaling Lp-PLA2

Blood pressure Uric acid

BMI Homocysteine

BMI body mass index, CAD coronary artery disease, CRP C-reactive
protein, HDL-C high-density lipoprotein cholesterol, IL-6 interleukin-6,
LDL-C low-density lipoprotein cholesterol, Lp-PLA2 lipoprotein-associ-
ated phospholipase A2, Lp(a) lipoprotein(a), MR Mendelian randomiza-
tion, TG triglyceride
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that are relevant to CVD and its risk factors. There are over
160 gene loci known to be associated with CAD, some of
which affect lipid metabolism [42].While there has been rapid
discovery, this process is ongoing and some loci have yet to be
discovered. This is especially true for certain ethnic groups,
since many of the large genetic databases have come from
European and Asian populations [15••]. For example,
9p21.3, a locus which has been determined to be associated
with CAD, has not been found to be associated with increased
CAD risk in those of African descent [43]. Due to GWAS,
9p21.3 variants were found to be associated with increased
risk of CAD in certain ethnic groups through complex mech-
anisms, many of which are independent of effects on tradi-
tional risk factors, such as dyslipidemia and hypertension [44,
45]. The 9p21.3 example demonstrates how assessment of
traditional risk factors does not fully define CVD risk. There
are still genes related to lipid metabolism and lipid disorders
that have yet to be discovered, which will likely have a place
in the future optimal GRS.

Patient Selection in Cardiovascular Disease
Prevention

The optimal patients for whom addition of genomic in-
formation to clinical parameters will improve risk predic-
tion still needs to be determined. It is likely that the
incorporation of genomic information will benefit all pa-
tients; however, some may derive greater benefit than
others. In regard to primary prevention, patients with
above average risk may benefit the most, for example,
those with a concerning family history or comorbidities,
such as diabetes or obesity. Incorporating genomic infor-
mation into the primary prevention treatment strategy
may enable medical providers to better assess how ag-
gressive prevention measures should be for each patient,
and/or give better insight into areas of risk to target.

A genomic approach to primary prevention for pa-
tients at average risk seems worthwhile for the same
reasons as those stated for patients who are at increased
risk, although cost-benefit analyses would need to be
performed for both groups. It would likely be the case
that those at average risk are less likely to have harmful
variants identified on genome analysis; yet if found
could lead to the same benefits of primary prevention
strategies as listed above. Genomic assessment may be
less likely to affect the level of aggressiveness of preven-
tive strategies for patients with established CVD, since
the most aggressive strategy is likely already in place.
Rather, it may enable more accurate selection of targeted
treatment(s) to optimally reduce risk. Cost-benefit analy-
ses will need to be employed to inform on the level of
benefit for secondary prevention.

Improved Diagnosis of Monogenic and Polygenic
Lipid Disorders

Genetic testing is already an option for lipid disorders known
to have monogenic inheritance such as FH and FCS [2, 46].
The Familial Hypercholesterolemia Foundation Expert
Consensus Panel now recommends genetic testing on all pa-
tients meeting definite or probable clinical criteria for FH in an
attempt to improve diagnosis and treatment of these patients
given their substantial CVD risk [3••]. An additional aim is to
improve prognostication, since those with an FH-causing mu-
tation are at significantly higher CVD risk than those with a
similar LDL-C who lack an FH-causing mutation [47]. One
limitation is that clinically available genetic testing for such
disorders only offers testing of genes previously identified.
Obtaining patient genomic data will improve the diagnosis
of lipid disorders both by finding new variants causing mono-
genic forms, as well as finding other combinations of alleles
leading to polygenic forms.

Only recently have polygenic forms of some lipid disorders
been considered [10, 48–50]. This is an important acknowl-
edgement since many monogenic and polygenic cases benefit
from the same treatment strategy. To improve diagnosing of
FCS to include those without homozygous or compound het-
erozygous loss of function in one of the five known causal
genes, a polygenic risk score was recently proposed by Stahel
et al. using 14 loci related to triglyceride metabolism [51].
This was created in hopes of including patients without ho-
mozygous or compound heterozygous mutations in LPL or
one of its four known cofactors, but with the same phenotype
consisting of chylomicronemia, severely elevated triglycer-
ides and risk of pancreatitis.

A polygenic risk score has not been proposed for FH; how-
ever, polygenic forms are being increasingly recognized. At
this time, over 50 loci have been discovered that affect LDL-C
levels [52]. Classic monogenic FH is now proposed to be
considered a subtype of FH, with polygenic forms comprising
about 50% of cases meeting diagnostic criteria [53]. Patient
genome sequencing will therefore improve identification of
genetic susceptibility to hypercholesterolemia and with wide-
spread use; it is likely that more causative genes will be dis-
covered in both monogenic and polygenic cases of FH.

Enabling Targeted Treatment Strategies

Genomic medicine offers identification of specific genetic loci
causing or contributing to risk. Knowledge of which harmful
alleles are present enables tailoring of the treatment strategy.
For example, if genomic data reveal that a patient is at in-
creased risk of abnormal triglyceride metabolism, this might
lead to more emphasis on diet counseling to reduce
triglyceride-rich lipoproteins. If harmful 9p21.3 variants are
identified, highly aggressive CAD risk reduction should be
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performed, at least for certain ethnic groups. LDL-C-lowering
medications might have greater efficacy in patients with ge-
netic abnormalities of the targeted protein, which appears to
be the case in those with gain-of-function PCSK9 mutations
treated with a PCSK9 monoclonal antibody [54].

More sophisticated treatments above lifestyle modifica-
tions and currently available medications may become avail-
able in the future to target certain damaging alleles as we
continue to learn more from GWAS and MR studies.
Genomic data would then be even more imperative. For ex-
ample, a recent genome-modifying treatment consisting of an
engineered meganuclease targeting PCSK9 demonstrated sig-
nificant LDL-C lowering by up to 60% in Rhesus macaques
[55]. Follow-up was about 1 year, demonstrating lasting ef-
fects in LDL-C-lowering. Alipogene tiparvovec encoded a
naturally occurring gain-of-function LPL variant and was the
first gene therapy approved for human use [56]. Despite re-
ducing the number of episodes of acute pancreatitis, abdomi-
nal pain, and hospital admissions, the drug was eventually
discontinued due to high cost and low demand after it was
administered to only one patient with FCS in Germany [57].
If genome sequencing had been in widespread use at that time,
more patients with LPL deficiency would have been diag-
nosed and potentially considered for this therapy. Continued
advancement into both gene therapy development and patient
genome sequencing may provide life-altering or life-saving
targeted treatments for patients in the future.

Optimizing Drug Therapy

Pharmacogenomics refers to the role of the genome in drug
metabolism and efficacy. Obtaining genomic data pertaining
to drug metabolism would enable better tailoring of drug ther-
apy, based on which drug metabolism alleles a patient pos-
sesses. One of the most studied genes in statin metabolism is
SLCO1B1. It encodes the transporter protein OATP1B1,
which is responsible for hepatocyte uptake of statins. A
2015 meta-analysis of nine case-control studies demonstrated
an increased risk of statin-associated myopathy with the

SLCO1B1*5 variant (OR 2.09, 95% CI 1.27–3.43, p =
0.003) and an even stronger association with statin-induced
rhabdomyolysis or a tenfold CK elevation (OR 3.83, 95% CI
1.41–10.39, p = 0.008) [58]. Other variants of SLCO1B1 exist
as do many other genes that metabolize drugs used to treat
dyslipidemia, hypertension, CAD, and other CVD risk fac-
tors. Knowing which alleles for drug metabolism a patient
has can help determine if certain drugs should be used at
atypical doses or avoided altogether.

Obtaining a GRS in one large meta-analysis showed that in
addition to enabling CAD risk prediction, the GRS also pre-
dicted benefit from statin therapy [38]. Those in the highest
GRS quintile had a greater reduction in coronary events with
statin therapy compared to those in the lowest quintile. This
important trial was composed of patients from JUPITER and
ASCOT as well as CARE and PROVE IT-TIMI 22, therefore
representing primary and secondary prevention. A similar
study focusing only on trials using statins in primary preven-
tion found similar findings [59••]; looking at ASCOT,
JUPITER, and WOSCOPS study participants, the quintile
with the highest estimated risk based on a GRS derived from
57 common DNA sequence variants had a significantly great-
er reduction in CHD events with statin use as compared to
other genetic risk groups. Combining the GRS and knowledge
of drugmetabolism alleles with previously established clinical
markers of CVD riskwill greatly enhance the selection of drug
therapy for CVD prevention.

Conclusions

With the advent of GWAS, our understanding of the genetic
contribution to lipid disorders and CVD has accelerated over
the last decade. Table 2 summarizes what we have learned
from GWAS and MR to date. There is still much room for
discovery, especially in non-European and non-Asian popula-
tions, where GWAS have not been as robust. Building upon
all that has been discovered to date will soon enable the incor-
poration of patient genomic sequencing into clinical practice.

Table 2 Summary of important concepts gained from genome-wide association and Mendelian randomization studies

Causality of lipid
metabolism genes

Genes predictive of LDL-C, triglyceride-rich lipoproteins, and Lp(a) levels are causally associated with CVD, while
genes predictive of HDL-C are not.

GRS GRS can predict CVD risk and can help guide statin therapy.

Timing of primary
prevention

With GRS-guided risk assessment, individuals found to be at high genetic risk who would benefit from primordial
primary prevention can be identified and started on aggressive risk-reduction therapy.

FCS-specific GRS SNPs causative of hypertriglyceridemia have been identified, enabling calculation of a GRS specifically for FCS. This
enables improved recognition of polygenic FCS.

FH-specific GRS With increasing recognition of polygenic FH, an FH-specific GRS may soon become available.

CVD cardiovascular disease, FCS familial chylomicronemia syndrome, FH familial hypercholesterolemia,GRS genetic risk score,GWAS genome-wide
association studies,HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol, Lp(a) lipoprotein(a), SNP single nucleotide
polymorphism
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Genomic sequencing will enable calculation of a GRS to help
with CVD risk assessment, predict treatment response and
guide-targeted treatment selection based on harmful variants
identified, and improve the diagnosis of monogenic and poly-
genic lipid disorders. Because many genes found to be asso-
ciated with CAD are unrelated to traditional risk factors, GRSs
are expected to add significant improvement in risk assess-
ment. Barriers to incorporation of genomic data include the
need for further genomic research, especially for underrepre-
sented ethnic groups, refining CVD risk assessment algo-
rithms and cost-benefit analyses.
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